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For deep inelastic lepton scattering, I define an event-by-event set of Lorentz-

covariant basis four-vectors eµX , eµY , nµ, and ñµ. These vectors have the normaliza-

tion, orthogonality, and handedness properties:

e2X = −1 = e2Y , eX · eY = 0 = eX,Y · n = eX,Y · ñ, n2 = 0 = ñ2, n · ñ = 1

eµναβ n
µñνeαXe

β
Y = 1

In the virtual photon plus incident ion CM frame, the space components of n and ñ

are anti-parallel and parallel to P and q, respectively. In this same frame, the time

components of eX and eY vanish, the space components of eX lie in the electron

scattering plane, and the space 3-vector of eY is perpendicular to this plane.

Jet-clustering algorithms agregate particles in rapidity × azimuth × perpendicular

momentum, all relative to a preffered axis. For pp or AA scattering, this is simply

the beam axis. For DIS, it is preferable to define rapidity η with respect to the nµ, ñµ

vectors defined here (rather than with respect to the detector axis). Once these four

basis vectors are constructed, then for an arbitrary final state particle of momentum

pµ in the event:

η =
1

2
ln

[
ñ · p
n · p

]
, pT cosφ = −p · eX , pT sinφ = −p · eY

Note that these definitions are Lorentz-invariant and do not require boosting each

particle’s momentum four-vector to the CM frame.
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I. COLLIDER KINEMATICS

In these notes, inclusive electron scattering on an ion:

eAZ → e′X (1)

is described by the momentum four-vectors kµ and k′µ for the incident and scattered electron,
respectively, and P µ

A for the target ion of mass number A and charge Ze. The virtual photon
four-vector is denoted qµ = (k− k′)µ. The Bjorken variable is defined with respect to single
nucleon kinematics:

xB =
Q2

2q · PA/A
=

Q2

2q · P
, 0 < xB ≤ A (2)

with P = PA/A = (Z/A)P0 the per-nucleon momentum of the beam. Unless otherwise
specified, all non-invariant quantities are expressed in the collider (detector) frame.

If the ring magnets are tuned to store protons of momentum P0, then the stored ion beam
will have total momentum

PA = ZP0 (3)

since the magnetic field sets the rigidity (momentum over charge), not the total momentum
PA. The RF frequency and/or the total path length of the lattice has to adjust to the
slower ions, as compared to protons, but otherwise the fully stripped ions of momentum
ZP0 behave the same in the magnetic lattice as protons of momentum P0.

In a proposed electron ion collider, the electron and ion beams collide with a non-zero
crossing angle. In particular, in the detector reference frame of the JLab EIC design [1]:

k[0,1,2,3] = k [1, 0, 0, −1]

P [0,1,2,3] =
[√

P2 +M2, |P| sin θC cosφC , |P| sin θC sinφC , |P| cos θC

]
(4)

with θC = 0.050 radians and φC = π radians [1]. In the eRHIC design, the crossing angle is
smaller, but non-zero. The total invariant CM energy squared is:

sA = (k + PA)2 = M2
A + 2k · PA = M2

A + 2k (EA + P cos θC ] (5)

and the total invariant CM energy squared per nucleon can be defined as:

sN = (k + P )2 = M2
N + 2k · P = M2

N + 2k

(√
P2 +M2

N + |P| cos θC

)
(6)

A. Reference Light-Like Four-Vectors

In the deep inelastic limit of Q2 = −q2 and 2q · P both large (� ΛQCD), but at fixed xB,
it is useful to define event-by-event light-cone vectors nµ, ñµ:

n · n = 0 = ñ · ñ n · ñ = 1 (7)
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such that

qµ = q+nµ + q−ñµ q+ ≡ q · ñ q− ≡ q · n
P µ = P+nµ + P−ñµ P+ ≡ P · ñ P− ≡ P · n (8)

The two light-cone vectors must each be a linear combination of qµ and P µ:

nµ = αqµ + βP µ ñµ = α̃qµ + β̃P µ

ñ2 = 0 = n2 = −α2Q2 + (αβ)2q · P + β2M2

0 = − Q2

2q · P

(
α

β

)2

+
α

β
+

M2

2q · P
= −xB

(
α

β

)2

+
α

β
+
M2xB
Q2

α

β
=

[
1±

√
1 + 4M2x2B/Q

2

]/
(2xB) (9)

Chose the − sign for nµ and the + sign for ñµ:

nµ = β

[
qµ

2xB

(
1−
√

1 + δ
)

+ P µ

]
δ ≡ 4x2BM

2

Q2
� 1

ñµ = β̃

[
qµ

2xB

(
1 +
√

1 + δ
)

+ P µ

]
(10)

1 = n · ñ = ββ̃

[
Q2δ

4x2B
+
q · P
xB

+M2

]
= ββ̃

[
2M2 +

Q2

2x2B

]
1 = 2M2ββ̃

[
1 +

1

δ

]
⇒ ββ̃ =

δ

2M2(1 + δ)
(11)

In the original collider frame, the three-vector components of n and ñ are not anti-parallel.
However, after boosting to the q + P center-of-mass frame, the three vector nCM is parallel
to PCM and ñCM is parallel to qCM = −PCM. The choice of the sign from Eq. 9 also ensures
that in the Bjorken limit:

P+q− � −P−q+ > 0. (12)

with

P+ ≡ ñ · P, P− ≡ n · P, etc.. (13)

The lightcone vectors nµ and ñµ are defined by Eq. 10, up to a common (though inverse)

normalization, provided the product ββ̃ satisfies the constraint of Eq. 11. To make this
explicit, define

β =
Λ

MN

√
δ

2(1 + δ)
, β̃ =

1

ΛMN

√
δ

2(1 + δ)
(14)

In the CM frame, a boost parallel or anti-parallel to P simply changes the value of Λ.
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B. Defining Rapidity with the Light-Cone Vectors

In the event-by-event frame defined by the vectors q and P , a generalized definition of
rapidity of a particle of momentum p is

η(p) ≡ 1

2
ln

[
ñ · p
n · p

]
. (15)

This definition is Lorentz-invariant, and hence does not require boosting the vectors to the
q+P CM frame. On the other hand, if we change the normalization of the light cone vectors

β −→ Λβ, β̃ −→ β̃

Λ
(16)

then
η(p) −→ η(p)− ln Λ (17)

The jet-clustering algorithms depend only on the difference η(pi) − η(pj) for all pairs of
particles ij. The normalization Λ of the light-cone vectors cancels in this difference.

The momentum fraction of a parton of four-momentum p is defined as

xp =
p · ñ
P · ñ

=
p+

P+
(18)

This is obviously independent of the normalization of the light-cone vectors.

Particular choices for the normalization of the light cone vectors are defined in App. B.

C. Transverse Unit Vectors

To analyze the transverse momentum transfer and polarization degrees of freedom in
Semi-Inclusive DIS (SIDIS) and Deep Virtual Exclusive Scattering (DVES), and to im-
plement jet-clustering algorithms [2], we require a consistent event-by-event definition of
transverse unit vectors. In the target rest frame, the Trento convention [3] is widely used
for SIDIS and DVES. In this convention, the instantaneous ẑ direction points along qCM.
On the other hand, for jet-clustering, and analysis of the parton momentum fractions, it is
more convenient to choose ẑ along −qCM = PCM. I introduce a Lorentz-covariant definition
of transverse unit vectors, and identify the options for the two conventions.

With Kβ = (k + k′)β, define:

Xµ = Kµ − nµ(K · ñ)− ñ(K · n), X · n = 0 = X · ñ (19)

The generalizes the concept of a rest-frame vector that lies in the k ⊗ k′ scattering plane.
The normalization is:

X2 = K2 − 2(K · n)(K · ñ) = K2 − 2(K · P )2ββ̃

= −Q2

[(
(2− y)

y

)2

− 1

]
< 0 (20)
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The transverse unit four-vector is

eµX =
Xµ

√
−X2

=
Kµ − nµ(K · ñ)− ñ(K · n)

(2/y)
√
Q2 [1− y]

, e2X = −1. (21)

Now define a vector orthogonal to eX , q and P :

Y µ = gµαεαβρσP
βkρk′σ =

−gµα

2
εαβρσP

βKρqσ (22)

In the Target Rest Frame with a coordinate system such that kµRest = kRest[1, 0, 0, 1]

[Y µ]Rest = gµ,2ε2,0,3,1M [kk′ sin θe cosφe]Rest + gµ,1ε1,0,3,2M [kk′ sin θe sinφe]Rest

= M [0, (k× k′)]Rest (23)

Thus Y µ generalizes the concept of the vector perpendicular to the scattering plane. The
normalization of Y µ is (see App. A):

Y 2 = −Q2
[
(2k · P )(2k′ · P )−M2Q2

]
/4 =

Q2(2k · P )2

4

[
1− y − y δ

4

]
(24)

The normalized unit vector is

eµY (±) =
±2gµα√

Q2 [(2k · P )(2k′ · P )−Q2M2]
εαβρσP

βkρk′σ

=
∓gµµ′√

Q2 [(2k · P )(2k′ · P )−M2Q2]
εµ′νρσP

νKρqσ (25)

with
e2Y = −1 (26)

The sign depends on the convention for the coordinate system. In the q + P CM system, if
we choose ẑq along the direction of qCM, then the three space unit-vectors:

eiX ⊗ ejY (+) ⊗ ẑq (27)

form a right-handed coordinate system consistent with the Trento Convention. This is
the preferred choice for studies of SIDIS, TMDs, and DVES. On the other hand, for jet
algorithms and parton hadronization, it is more convenient to have the CM z-axis along
PCM. In this case

eiX ⊗ ejY (−) ⊗ ẑP = −ẑq (28)

also form a right-handed coordinate system.

Equivalently, start with the alternate definition:

Ỹ µ = gµαεαβρσK
βnρñσ

= Y µ δ

M2xB
√

1 + δ

eµY (±) =
±gµα√

Q2 [(2k · P )(2k′ · P )−M2]

2M2xB
√

1 + δ

δ
εαβρσK

βnρñσ (29)

The Lorentz invariant generalization of a ’right-handed’ coordinate system can be expressed
as

εαβρσn
αeβXe

ρ
Y ñ

σ = 1 with eY = eY (+) (30)
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II. JET ALGORITHM RESULTS

I have implemented the FastJet suite of jet algorithms [2] together with an event analyzer
for PYTHIA6 event files of open charm production created by Y. Furletova. I have used the
Anti-kT algorithm with distance measure R = 2.0 fm and pT, min = 0.05 GeV/c. I am still
checking my sign conventions and other details.

hJetMult
Entries  99999
Mean     4.92
RMS    0.9992

0 2 4 6 8 10 12 14 16 18
0

5000

10000

15000

20000

25000

30000

35000

40000 hJetMult
Entries  99999
Mean     4.92
RMS    0.9992

Jet Multiplicity

FIG. 1. Jet Multiplicity

(number of jets) distribution

with the anti-kT jet algo-

rithm: R = 2, PT > 0.05

GeV.

The jet multiplicity for 100,000 Photon Gluon Fusion (PGF) events on the proton (10⊗
100 GeV2) is shown in Fig. 1. Assuming the scattered electron is being identified as a jet,
then we expect a minimum of 4 jets: The electron, the two charm-quark jets, and the target
remnant jet. In principle, every stable final state particle is either uniquely assigned to a
jet, or is identified as a jet unto itself (e.g. the scattered electron).

A sample single event display is shown in Fig. 2.

I still have checks to do on my code, and intend to develop a single event display showing
all particles clustered into jets. One of my goals with this study is to see if the combinatorial
background for D-meson reconstruction via charged particle decay modes is reduced if I
require all the particles to be found in a single jet.
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hSingleEventJet0004
Entries  6
Mean x   4.302
Mean y  0.9243
RMS x   1.596
RMS y   1.597

hSingleEventJet0004
Entries  6
Mean x   4.302
Mean y  0.9243
RMS x   1.596
RMS y   1.597

Event Display

FIG. 2. Sample event with 6 reconstructed jets. Rapidity (η) and φ are as defined in the text. The

vertical axis is the total PT of the jet. I have not verified, but I think the low-pT jets at η ≈ −2

and η ≈ 4 are the scattered electron and the target fragmentation jet, respectively. The two large

pT jets separated by ∆φ ≈ π should be the charm and anti-charm jets.



8

Appendix A: Contractions of the Levi-Civita Symbol

The fully antisymmetric Levi-Civita symbol εαβρσ has normalization

ε0,1,2,3 = 1 = −ε0,1,2,3 (A1)

The double contraction of two Levi-Civita symbols is [4]:

− εµνρσεµν′ρ′σ′ = δνν′
[
δρρ′δ

σ
σ′ − δρσ′δ

σ
ρ′

]
− δνρ′ [δρν′δ

σ
σ′ − δρσ′δ

σ
ν′ ] + δνσ′

[
δρν′δ

σ
ρ′ − δ

ρ
ρ′δ

σ
ν′

]
(A2)

Equivalently:

−gµµ′εµνρσεµ′ν′ρ′σ′ = gνν′ [gρρ′gσσ′ − gρσ′gσρ′ ]− gνρ′ [gρν′gσσ′ − gρσ′gσν′ ]

+ gνσ′ [gρν′gσρ′ − gρρ′gσν′ ] (A3)

Define the vector

Ãµ = gµµ
′
εµ′νρσB

νCρDσ (A4)

The norm of this vector is

Ã2 = gµµ
′
(εµνρσB

νCρDσ)
(
εµ′ν′ρ′σ′Bν′Cρ′Dσ′

)
= −

{
B2
[
C2D2 − (C ·D)2

]
− (B · C)

[
(B · C)D2 − (C ·D)(B ·D)

]
+ (B ·D)

[
(B · C)(C ·D)− C2(B ·D)

]}
= −B2C2D2 +B2(C ·D)2 + C2(B ·D)2 +D2(B · C)2 − 2(B · C)(C ·D)(D ·B) (A5)

For

Y µ = −gµµ′εµ′νρσP νKρqσ, (A6)

we have

Y 2 = −Q2
[
(2k · P )(2k′ · P )−M2

]
(A7)

The normalized unit vector, normal to the electron scattering plane is

eµY =
Y µ

√
−Y 2

=
−gµµ′εµ′νρσP νKρqσ√

Q2 [(2k · P )(2k′ · P )−M2Q2]
, e2Y = −1. (A8)

Appendix B: Alternate LightCone Normalizations

What is an appropriate normalization Λ of the light-cone vectors n and ñ, and what is
the impact of a different normalization choice?

Section I B has already established that the normalization is arbitrary. In this appendix
I offer two choices of normalization that may be useful.
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1. Unit Normalization

It will sometimes be convenient to define the normalizations β, β̃ such that in the q + P
center-of-mass frame, the time-components

n0
CM = ñ0

CM = 1/
√

2. (B1)

Then the light-like vectors will have the form:

n
[0,1,2,3]
CM =

1√
2

[1, n̂] ñ
[0,1,2,3]
CM =

1√
2

[1,−n̂] . (B2)

With this normalization, the rapidity of a particle of 4-momentum p, as defined in § I B has
the form

η(p) =
1

2
ln

[
ñ · p
n · p

]
−→ 1

2
ln

[
p0 + pz

p0 − pz

]
CM

(B3)

with the z-axis parallel to PCM.

In the CM frame:

q0CM =
W 2 −M2 −Q2

2W
P 0
CM =

W 2 +M2 +Q2

2W
(B4)

Therefore, this normalization choice is

1 = n0
CM = β

[
q0CM

2xB

(
1−
√

1 + δ
)

+ P 0
CM

]
= β

[(
W

2

)(
1

2xB
+ 1

)
+
M2 +Q2

2W

(
1−
√

1 + δ

2xB

)]
(B5)

leading to

β =

[(
W

2

)(
1

2xB
+ 1

)
+
M2 +Q2

2W

(
1−
√

1 + δ

2xB

)]−1
β̃ =

δ

2M2(1 + δ)

[(
W

2

)(
1

2xB
+ 1

)
+
M2 +Q2

2W

(
1−
√

1 + δ

2xB

)]
(B6)

2. Beam Normalization

The per-nucleon rapidity of the incident ion beam in the collider frame, with a z-axis
parallel to the beam momentum is:

η0 =
1

2
ln

[
E + |P|
E − |P|

]
Detector

= ln

[
E + |P|
MN

]
, E ≡

√
M2

N + P 2 (B7)

For ions with A > 1, the per nucleon energy E is ambiguous, but this is a minor point.



2 Beam Normalization 10

One ‘natural’ choice of normalization Λ is such that η(P ) = η0:

ln

[
E + P

MN

]
=

1

2
ln

[
ñ · P
n · P

]
=

1

2
ln

 (q·P )2

Q2

(
1 +
√

1 + δ
)

+M2

Λ2
(

(q·P )2

Q2

(
1−
√

1 + δ
)

+M2
)


[
E + P

MN

]2
=

1

Λ2

(
1 +
√

1 + δ
)

+ δ(
1−
√

1 + δ
)

+ δ
. (B8)

Therefore

Λ =
MN

E + P

√(
1 +
√

1 + δ
)

+ δ(
1−
√

1 + δ
)

+ δ
≈

√
Q2

(E + P )xB
(B9)

and

β =
1

E + |P|

√
δ

2(1 + δ)

√(
1 +
√

1 + δ
)

+ δ(
1−
√

1 + δ
)

+ δ

β̃ =
1

E − |P|

√
δ

2(1 + δ)

√(
1−
√

1 + δ
)

+ δ(
1 +
√

1 + δ
)

+ δ
(B10)

with E and |P| in the detector frame.
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