Error propagation at the microMott

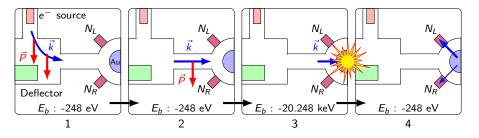
Greg Blume¹

¹Department of Physics, Old Dominion University, Norfolk VA, 23529 USA

Greg Blume (ODU)

Error Propagation

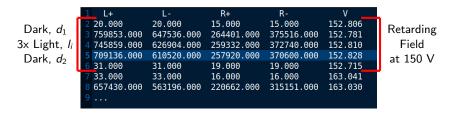
March, 2024



- Counting experiment to measure an asymmetry between scattering angles
- Retarding field grids isolate elastic scatterings
- Asymmetry used to extract beam polarization

$$A = P_{\rm b}S(\theta) \Longrightarrow P_{\rm b} = \frac{A}{S(\theta)}$$

• L/R are left and right detector, +/- are for plus and minus helicity (HWP reversal)



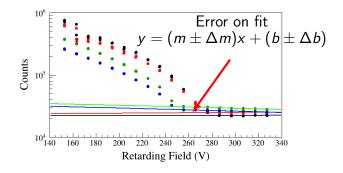
 Retarding Field scanned from 150 to 320 V to include threshold voltage (248 V)

The data reduction

- $\bullet\,$ Work now in cells of one retarding field voltage and only L+
- Remove dark count average from each *l_i*

$$I_i^* = I_i^* \pm \Delta d = I_i - \bar{d} \pm \Delta d$$

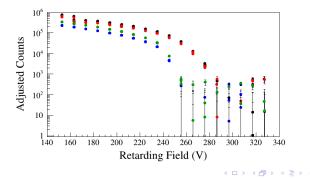
• Remaining counts above threshold are x-rays, remove them



The data reduction

- Extrapolate to voltages below threshold
- Define the background $I_{bg}^{(i)}$ for each voltage and subtract to produce adjusted spectra

$$egin{aligned} & I_{bg}^{(i)} \pm \Delta I_{bg}^{(i)} = (mv_i + b) \pm \sqrt{(v_i \Delta m)^2 + (\Delta b)^2 + 2v_i \Delta (mb)^2} \ & c_i \pm \Delta c_i = I_i^* - I_{bg}^{(i)} \pm \Delta I_{bg}^{(i)} \end{aligned}$$



The asymmetry

L+ L- R+ R- V

lp2 lm2 rp2 rm2 v2

Lp3 lm3

lp1 lm1 rp1 rm1 v1

lp1 lm1

rp1 rm1 v1

rp3

rm3 v3

• Calculate asymmetry for each v_i in the cell — our data file now looks like below where $l_{pi} = c_i$ for each column

$$A_i = \frac{1 - \sqrt{r_i}}{1 + \sqrt{r_i}}, \ r = \frac{N_i^-}{N_i^+}, \ N_i^- = I_{mi}r_{pi}, \ N_i^+ = I_{pi}r_{mi}$$

$\left(\frac{\Delta I_{mi}}{I_{mi}}\right)^2 +$	$\overline{\left(\frac{\Delta r_{pi}}{r_{pi}}\right)^2}$
	$\overline{\left(\frac{\Delta I_{mi}}{I_{mi}}\right)^2 +}$

	V ∖ I _{mi})	\ r _{pi}
$\Longrightarrow \Delta N_i^+ =$	$(l_{pi}r_{mi})\sqrt{\left(\frac{\Delta l_{pi}}{l_{pi}}\right)^2}$	$+\left(\frac{\Delta r_{mi}}{r_{mi}}\right)$

$$\Longrightarrow \Delta r_i = \frac{N_i^-}{N_i^+} \sqrt{\left(\frac{\Delta N_i^-}{N_i^-}\right)^2 + \left(\frac{\Delta N_i^+}{N_i^+}\right)^2} \Longrightarrow \Delta A_i = \frac{A_i \Delta r_i}{\sqrt{2}} \sqrt{\frac{r_i + 1}{r_i(r_i - 1)^2}}$$

< 4 **⊡** ▶ < 4

э

The asymmetry

• Each Voltage cell now has the form

1	А	dA	٧
	A1	dA1	v1
	A2	dA2	v2
	A3	dA3	v3
	A1	dA1	v1

• Calculate the average Asymmetry (and Voltage) for threshold extrapolation

$$A\pm\Delta A=ar{A}\pmrac{\sqrt{\sum_i(\Delta A_i)^2}}{3},\,\,V=ar{V}$$

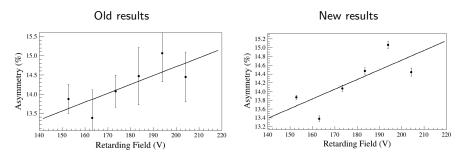
• Cells are condensed to one asymmetry per cell, use 6 cells



• Take value of fit at 248 V and divide by $S(\theta) = 0.201$

$$\begin{aligned} A_{248} \pm \Delta A_{248} &= (s(248) + i) \pm \sqrt{(\Delta s(248))^2 + (\Delta i)^2 + 2(248)\Delta(si)^2} \\ &\implies P + \Delta P = \frac{A_{248}}{S(\theta)} \pm \frac{\Delta A_{248}}{S(\theta)} \end{aligned}$$

- \bullet Example polarization result is 78.50 \pm 0.62 %
- Does not include error on the Sherman function
- Correlated error is included
- How does this stack up against old method? What changed?



- \bullet Old polarization result is $78.71\,\pm\,3.37$ %
- Error bars are **not** statistical, were calculated by the standard deviation of the asymmetries
- No error propagation from the counting statistics
- Fit was **unweighted** doesn't account for random errors from σ

- Not accounting for error propagation from the counts discards information cannot ensure statistical behavior
- Using the standard deviation for the error w/ an unweighted fit can underestimate the error
- Weighted fits are important to capture the statistical behavior of a counting experiment
- Essential to include correlated error in error propagation
- Good statistics are **IMPORTANT**, otherwise error can be large
- \bullet On another run, polarization is 83.02 \pm 1.23 %, and error can get worse
- **NEED** to have > 20000 events for acceptable statistics