
IONATOR User Manual
Version 1.0

J. T. Yoskowitz
Last Updated August 22, 2022

Contents

1 Introduction 2

2 License and Citation Info 3

3 Installing IONATOR 4

4 Ionization Theory 5
4.1 Electron Impact Ionization . 5
4.2 Ion Production Rate . 5
4.3 Secondary Electron Energy Distribution 6
4.4 Ion Energy Distribution . 8

5 IONATOR Code 13
5.1 Input Parameters . 14

5.1.1 Eligibility . 16
5.1.2 Ion Production and Monte Carlo 17

5.2 Secondary Electron Energy Algorithm . 17
5.3 Target Gas Particle . 19
5.4 Ion and Scattered Electron . 19
5.5 Summary of Kinematic Parameters . 20

6 IONATOR Features 22
6.1 Gas Species and Orbitals . 22
6.2 Gas Density . 22
6.3 Output Ion Statistics Using writeIonInfo 23
6.4 Color Coding Particles Using colorcoding 24

7 IONATOR Examples 27
7.1 Example 1: Basic Ionization Simulation 27
7.2 Example 2: Ionization simulation with linearly increasing density 30

8 Troubleshooting 34

References 37

1

1 Introduction

What a splendid fellow you are to realize you need IONATOR!
IONATOR stands for IONization And Tracking Of Residual gas. It is a C++ custom

element created for General Particle Tracer (GPT), a particle tracking code. The original
purpose of IONATOR is to allow the user to simulate electron impact ionization of residual
gas within an electron accelerator. But the code can be used in any GPT simulation
involving electron impact ionization.

While other custom elements for GPT have been made for the simulation of electron
impact ionization [1], the defining feature of IONATOR is its Monte Carlo routines for
ion production and secondary electron energy selection. These routines make each
simulation more realistic, as ionization is probabilistic in nature. IONATOR also has
the ability to implement a user-defined 1-D gas density map, which can be useful when
simulating electron impact ionization within a particle accelerator, as the gas density
may vary along the beamline. Finally, IONATOR simulates ion production in “real-time",
meaning that the user can visualize the time-dependent interaction of ions with other
simulation particles (via space charge effects, e.g.), as opposed to plots of particle
trajectories where it is often difficult to discern how particles interact with each other.

This user manual is broken up into several sections. Section 3 describes how to
install and implement the custom element (provided GPT is already installed). Section
4 describes the theoretical equations used by IONATOR. Section 5 describes the code
in detail. Section 6 describes several features of IONATOR. Section 7 shows several
real-world example simulations that demonstrate how IONATOR is used. Finally, section
8 shows how to troubleshoot typical errors that may occur when using IONATOR.

NOTE: Before using IONATOR, it is highly recommended that you become familiar
with using GPT and have successfully run several simulations on your own. Chapter 2
of the GPT User Manual contains several tutorials to help you learn the basics of GPT.

2

2 License and Citation Info

IONATOR, writeIonInfo, colorcoding, and this user manual are licensed under the
Creative Commons Attribution 4.0 International License. To view a copy of this license,
visit http://creativecommons.org/licenses/by/4.0/ or send a letter to Creative Commons,
PO Box 1866, Mountain View, CA 94042, USA.

If using IONATOR in your published work, please use the following citation:
J. T. Yoskowitz et al., “Simulating Electron Impact Ionization Using a General Particle

Tracer (GPT) Custom Element", Proc. 12th In. Particle Accelerator Conf. (IPAC ’21),
Campinas, SP, Brazil (Virtual Conference), May 2021.

3

3 Installing IONATOR

IONATOR contains two files: ionator.c and ionator_infostructures_10.h.
Use the following instructions to install IONATOR for use in GPT depending on the
operating system:

1. For Windows machines:

1.1 Copy both files into the GPT elems folder which is usually located at
C:\Program Files\General Particle Tracer\elems\. Note that you
may need administrator permission to copy these files into this folder.

1.2 In the GPT kernel folder, edit the file elemlist and add the following text
on a new line at the end of the file: ionator ionator.

1.3 Close GPT if open, and reopen GPT in administrator mode.
1.4 Under the “Elements" menu, click “Rebuild interface code". If successful,

“ionator" will appear in the list of GPT Elements on the left-hand side of the
GUI window.

1.5 Under the “Elements" menu, click “Compile GPT-Elems" and then “Compile
GPT-Progs". If both run error-free, then the installation is complete.

2. For Linux machines:

2.1 Copy both files into the GPT elems/ folder, which is usually located at
~/gpt/elems/.

2.2 In the elems folder, edit the file elemlist and add the following text on a
new line at the end of the file: ionator ionator.

2.3 Run make twice. If the second make command runs error-free, then the instal-
lation is complete.

4

4 Ionization Theory

This section summarizes the theory of electron impact ionization and the theoretical
equations used by the code. For a more detailed description, see Chapter 2 of Ref. [2]

4.1 Electron Impact Ionization

Electron impact ionization occurswhen an electron interactswith an atomormolecule
resulting in the ejection of an electron. The incident electron is called the primary elec-
tron and the atom or molecule is called the target gas particle. After ionization, the target
gas particle becomes a positive ion and the incident electron scatters away and is called
a scattered electron. The ejected electron is called the secondary electron. Whichever
electron has lesser energy is called the secondary electron and the other is the scattered
electron. Figure 1 shows a diagram of the electron impact ionization process.

Ionization can occur provided the primary electron overcomes the minimum energy,
the ionization or binding energy, required to remove an electron from the target gas
particle. Both the secondary and scattered electrons may continue to ionize provided
they have sufficient kinetic energy to do so.

Figure 1: Diagram of electron impact ionization.

4.2 Ion Production Rate

The number of ions produced, Nion, by a number of electrons, Ne, in a given timestep
is calculated using the formula:

Nion = ρσdNe (1)

5

where ρ is the gas density in ions/m3, σ is the ionization cross section in m2, and d is
the distance travelled in meters by the electron in the timestep. The ionization cross
section may be calculated using Reiser’s formula [3], originally derived by Bethe [4]:

σ
[
m2] =

1.872× 10−24A1

β2
e

f (T)
[
ln
(
7.515× 104A2β

2
eγ

2)− β2
e
]

(2)

f (T) =
B
T

(
T
B
− 1

)
where βe and γ are the relativistic factors for the primary electron, A1 and A2 are derived
from empirical constants given by Rieke and Prepejchal [5] that depend on the gas
species, and f (T) is a function for fitting σ at low energies, i.e., when the primary electron
kinetic energy T is close to the ionization energy B of the target gas particle. Figure 2
shows a log-log plot of the ionization cross section for H2, CO, and CH4. Low energy
electrons are orders of magnitude more likely to ionize than high energy electrons
regardless of the target gas particle. The rise in ionization cross section at electron
kinetic energies higher than 1GeV is due to the γ2 factor being high at these energies.

Dividing Eq. 1 by the timestep∆t and the distance travelled d gives the ion production
rate per unit length:

Nion

∆t · d
= ρσ

Ne

∆t
(3)

Note that Eq. 3 denotes the average ion production rate per unit length and assumes
that the gas density is relatively uniform throughout the distance travelled d. In the limit
of small timesteps, the instantaneous ion production rate per unit length is given by:

dNion

dt

(
1
d

)
= ρσ

I
e

(4)

where I is the electron current and e is the elementary charge. Figure 3 shows plots
of the ion production rate per unit length for various gas species. The ion production
rate curves are dominated by the ionization cross section. Table 1 shows values for the
ionization cross section and ion production rate per unit length for H2 gas for various
primary electron energies, assuming a gas density of ρ = 3.56× 1010 m−3 and a current
of I = 100 µA (≈ 6.24× 1014 electrons/s).

4.3 Secondary Electron Energy Distribution

The distribution of possible secondary electron energies W for a given primary
electron energy T is given by the differential cross section derived in the Binary Encounter
Dipole Model [6]:

6

Primary Electron Energy (keV) σH+
2

(
m2

) dNH+
2

dt

(
1
d

) (
H+

2

s·m

)
0.1 1.1× 10−20 2.4× 105

1 2.0× 10−21 4.4× 104

10 2.9× 10−22 6.3× 103

100 4.6× 10−23 1.0× 103

Table 1: Calculated values of the ionization cross section and ion production rate per
unit length for H2 gas.

dσ(W,T)
dW

=
S

B(t + u + 1)

[(Ni
N

)
− 2

t + 1

(
1

w + 1
+

1
t− w

)
+

(
2− Ni

N

)(
1

(w + 1)2
+

1
(t− w)2

)
+

lnt
N(w + 1)

df(w)
dw

]
(5)

S = 4πa2
0NR2/B2

t = T/B
u = U/B
w = W/B

Ni =
∫ ∞

0

df
dw

dw

where a0 is the Bohr radius, R is the Rydberg energy, N is the number of electrons in
the subshell of the gas molecule prior to ionization, U is the average kinetic energy of
electrons in the subshell, and df/dw is the differential oscillator strength. Because the
differential oscillator strengths for CO and CH4 are not well-known, Kim and Rudd give
an approximation for the differential cross section [6]:

dσ(W,T)
dW

=
S

t + u + 1

[
1

(t− w)2
+

1
(w + 1)2

− 1
t + 1

(
1

t− w
+

1
w + 1

)
+ lnt

(
1

(t− w)3
+

1
(w + 1)3

)]
(6)

Figure 4 shows differential cross-section curves of each supported gas species
assuming a primary electron energy of 130 keV. The majority of secondary electrons
produced are likely to have kinetic energies substantially smaller than primary electron
kinetic energies.

7

4.4 Ion Energy Distribution

Because the primary electron mass is orders of magnitude less than any target gas
particle, the kinetic energy of the ion depends largely on the energy of the target gas
particle. Provided the target gas particle follows the ideal gas law, the distribution of ion
energies can be modelled as a Maxwellian distribution, which is often defined in terms
of speed v:

F(v)dv =
√

2
π

v2 exp− v2
2a2

a3 dv (7)

a =
(
kT
m

) 1
2

where k is the Boltzmann constant, T is the gas temperature, and m is the mass of the
ion. Figure 5 shows the Maxwellian distributions of target gas particle speeds at room
temperature.

Once the energy of the primary electron, target gas particle, and secondary electron
are known, the combined energy of the ion and scattered electron, Ecomb can be calculated
using energy conservation:

Ecomb = Eion + Escat = T + Egas −W − B (8)

At the present moment, it is unknown what exactly the distribution of ion kinetic
energies should be following electron-impact ionization. Several references suggest that
the energy of the target gas particle is virtually unchanged provided the particle does
not dissociate [4, 7, 8], but they do not provide any empirical evidence for this assertion.
Until experiments that measure the energy distribution of ions and scattered electrons
following ionization are performed and a theoretical distribution is derived, it is left to
the user to determine what fraction of Ecomb is given to the ion, with the remaining energy
given to the scattered electron.

8

Figure 2: Log-log plot of the ionization cross section of H2, CO, and CH4.

9

Figure 3: Log-log plot of the ion production rate per unit length of H2, CO, and CH4 gas.

10

Figure 4: Log plots of the differential cross section for secondary electron energies of
several target gas particles assuming a primary electron energy of 130 keV.

11

Figure 5: Maxwellian distribution for H2, CO, and CH4 gas.

12

5 IONATOR Code

This section describes the IONATOR code, which contains several algorithms to
determine ionization eligibility and to calculate kinematic parameters for all particles
involved in ionization. A flow chart of the main algorithm is shown in Figure 6.

When the IONATOR function is present in the input file, GPT will call the function at
the end of every simulation timestep. It is possible for multiple IONATOR functions to
be present in the input file (e.g. when simulating multiple gas species), in which case
all instances of IONATOR will be called simultaneously at the end of every timestep.
Using the input parameters given by the user, IONATOR will loop through all particles
present in the simulation and determine if they are eligible to ionize. A Monte Carlo
algorithm determines whether an eligible particle will ionize based on the ionization
cross section. If a particle ionizes, a secondary electron is created and a separate Monte
Carlo algorithm determines its kinetic energy. The remaining kinematic parameters for
all particles are calculated and the secondary electron, scattered electron, and ion are
added to the simulation.

The details of the main algorithm are described in the following sub sections.

Figure 6: Flow chart of the main algorithm.

13

5.1 Input Parameters

IONATORmust be called within the input file with all input parameters specified either
on the same line, or on individual lines as shown below in Listing 1. All parameters must
be present and in the order shown.

ionator(
<ECS>,
<L>,
<"name of gas species">,
<"name of orbital" or "default">,
<"name of electron set">,
<"name of ion set">,
<0 or "name of secondary electron set">,
<0 or "name of scattered electron set">,
<gas density or "name of density file">,
<gas temperature T>
<ion fraction k>,
<integration precision (nsteps)>);

Listing 1: IONATOR function with input parameter definitions.

The required input parameters are as follows:

1. <ECS> : The element coordinate system (ECS) tells GPT the position of the center
of the ionization region in the simulation. Please note that the <ECS> specification
may constitute either 2, 3, or 10 arguments depending on how it is defined. See
section 1.4 in the GPT User Manual for more info.

Example: "wcs","z",0.5 sets the center of the ionization region at z = 0.5m in
the world coordinate system (WCS).

2. <L> : With the ECS specified, L denotes the total length of the ionization region.

Example: If z = 0.5m is the center of the ionization region in the WCS, then an
L specification of 0.5 would define the boundaries of the ionization region
to be between z = 0.25m and z = 0.75m (with no boundary in the radial
direction).

3. <"name of gas species"> and <"name of orbital"> : These two specifica-
tions denote the species of the target gas particle and the orbital from which the
secondary electron is ejected. Both arguments must be specified as strings (i.e.

14

within quotes). Using “default" for the orbital specification automatically chooses
the orbital with the lowest ionization energy (i.e. the most likely orbital for the
secondary electron). See Table 3 for a list of all possible gas species and orbital
specifications.

Example: "CH4","default" sets CH4 as the target gas species with the default
orbital (1t2) for secondary electrons.

4. <"name of electron set"> and <"name of ion set"> : The user must
specify a name for the primary electron and ion particle sets. Note that while
primary electron set must be defined using the setparticles() keyword, the ion
particle set does not. The primary electron particle set must be defined before the
IONATOR function in the input file and the set names must match. Please do not
alter any parameters of the ion particle set other than the set name – they will be
defined automatically by IONATOR. See section 4.2.1.1 in the GPT user manual for
info on using setparticles().

Example: "electrons","ions".

5. <"name of secondary electron set">, <"name of scattered electron
set"> : The user may specify a name for the secondary and scattered electron
particle sets. If a non-string (such as 0) is specified for either set name, then that
particle set is turned off, meaning that these particles will not be added to the
simulation. However, IONATOR will continue to make ionization calculations as if
they were present. Turning off secondary or scattered electrons may help to speed
up a simulation and reduce memory usage, as there are less particles produced,
or to help clean up a simulation when only primary electrons and ions are of
importance. Please note that only primary, secondary, and scattered electrons that
are present within the simulation are eligible to ionize. Turning off secondary or
scattered electrons may decrease the number of ions produced in the simulations.
However, since the ionization cross section for a given electron is very small, it is
unlikely that turning off secondary or scattered electrons will have a significant
impact on the number of ions produced.

Example: "secondaryelectrons",0 will turn on secondary electrons and turn
off scattered electrons.

6. <gas density or "name of density file"> The user must specify the
density of the target gas particle, either as a numerical value (in m−3) or as a 1-D
density map, in the specified ionization region. A non-string assumes a constant
density throughout the ionization region. If a density map is used, then the filename
is specified as a string (e.g. "densitymap.gdf"). The density map must be a GDF
file and must either be in the same directory as the GPT batch file, or the explicit

15

path to the file must be included in the filename. See section 6.2 for more info on
creating a density map.

Example: 3.5e11 (∼ 10−11 Torr), or "H2density.gdf".

7. <gas temperature T> The user specifies the temperature of the target gas
particles, in Kelvin. The temperature must be specified as a positive real number.
The temperature is used in the Maxwellian distribution function.

Example: 293.15 (Room temperature).

8. <ion fraction k> The user specifies the fraction of energy k that goes to the
ion, with the remaining energy going to the scattered electron. This fraction must
be a real number between 0 and 1 (non-inclusive). See section 5.4 for more info.

Example: 0.01 (1%).

9. <integration precision (nsteps)> The user specifies an integer number of
steps, nsteps, used by the integration functions to numerically integrate the sec-
ondary electron differential cross section and the Maxwellian distribution function.
Higher values of nsteps provide higher accuracy for the integration functions at
the cost of higher CPU time. See section 5.2 for more info.

Example: 200.

5.1.1 Eligibility

A given simulation particle is eligible to ionize if it meets the following conditions:

1. The particle is present in the simulation and will not be removed during this
timestep. If the particle is removed by any GPT element (such as zminmax or
rmax) the particle is not eligible for ionization.

2. The particle is an electron macro-particle. The electron must be in the primary,
secondary, or scattered electron particle sets. If the particle is in any other particle
set, it is not eligible for ionization.

3. The coordinate system of the particle must match the ECS defined in the input
parameters.

4. The particle will not leave the ionization region during the timestep. To test this,
a displacement vector is calculated from the position of the particle at the start
and end of the timestep. The particle is eligible to ionize if the center of the
displacement vector is within the ionization region. NOTE: It is possible for a
particle to enter and exit the ionization region during a single timestep, especially

16

if the timestep is large, or if the general motion of the particle is complex. Using
the center of the displacement vector introduces uncertainty in the simulation.
However, it is unlikely that this uncertainty will be significant for most applications.

5. The kinetic energy of the particle Te is above the ionization energy of the target
gas particle. The kinetic energy is calculated using the Lorentz factor at the end of
the timestep.

5.1.2 Ion Production and Monte Carlo

For each eligible electron macro-particle, a Monte Carlo approach is used to de-
termine whether it ionizes in this timestep. The number of ions, Nion, created by the
macro-particle is calculated using Eq. 1 with the gas density defined in the input parame-
ters. If Nion is greater than one for any eligible electron macro-particle, then the timestep
fails and is retried with smaller timesteps until Nion is less than one for all particles. While
it is unlikely that Nion can be greater than one, since the ionization cross section for a
single electron is tiny, Nion can become greater than one if the electron macro-particle
represents a large number of electrons (i.e., Ne is large), the timestep is long, or if the
gas density is high.

Once Nion is less than one for all particles, a random number generator selects a
number between 0 and 1. If the random number is greater than Nion, then the particle
does not ionize and the simulation continues to the next particle. Figure 7 shows a flow
chart of the Monte Carlo algorithm [2].

Figure 7: Monte Carlo algorithm for ion production.

5.2 Secondary Electron Energy Algorithm

Once it is determined that an electron macro-particle ionizes, the distribution of
possible energies W for the secondary electron is calculated using the differential cross
section (equation 5 or 6) based on the user-defined gas species and orbital. Equation 5

17

is used if the gas species is H2 or He, otherwise equation 6 is used. See Table 3 for a
list of all supported gas species and orbitals.

The probability distribution given by the differential cross section is clearly non-
uniform, as Figure 4 shows, while the distribution of numbers between 0 and 1 generated
by the random number generator is uniform. To select the secondary electron energy,
the following algorithm is used:

1. The maximum secondary electron energy is based on the primary electron energy
and is defined as Emax = 0.75(T − B), as the differential cross section becomes
unphysical past this energy.

2. We define a function F(N) that approximates the integral of the differential cross
section between E = E0 = 0 and E = EN using the trapezoidal rule with nsteps
partitions (defined in the input parameters).

F(N) =
N∑
i=1

0.5
Emax

nsteps
(f(EN) + f(EN−1))

3. We define a second function g(E) as the ratio:

g(E) =
f(EN)
f(Emax)

Clearly g(E) ∈ [0, 1].

4. A random number between 0 and 1 is chosen using a random number generator.
Then g(E) is calculated for successive N until g(E) is greater than the random
number, at which point E is chosen to be the secondary electron energy.

Once the secondary electron energy is chosen, its momentum can be calculated as:

p⃗sec =
∣∣p⃗sec

∣∣ p̂sec (9)∣∣p⃗sec
∣∣ = msecc(γ2

sec − 1.0) (10)

γsec =
W

mec2 + 1

The direction of the secondary electron, p̂sec is assumed to be random. To produce a
random unit vector for p̂sec, the components are written in spherical coordinates:

x = r sin(θ) cos(ϕ)
y = r sin(θ) sin(ϕ) (11)
z = r cos(θ)

18

where θ ∈ [0, π] and ϕ ∈ [0, 2π] (θ and ϕ are analogous to latitude and longitude respec-
tively). A random unit vector can be generated by letting r = 1 and choosing θ = n1π and
ϕ = 2n2π where n1 and n2 are random numbers between 0 and 1.

5.3 Target Gas Particle

Assuming the target gas particle follows the ideal gas law, the energy of the target
gas particle is based on a Maxwell-Boltzmann velocity distribution (Eq. 7) with the gas
temperature defined in the input parameters. The target gas velocity is chosen using a
similar algorithm to the secondary electron energy algorithm in the previous subsection.
Once the velocity is chosen, the energy of the target gas particle is given by:

Egas = (γ − 1)mc2 (12)

γ =
(
1− v2

c2

)− 1
2

The momentum of the gas particle is then calculated as:

p⃗gas =
∣∣p⃗gas

∣∣ p̂gas (13)∣∣p⃗gas
∣∣ = mgasc(γ2

gas − 1.0) (14)

where p̂gas is assumed to be random and is calculated using Eqs. 11.
NOTE: IONATOR does not produce a target gas particle in the simulation. Instead,

the parameters of the target gas particle are calculated solely for the purposes of
calculating the parameters of the ion and scattered electron, as described in the following
subsection.

5.4 Ion and Scattered Electron

The energy of the ion is calculated using the formula:

Eion = Ecombk (15)
where k is a number between 0 and 1 (non-inclusive) and is set by the user in the input
parameters. Ecomb is the combined energy of the ion and scattered electron defined in
Eq. 8. The momentum of the ion is calculated in a similar way as the momentum of the
target gas particle:

p⃗ion =
∣∣p⃗ion

∣∣ p̂ion (16)∣∣p⃗ion
∣∣ = mionc(γ2

ion − 1.0) (17)

19

with its direction assumed to be random. The energy of the scattered electron is:

Escat = Ecomb(1− k) (18)

Its momentum is calculated from momentum conservation:

p⃗scat = p⃗e + p⃗gas − p⃗ion − p⃗sec (19)

p̂ =
p⃗scat∣∣p⃗scat

∣∣ (20)

After all kinematic parameters are calculated, the ion, secondary electron, and scat-
tered electron are added to the simulation. The ion is placed in a random location
along the trajectory of the primary electron during this timestep, defined by the primary
electron’s initial position, r⃗start and final position, r⃗end:

r⃗ion = r⃗start + λ∆⃗r + (1.0− λ)∆tβ⃗ionc (21)
∆r = r⃗end − r⃗start

where λ is a random number between 0 and 1. The secondary electron and scattered
electron are then placed at the location of the ion. Finally, the number of macro-particles
the primary electron represents is reduced by 1.

5.5 Summary of Kinematic Parameters

Table 2 summarizes the kinematic parameters of all particles involved in ionization.

20

Particle Kinematic Parameter Symbol Calculated From

Primary Electron
Energy T

Known/GivenMomentum Magnitude
∣∣p⃗e

∣∣
Momentum Direction p̂e

Ion
Energy Tion Eq. 15

Momentum Magnitude
∣∣p⃗ion

∣∣ Eq. 17
Momentum Direction p̂ion Eq. 11

Secondary Electron
Energy W MC routine (Eq. 5 or 6)

Momentum Magnitude
∣∣p⃗sec

∣∣ Eq. 10
Momentum Direction p̂sec Eq. 11

Target Gas Particle
Energy Tgas MC routine (Eq. 7)

Momentum Magnitude
∣∣p⃗gas

∣∣ Eq. 14
Momentum Direction p̂gas Eq. 11

Scattered Electron
Energy Tscat Eq. 18

Momentum Magnitude
∣∣p⃗scat

∣∣ Eq. 19
Momentum Direction p̂scat Eq. 20

Table 2: Table of kinematic parameters for each particle involved in ionization.

21

6 IONATOR Features

6.1 Gas Species and Orbitals

Secondary electrons can originate from any orbital in a target gas particle. The
differential cross section for the energy of a secondary electron from a given orbital
depends on the gas species. Though the secondary electron is more likely to originate
in an outer (valence) shell than an inner shell due to outer shells having lower ionization
energies.

Table 3 below lists the parameters used in the differential cross section formulas
(Eqs. 5 and 6) for each orbital in each supported gas species. Both the gas species
and the orbital must be specified in the input parameters as strings (see section 5.1).
The parameters originate in Binary Encounter Dipole Model original article [6], or the
NIST Electron-Impact Cross Sections database [9]. They are stored in the IONATOR
infostructures file. Future updates will provide more supported gas species.

Gas Species Gas Spec. Orbital Orbital Spec. B (eV) U (eV) N (eV)
H2 “H2" 1σg “default" 15.43 25.68 2.0
He “He" 1s “default" 24.59 39.51 2.0

CO “CO"

5σ “5sigma" or “default" 14.01 42.26 2.0
1π “1pi" 17.66 54.30 4.0
4σ “4sigma" 21.92 73.18 2.0
3σ “3sigma" 41.92 79.63 2.0

CH4 “CH4" 1t2 “1t2" or “default" 14.25 25.96 6.0
2a1 “2a1" 25.73 33.05 2.0

CO2 “CO2"

1πg “1pig" or “default" 13.77 64.43 4.0
1πu “1piu" 19.70 49.97 4.0
3σ2u “3sigma2u" 20.27 71.56 2.0
4σ1g “4sigma1g" 21.62 74.66 2.0
2σ2u “2sigma2u" 40.60 78.38 2.0
3σ1g “3sigma1g" 42.04 75.72 2.0

Table 3: Differential cross section parameters for each orbital in each supported gas
species.

6.2 Gas Density

The gas density is used in the calculation of the ion production rate in Eq. 1. It can
be specified as either a constant (in m−3) or as a 1-D density map, assuming cylindrical
symmetry about the z-axis. For the latter case, the filename for the density map must be
specified as a string: “<filename>.gdf".

22

The density map must be a GDF file with exactly two columns: z and density. While
the z values must in ascending order, they do not have to be equidistant. If the 1-D
density is an ASCII (text) file of the form:

z density
0 0.0
0.1 4e-11
0.2 5e-11
0.5 5e-11
... ...

then the file can be converted to a GDF file by running ASCI2GDF:

asci2gdf -o <filename>.gdf <filename>.txt

IONATOR will read the GDF file and interpolate the 1-D data using a natural cubic
spline (in a similar manner to the built-in map1D_B and map1D_E GPT elements). Of
course, the accuracy of the interpolation will depend on how “smooth" the density data
is. Adding more data points near erratic density values will increase the accuracy of the
cubic spline.

WARNING: The z values in the density file will be shifted to the center of the ionization
region, defined by the ECS input parameter. If the ionization region is between 0 ≤ z ≤ 1,
then the first few input parameters "wcs","z",0.5,1.0, ... will define the desired
ionization region, but shift all z values in the density file by 0.5. To adjust for this, you
must manually shift the z values in the density file accordingly. A future update will
(hopefully) make this shift unnecessary.

6.3 Output Ion Statistics Using writeIonInfo

Often it is useful to get statistics on the locations and production rates of ions
produced in ionization simulations. Instead of sifting through the simulation file and
extracting ion data at each timestep, the custom element writeIonInfo.c (separate
from IONATOR) can be used to write parameters to an external GDF file (separate from
the simulation file) whenever a new ion is produced in the simulation.

To use writeIonInfo, it must be installed in a similar manner to IONATOR (see section
3). It can be called in the input file using two arguments: the ECS and the filename.
For the ECS specification, use "wcs", "I", unless using a custom coordinate system
(CCS).

writeIonInfo(ECS,<filename>.gdf)

23

GPT calls the writeIonInfo element at the end of every successful timestep. writeIon-
Info will scan through all particles and determine if it is a “new" ion. To determine if a
given simulation particle is a new ion, three conditions must be met:

1. The particle must have a positive charge.

2. The particle must be present in the simulation and not be removed at the end of
the timestep.

3. The particle must have an ID # that is not in writeIonInfo’s list of ion ID #’s.

If all three conditions are met, then the ion parameters are stored C++ vectors, one
vector for each parameter. Then the ion ID # is added to an unordered list for fast ID
lookup. At the end of the simulation, the vectors are written to the GDF file. Table 4 lists
the names and descriptions of the parameters written.

Parameter Name Description
ID ionID ID # for this ion
tstart tstart Timestep begin (s)
tend tend Timestep end (s)

∆t (= tend − tstart) dt Timestep length (s)
x ionWr_x Ion x position (m)
y ionWr_y Ion y position (m)
z ionWr_z Ion z position (m)
γion ionG Ion Lorentz factor
γβx ionGBr_x Ion x γβ momentum
γβy ionGBr_y Ion y γβ momentum
γβz ionGBr_z Ion z γβ momentum
Eion ionEnergy Ion energy (eV)
mion ionMass Ion mass (kg)

Table 4: Ion parameters written to the writeIonInfo GDF file.

6.4 Color Coding Particles Using colorcoding

When viewing a simulation, GPT allows the user to color code the particles by built-in
parameters, such as mass, charge, and position. Particles that have similar parameters,
such as primary, secondary, and scattered electrons cannot easily be distinguished by
built-in parameters. Thus, the GPT custom element colorcoding.c was created for
this purpose. colorcoding allows the user to color code simulation particles by particle
set name. The syntax is:

24

colorcoding(
"<Set 1>", <color value 1>,
"<Set 2>", <color value 2>,
...
"<Set 5>", <color value 5>)

The colorcoding function takes an even number of input parameters and supports
up to five different particle types. Each particle set to be colored must have its set name
and color value set in the input parameters. In addition, the particle set must be defined
earlier in the input file, either with the GPT setparticles() function or with IONATOR.
colorcoding gives each particle a new parameter called color that can be used as the
color coding parameter instead of one of the built-in particle parameters. Color values
are real numbers (positive or negative) that are mapped onto a color scheme from blue
to red. That is, the lowest color value is colored blue and the highest color value is
colored red. While any color values can be used, it is convenient to use the color values
in Table 5 below to assign specific colors to particle sets.

Note that because color values are mapped onto a blue-red color scheme regardless
of their value, one particle set will always be colored blue and another set red. If a
particle set should have a specific color other than blue or red, then one work-around
is to assign one or more "dummy" particle sets using the setparticles() function
in the input file, then immediately removing all particles in the dummy sets using the
setreduce() function. Note that if all particles have the same color value, then all
particles are colored green.

Color Value Color
1.0 Blue
2.0 Light Blue
3.0 Cyan
4.0 Turquoise
5.0 Green
6.0 Yellow-Green
7.0 Yellow
8.0 Yellow-Orange
9.0 Orange
10.0 Red

Table 5: Table of color values.

To color code a given simulation, use the following steps:

1. Open a GPT simulation.

25

2. Open plot settings, either by hitting the Enter-key, right clicking on the simulation
and clicking "Settings", or clicking "Settings" in the Plot menu in the top menu bar.

3. Under the "Scatter" tab, check the box next to "Color coded".

4. Select the array to color code by. When using colorcoding, select the color array.

5. Select either automatic scaling (using the lowest and highest values of the selected
array) or manual scaling.

6. Click "OK".

26

7 IONATOR Examples

The following examples demonstrate how to use IONATOR in a variety of applications
and how to interpret and analyze the resulting simulations.

7.1 Example 1: Basic Ionization Simulation

In this example, we analyze two different simulations: one involving a single electron
macro-particle and another involving an electron macro-particle bunch. Both the single
macro-particle and macro-particle bunch represent the same amount of charge, 1 µC.
The electrons are given an initial kinetic energy of 1 keV and travel in the +z-direction for
0.5m, ionizing H2 gas along its trajectory. The density of the H2 gas is 3× 1010 m−3.

Listing 2 shows the input file for the single particle simulation. To simulate an
electron bunch, replace the setstartpar command with the commands in Listing 3.
To run the simulation, copy the commands into a GPT input file input.in and run the
following command:

gpt -o result.gdf input.in

Figure 8 shows a snapshot of the resulting simulations at t = 20 ns, as viewed in the
yz-plane. Several observations can be made:

1. The locations of the ions follow the trajectory of the primary electronmacro-particle
(or bunch).

2. No ions are created by the secondary and scattered electrons. While possible, it
is unlikely for them to do so, as the ionization probability of a single electron is
much smaller than combined probability of all primary electrons represented by
the electron macro-particle or electron bunch.

3. The ion production rate is independent of the number of primary electron macro-
particles used in a simulation, provided the total number of primary electrons
represented remains constant. This observation is expected, as the number of
ions created, Nion, is independent of position provided there is uniform gas density
(see Eq. 1). To check this, rerun the simulation with the writeIonInfo routine and
count the number of entries in the writeIonInfo file. (Note that because IONATOR
employs aMonte Carlo routine, the number of ions produced in the two simulations
will likely be different, though they should be similar to within 1%. If rerun many
times using different seed values with the GPT randomize command, the average
ion production rate will be same).

27

4. The ion production rate is also independent of the simulation timesteps selected
in the tout command. To check this, see what happens if you choose different
timestep lengths (the third argument in the tout command)

5. The secondary and scattered electrons do in fact travel in random directions,
despite the unequal scales of the two axes in the snapshots making it seem like
they travel more vertically (along the y-axis).

Figure 8: Snapshots of the single particle (top) and electron bunch simulations at
t = 20 ns. The simulations are color coded as follows: primary electron (blue), secondary
electron (green), scattered electron (orange), H+

2 ion (red).

28

#Electron bunch parameters
eKE = 1000; #Kinetic energy (in eV)
erestmass = me*c^2/(-qe); #Electron rest mass in eV
egamma = (eKE/erestmass)+1; #Lorentz factor
ebeta = sqrt(egamma^2-1.0)/egamma; #Beta factor
Qtot = -1e-6; #Total bunch charge in C

#Set electron macro-particle set
setstartpar("electrons",0,0,0,0,0,egamma*ebeta,me,qe,Qtot/qe);

#Particle removal
Zmin = -0.001; #Minimum z (in meters)
Zmax = 0.5; #Maximum z (in meters)
R = 0.02; #Maximum r (in meters)
zminmax("wcs","I",Zmin,Zmax); #Remove if z>Zmax or z<Zmin
rmax("wcs","I",); #Remove if r>R

#IONATOR
length = 0.5; #Length of element (in z)
center = 0.25; #Center of element (in z)
gasSetName = "H2"; #H2 set name
ionSetName = "ions"; #H2 ion set name
seSetName = "secE"; #Secondary electron set name
scatSetName = "scatE"; #Scattered electron set name
H2density = 3e10; #H2 density
H2Temp = 293.15; #H2 Temperature (in K)
ionK = 0.01; #Ion energy fraction
precision = 200; #Precision (nsteps)

ionator("wcs", "z", center, length, gasSetName, "default", "electrons",
ionSetName, seSetName, scatSetName, H2density, H2Temp, ionK, precision);

#Color Coding
colorcoding("electrons", 1.0, "scatE", 9.0, "secE", 5.0, "ions", 10.0);

#Output
tout(0, 2.8e-8, 2e-10);

Listing 2: Input File for single electron macro-particle simulation.

29

#Set electron macro-particle bunch
setparticles("electrons",1e4,me,qe,Qtot);

#Set bunch parameters
len = 50e-12; #RMS bunch length (s)
sigma = 0.0005; #Sigma (m)
cutoff = 4; #Cutoff at 4*sigma.
setrxydist("electrons","g",0,sigma,0,cutoff); #Gaussian radial distribution
setphidist("electrons","u",0,2*pi); #Uniform angular distribution
settdist("electrons","g",len*cutoff,len,cutoff,cutoff); #Gaussian temp. dist.
setGdist("electrons","u",egamma,0); #Uniform energy distribution

Listing 3: Input file commands for the electron bunch simulation. Remove the
setstartpar command in Listing 2 and add these commands to simulate an elec-
tron bunch instead of a single macro-particle.

7.2 Example 2: Ionization simulation with linearly increasing density

In this example, we use the user-defined gas density feature (described in section
6.2) to create an ionization simulation with a CH4 gas density that linearly increases
along z for 1m

To create the density file, copy the lines in Listing 7.2 below into an ASCII (text) file.
Note that because the density data is interpolated, it does not matter that there are
no 0.05 increments in density data past z = 0.25. We will verify this in the simulation
analysis. Because the ionization region is between 0 ≤ z ≤ 1, the z values have been
shifted accordingly.

Save the file as density.txt, then convert it into a GDF file using the command:

asci2gdf -o density.gdf density.txt

Run the simulation using the input file in Listing 7.2. To analyze the simulation, the
writeIonInfo command is included in the input file to output ionization statistics. A
snapshot of the simulation output is shown in Figure 9.

We can visually see the density of ions increasing along the z-axis. To prove that
the ion production rate scales linearly with z, we can analyze the ion info file. Run the
gdf2his program on this file using the command line:

gdf2his -b -o Ex2_IonInfo_Histograms.gdf Ex2_IonInfo.gdf ionWr_z 0.05

30

z density
-0.5 0.0
-0.45 5E9
-0.4 1E10
-0.35 1.5E10
-0.3 2E10
-0.25 2.5E10
-0.2 3E10
-0.1 4E10
0.0 5E10
0.1 6E10
0.2 7E10
0.3 8E10
0.4 9E10
0.5 1E11

Listing 4: Density file for linearly increasing gas density. Note the shifted z-values.

The resulting file is a copy of the original writeIonInfo file with four new arrays:
ionWr_z_cnt, ionWr_z_cntbar, ionWr_z_his, and ionWr_z_hisbar. Open the file
and plot ionWr_z_cntbar vs. ionWr_z_hisbar as a line plot. The result is shown
in Figure 10. We see that the number of ions produced scales roughly linearly with z.
The slight variation from a linear histogram is due to poor statistics. If we increase
each density point by a factor of 10 and rerun the simulation, we see that the histogram
follows a more linear trend (Figure 11).

31

#Electron bunch parameters
eKE = 1000; #Kinetic energy (in eV)
erestmass = me*c^2/(-qe); #Electron rest mass in eV
egamma = (eKE/erestmass)+1; #Lorentz factor
ebeta = sqrt(egamma^2-1.0)/egamma; #Beta factor
Qtot = -1e-6; #Total bunch charge in C

#Set electron macro-particle bunch
setparticles("electrons",1e4,me,qe,Qtot);

#Set initial distribution parameters
len = 50e-12; #RMS bunch length (s)
sigma = 0.0005; #Sigma (m)
cutoff = 4; #Cutoff at 4*sigma.
setrxydist("electrons","g",0,sigma,0,cutoff); #Gaussian radial distribution
setphidist("electrons","u",0,2*pi); #Uniform angular distribution
settdist("electrons","g",len*cutoff,len,cutoff,cutoff); #Gaussian temp. dist.
setGdist("electrons","u",egamma,0); #Uniform energy distribution

#Particle removal
Zmin = -0.001; #Minimum z (in meters)
Zmax = 0.5; #Maximum z (in meters)
R = 0.02; #Maximum r (in meters)
zminmax("wcs","I",Zmin,Zmax); #Remove particle if z>Zmax or z<Zmin
rmax("wcs","I",R); #Remove particle if r>R

#IONATOR
ionator(
"wcs", "z", 0.5, 1.0, "CH4", "default", "electrons", "ions",
"secE", "scatE", "density.gdf", 293.15, 0.01, 200);

#writeIonInfo and colorcoding
writeIonInfo("wcs","I","Ex2_IonInfo.gdf");
colorcoding("electrons", 1.0, "scatE", 9.0, "secE", 5.0, "ions", 10.0);

#Output
tout(0, 2.8e-8, 2e-10);

Listing 5: Input file for Example 2.

32

Figure 9: Snapshot of the simulation for Example 2 at t = 50ns.

Figure 10: Histogram of the number of ions vs. z position with a bin width of 0.05 m.

Figure 11: Histogram of the number of ions vs. z position with a bin width of 0.05 m with
the density data increased by a factor 10.

33

8 Troubleshooting

The following table lists possible errors and troubleshooting tips when using IONA-
TOR, writeIonInfo, and colorcoding. Errors in quotes are error messages written to cerr,
which is usually displayed in the lower part of the batch file window when using GPTwin,
or in the command-line interface when using Linux.

If you encounter an error not on this list, consult the GPT User Manual and GPT
Programmers Reference manual, which can be accessed under the Help menu when
using GPTwin, to help pinpoint the problem. If you still cannot figure out the problem
despite your best efforts, or have found an inaccuracy in IONATOR, please email me at
yoskowij@jlab.org and include as much detail about your problem as possible.

Error Description
“Syntax: ionator(ECS, L, gasname, orbital-
name, ..."

Syntax error. Ensure that: 1. All required
arguments are present, 2.All arguments
are spelled correctly, and 3. The ECS spec-
ification contains the correct number of
arguments. See section 5.1 for more info.

“Invalid orbital name for <gasname>:
<spec>. Choices are..."

Invalid orbital name. Ensure that the
spelling of the orbital name matches one
of the choices given.

“Unknown Gas Species: <gas spec>" Invalid gas species. Ensure that the gas
name matches one of the supported gas
species in Table 3 and ensure that it is
spelled correctly.

“String expected, found number <spec>" /
“Number expected, found string <spec>" /
“Value is not an integer: <spec>"

Invalid argument type. Ensure that the ar-
gument type is correct. Strings must be
surrounded by quotes and integers can-
not contain a decimal point.

“gasTemp must be above absolute zero!
gasTemp = <spec>"

Invalid temperature. Unfortunately, ac-
cording to the 3rd law of thermodynam-
ics, we cannot reach absolute zero, nor
go below it. Ensure that the gas tempera-
ture specification is a positive real num-
ber above zero.

“ionK must be between 0 and 1! ionK =
<spec>"

Invalid ion fraction. The ionK specifica-
tion must be a real number between 0
and 1. See section 5.4 for more info on
this parameter.

34

“z array must be in ascending order" z column in density file is not in ascending
order. For fast reading of the density file,
the density data in the density file must
be sorted with the z column in ascending
order. Also, ensure there are no duplicate
data points.

“Error calculating spline" Error calculating spline. GPT was unable
to interpolate the density data in the den-
sity file. Ensure that the density data is
readable and contains no errors/typos.
If you still get this error, try copying the
density data into a new text file and run
asci2gdf.

“Could not calculate SE energy with suf-
ficient accuracy. Try increasing nsteps" /
“Could not calculate Gas energy with suf-
ficient accuracy. Try increasing nsteps"

Insufficient precision in the integration
function to calculate the secondary elec-
tron or target gas particle energy. Try in-
creasing the nsteps input parameter.

“Syntax: writeIonInfo(ECS,filename)" Syntax error. Ensure that: 1. All required
arguments are present, 2.All arguments
are spelled correctly, and 3. The ECS spec-
ification contains the correct number of
arguments.

“Overflow in writeIonIDs: <number> >
INT_MAX"

Overflow in vector array. The number of
ions to be written to the writeIonInfo file
exceeds INT_MAX, which is 2,147,483,647.
Unfortunately, your simulation has pro-
duced too many ions for writeIonInfo to
handle! Because the ion production rate
scales with the number of primary elec-
tron charge (Eq. 1), you can try reducing
the total number primary electrons and
multiply the resulting number of ions pro-
duced by this number to get the true num-
ber of ions produced.

“Syntax: colorcoding([setname, color,
[setname, color, ...]])"

Syntax error. Ensure that all required argu-
ments are present and spelled correctly.
Note that colorcoding takes an even num-
ber of arguments. Every setname argu-
ment must be followed by a color value
argument.

35

“Invalid # colors calculation" Invalid number of colors. The number of
colors specified in colorcoding must be
between one and five. No more than five
colors can be specified, so colorcoding
cannot have more than 10 arguments.

“Tried to assign color to particle in unde-
fined particle set, <spec>"

Undefined particle set to be colored. En-
sure all particle set names in the input
parameters are defined somewhere in the
input file. Also ensure that the set names
are spelled correctly in the colorcoding
input parameters.

“GPT Finished" appears abruptly without
the simulation running to completion and
without any error message

This usually indicates a division by zero
error. When encountering this error, GPT
will immediately terminate the program
and return a “GPT Finished" message. Un-
fortunately, there is usually no accompa-
nying error message to tell you where
or when this error occurs in the simula-
tion. Incrementally reducing the complex-
ity and rerunning the simulation can usu-
ally help pinpoint the problem. You can
also try using a different seed value using
the GPT randomize function.

36

References

[1] J. Biswas and E. Wang, “New dynamic ionizer element to simulate ion back bom-
bardment in DC gun", Zenodo, 2018, doi:10.5281/zenodo.1413642

[2] J. T. Yoskowitz, “Ion production and mitigation in DC high-voltage photo-guns",
Ph.D. thesis, Phys. Dept. Old Dominion University, Norfolk, VA, 2021.

[3] M. Reiser, “Linear beam optics with space charge", in Theory and Design of Charged
Particle Beams Weinheim, Germany: Wiley VCH Verlag GmbH, 2008, pp. 163–272

[4] H. Bethe, “Zur theorie des durchgangs schneller korpuskularstrahlen durch ma-
terie (On the theory of the passage of fast corpuscular rays through matter)",
Ann. Phys. (Leipzig), vol. 397, no. 3, pp. 325–400, 1930, doi:10.1002/andp.
19303970303

[5] F. F. Rieke and W. Prepejchal, “Ionization cross sections of gaseous atoms and
molecules for high-energy electrons and positrons", Phys. Rev. A, vol. 6, no. 4,
pp. 1507-1519, Oct. 1972, doi:10.1103/PhysRevA.6.1507

[6] Y. Kim and M. E. Rudd, “Binary-encounter dipole model for electron-impact ion-
ization", Phys. Rev. A, vol. 50, no. 5, pp. 3954–3967, Nov. 1994, doi:10.1103/
PhysRevA.50.3954

[7] E. W. McDaniel, Atomic Collisions : Electron and Photon Projectiles, New York, NY,
USA: Wiley, 1989.

[8] G. H. Dunn and L. J. Kieffer, “Dissociative ionization of H2: A study of angular
distributions and energy distributions of resultant fast protons", Phys. Rev., vol. 132,
no. 5, pp. 2109–2117, Dec. 1963, doi:10.1103/PhysRev.132.2109

[9] National Institute of Standards and Technology (NIST), “Electron-Impact
Cross Sections for Ionization and Excitation", August 2005, https:
//www.nist.gov/pml/electron-impact-cross-sections-ionization-
and-excitation-database

37

doi:10.5281/zenodo.1413642
doi: 10.1002/andp.19303970303
doi: 10.1002/andp.19303970303
doi: 10.1103/PhysRevA.6.1507
doi: 10.1103/PhysRevA.50.3954
doi: 10.1103/PhysRevA.50.3954
doi: 10.1103/PhysRev.132.2109
https://www.nist.gov/pml/electron-impact-cross-sections-ionization-and-excitation-database
https://www.nist.gov/pml/electron-impact-cross-sections-ionization-and-excitation-database
https://www.nist.gov/pml/electron-impact-cross-sections-ionization-and-excitation-database

	Introduction
	License and Citation Info
	Installing IONATOR
	Ionization Theory
	Electron Impact Ionization
	Ion Production Rate
	Secondary Electron Energy Distribution
	Ion Energy Distribution

	IONATOR Code
	Input Parameters
	Eligibility
	Ion Production and Monte Carlo

	Secondary Electron Energy Algorithm
	Target Gas Particle
	Ion and Scattered Electron
	Summary of Kinematic Parameters

	IONATOR Features
	Gas Species and Orbitals
	Gas Density
	Output Ion Statistics Using writeIonInfo
	Color Coding Particles Using colorcoding

	IONATOR Examples
	Example 1: Basic Ionization Simulation
	Example 2: Ionization simulation with linearly increasing density

	Troubleshooting
	References

