
1 Intro/Purpose

The main goal of reading this book is to understand the theory behind how photocathodes are damaged by ion back-
bombardment. The idea is that neutral residual gas in the accelerator vacuum can be ionized by a high-energy electron beam
and accelerate back towards the photocathode, damaging it. As a result, the quantum e�ciency (QE) of the photocathode
decreases: it takes more and more laser power to eject the same number of electrons from the photocathode. In order to
understand how to mitigate ion back-bombardment, knowledge of ion bombardment (collision) theory is required.

2 Chapter 2: Collisions between atoms

2.1 Introduction (pg. 6)

This chapter deals with mechanics of collisions between particles with forces between them. The interaction forces are due
to interatomic potentials, the form of which determines the derived mechanics. Often this potential with be the Coulomb
potential due to charged particles. Since methods relativistic corrections to collision parameters for high incident particle
energies are exceedingly di�cult, we often restrict ourselves by de�ning a cuto� distance on the order of the atomic diameter.
Often this is a good approximation, since interaction forces decrease rapidly past this distance and so we can restrict our
focus to an incident particle on a lattice atom itself as opposed to all atoms in the lattuce. (This is probably similar to the
Coulomb Logarithm). Depending on the energy range of the particles in the two-body collisions, we may or may not need to
consider quantum mechanical e�ects. Often, we can make good approximations using classical mechanics. For simpli�cation
purposes, it will be assumed that the collisions are elastic (no kinetic energy loss in the collision).

2.2 Collision Kinetics (pg. 6)

Figure 1 below diagrams the interaction between an incident particle with mass M1 with a target atom with mass M2..
The impact parameter p denotes the minimum distance between the incident and target atom if there were no forces

between them. If there is an interaction force F (r), where r is the distance between the atoms, then the incident atom
scatters through an angle φ and the target atom moves at an angle ψ with respect to the incident axis. Thus, energy is
transfered from the incident atom to the target atom. If the collision is elastic, no kinetic energy is lost.

Figure 1: Diagram of an incident particle M1 scattering o� of a target atom M2.
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2.2.1 Collisions Between Elastic Spheres (pg. 7-9)

We can make a simplifying assumption that the two atoms can be represented by hard spheres of radius R. Figure 2 shows
the collision between two of these spheres.

Figure 2: Diagram of the collision between two hard spheres of radius R.

Often the incident atom is moving much faster than the lattice atom. As a result, we can consider the lattice atom to be
essentially at rest before the collision. When the incident atom makes contact with the target atom, if we draw a straight
line through the centers of the two atoms, then the target atom would move straight along that line. The angle between the
incident axis and this line is β0 and so ψ = 180◦−β0. Note that this was not quite true before: it was only true asymptotically.
The hard sphere approximation allows us to assume that the all e�ects of the collision happen instantaneously.

We can simplify calculations by switching to the center of mass frame, shown in Figure 3 below.

Figure 3: Diagram of a collision between two hard spheres in the center of mass frame.

In the center of mass frame, the center of mass passes within a distance
M1p

M1 +M2
from the original center of the target

atom and has an e�ective velocity vc =
M1v0

M1 +M2
. If v0 is the incident atom's velocity before the collision, then with respect
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to the center of mass frame, it has velocity v0,c before the collision, given by

v0,c = v0 −
M1v0

M1 +M2
= v0 − vc =

M2v0
M1 +M2

(1)

The target atom has velocity vtar,c before the collision, given by

vtar,c = − M1v0
M1 +M2

(2)

Multiplying both sides of equations (1) and (2) byM1+M2 and subtracting the two equations, we see that total momentum
in the center of mass frame is zero before and after the collision. Thus, if the incident and target atoms have velocities V1
and V2 after the collision, we must have that

M1V1 = −M2V2 (3)

. From conservation of energy (in the absence of potential energy),
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Solving equations (3) and (4) for V1 and V2 yields

V1 =
M2v0

M1 +M2
= v0,c (5)

V2 = − M1v0
M1 +M2

= vtar,c (6)

From here, we can solve for the �nal velocities after the collision in the lab frame. Figure (4) below shows the velocities
V1 and V2 in the center of mass frame and Va and Vb in the lab frame with θ being the de�ection angle, as in Figure (3).

Figure 4: Diagram of relevant velocities in the collision.

From vector addition, we see that

V 2
a = v20

1 +A2 + 2a cos θ

(1 +A)
2 (7)

V 2
b =

[
2v0 sin

θ
2

1 +A

]2
(8)

A =
M2

M1

3



Using trigonometry, φ and ψ is related to θ by

tanφ =
V1 sin θ

Vc + V1 cos θ
=

A sin θ

1 +A cos θ
(9)

ψ =
π

2
− θ

2
(10)

Using equation (8) and the fact that the energy gained by the target atom is equal to that given by the incident atom
(by energy conservation), we see that the energy transfer T is
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If we de�ne the quantity α =

(
A− 1

A+ 1

)2

, we can write T succinctly in terms of the incident particle's energy E0

T = (1− α)E0 sin
2 θ

2
(12)

For head on collisions, β0 = 0, ψ = 180◦ and θ = −180◦. The maximum energy transfer depends only on the masses of
the two particles and the incident atom's initial energy:

Tm = (1− α)E0 =
4M1M2

(M1 +M2)
2E0 (13)

Thus, T = Tm sin2
θ

2
.

2.2.2 Collision Probabilities (pg. 9-10)

From Figure 2, we see that sinβ0 = cos
θ

2
=

p

2R
. Di�erentiating with respect to θ yields − sin θdθ ∼ pdp. Thus, p2 =

4R2

[
1− T

Tm

]
and so

2πp
dp

dT
= π

4R2

Tm
(14)

Since all incident angles β0 are equally probable, we have that the probability for an energy transfer between T and
T + dT is

dT

Tm
=

2πpdp

4πR2
(15)

The total cross section for collision is just the surface area of the sphere

σ = 4πR2 (16)

since for a collision between the spheres, the center of the incident atom must approach within a distance 2R of the target
atom. The di�erential cross section is

dσ (p) = d
(
πp2
)
= 2πpdp (17)

Due to azimuthal symmetry of the possible scattering angles θ, the probability that the incident atom will scatter into

a solid angle between θ and θ + δθ is
dσ (θ)

d (2π cos θ)
. Note that since − sin θdθ ∼ pdp, this probability is independent of θ and
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so the scattering is isotropic (invariant in direction) in the center of mass frame. This is not true in the lab frame unless
M1 �M2, in which case we can approximate equation (9) for large A

tanφ ≈ A sin θ

A cos θ
= tan θ

and so the scattering in the lab frame is approximately isotropic, as we would expect. If M1 � M2 then A is very small,
implying α ≈ 1 and so from equation (12), very little energy is transfered to the target atom. The probability that the

incident particle would be re�ected (φ = 180◦) in this case would be zero, since for an incident angle β0 = 0, sinβ0 = cos
θ

2
,

implying θ = π and since cosπ = 0,
dσ (θ)

d (2π cos θ)
= 0. In other words, it is not possible for a heavy atom cannot backscatter

o� of a light atom. The average energy transfer Tavg is de�ned as

Tavg =

r Tm

0
Tdσ (T )

r Tm

0
dσ (T )

=
1

2
Tm (18)

as we would expect. The probability of an energy transfer dT in the course of the collision is

g (E0, E2) δE2 =
sin θ

2

dθ

dE2
δE2 (19)

Here, E0 and E2 are the incident atom's energy before and after the collision. From equation (13), E2 is given by

E2 = E0

(
1− (1− α) sin2

θ

2

)
(20)

Thus, we can rewrite equation (19) as

g (E0, E2) δE2 = − δE2

E0 (1− α)
(21)

Note that for M1 = M2, A = 1 and α = 0 and equation (21) tells us that the probability of an energy transfer between E2

and E2 + δE2 is the ratio of the di�erential cross section to the total cross section.
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