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Relativistic Stern-Gerlach Deflection: Hamiltonian Formulation
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Abstract

A Hamiltonian formalism is employed to elucidate the effects of the Stern-Gerlach force on beams

of relativistic spin-polarized particles, for passage through a localized region with a static magnetic

or electric field gradient. The problem of the spin-orbit coupling for nonrelativistic bounded motion

in a central potential (hydrogen-like atoms, in particular) is also briefly studied.
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I. INTRODUCTION

The Stern-Gerlach force for a beam of spin-polarized particles is usually treated nonrel-

ativistically, e.g. in the classic text by Mott and Massey [1]. See also the text by Kessler

[2], who essentially reproduces the analysis in [1] and adds some commentary based on more

modern theory and technology. Nevertheless, the corresponding problem for a beam of rela-

tivistic particles, though less well studied, is also of interest. It has long been recognized that,

when the effects of special relativity are accounted for (including systems such as the elec-

tronic orbitals in atoms) the spin-orbit coupling includes contributions from both a magnetic

dipole interaction and Thomas precession [3]. See, e.g. the text by Jackson [4]. Recently,

the effect of the Stern-Gerlach force on a beam of relativistic spin-polarized particles has

been analyzed theoretically [5]. The formulas derived in [5] indicate that the transverse mo-

mentum transfer imparted to a beam of particles, via the Stern-Gerlach force, upon passage

through a localized region with a static magnetic or electric field gradient, is proportional

exclusively to the magnetic dipole moment of the particles, with no contribution from the

Thomas precession. The analysis in [5] also treats, via perturbation theory, the problem of

the spin-orbit coupling for bounded nonrelativistic motion in a central potential. A nonzero

energy shift is obtained for the ground state of the hydrogen atom, where the ground state

is split into a doublet according to the orientation of the electron spin [5, eq. (58)].

To aid in clarifying the above issues, we present a derivation of the spin-dependent trans-

verse momentum transfer for a beam of relativistic spin-polarized particles, upon passage

through a localized region with a static magnetic or electric field gradient. The effects of the

spin-orbit coupling for bounded nonrelativistic motion in a central potential is also briefly

studied. A Hamiltonian formalism is employed throughout.

II. HAMILTONIAN AND EQUATIONS OF MOTION

We treat a particle of mass m and charge e, with velocity v = βc and Lorentz factor

γ = 1/
√

1− β2. We treat only particles of spin 1

2
. The (rest-frame) spin operator is denoted

by s, with magnetic moment anomaly a = 1

2
(g−2). The canonical coordinates and conjugate

momenta are denoted by r and p, respectively. The orbital motion is treated semiclassically,

but the spin is a quantized operator. The prescribed external electric and magnetic fields,
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and the vector and scalar potentials, are denoted by E, B, A and Φ, respectively. Radiation

by the particles is neglected. The Hamiltonian is

H = Horb(r,p) +Ω(r,p) · s . (2.1)

Here Ω is the spin precession vector. Both Horb and Ω depend only on r and p and explicit

expressions for them will be displayed below. The fundamental point here is that the use

of a Hamiltonian determines both the spin and orbital equations of motion uniquely. The

equations of motion are, for j = 1, 2, 3,

drj
dt

=
∂Horb

∂pj
+
∂(Ω · s)

∂pj
, (2.2a)

dpj
dt

= −
∂Horb

∂rj
−
∂(Ω · s)

∂rj
, (2.2b)

ds

dt
= Ω× s . (2.2c)

The spin-orbit coupling term Ω · s determines both the spin precession equation of motion

eq. (2.2c) and the spin-dependent effects on the orbital motion (the last terms in eqs. (2.2a)

and (2.2b)). In particular, the last term in eq. (2.2b) is the Stern-Gerlach force. The explicit

expressions for Horb and Ω are

Horb =

[(

p−
e

c
A

)2

c2 +m2c4
]1/2

+ eΦ , (2.3a)

Ω = −
e

mc

[(

a+
1

γ

)

B −
aγ

γ + 1
(β ·B)β −

(

a +
1

γ + 1

)

β ×E

]

. (2.3b)

Note that Ω is not proportional to the magnetic dipole moment if β 6= 0.

We close this section with the following remarks. To make contact with the notation in

[5], we define ŝ∗j via sj =
1

2
~ŝ∗j for j = 1, 2, 3. The analysis in [5] treats only electrons. Let

us define ae =
1

2
(g − 2) for an electron. Then the electron magnetic dipole moment is given

by [5, eq. (1)]

µ∗

e = (ae + 1)
e~

2mec
. (2.4)

Note that we employ Gaussian units, hence the factor of c in the denominator, which does

not appear in [5, eq. (1)]. Curiously, in the text after defining the electron magnetic dipole

moment, it is stated in [5] that “Furthermore there will be no discussion of subtleties such

as anomalous magnetic moments.” However, the expression for µ∗

e in [5, eq. (1)] does include

the electron anomalous magnetic dipole moment.
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III. COVARIANT EQUATIONS OF MOTION

Dam and Ruijgrok [6] have derived covariant classical relativistic equations of motion

for particles with spin moving in external fields. We display their equations below, for the

orbit and spin. Following standard practice, Greek indices run from 0 to 3 and Roman

indices run from 1 to 3. They set the speed of light to unity c = 1. As above, the particle

rest mass is m, the charge is e and g denotes the spin g-factor. They employed the metric

gµν = diag(−1, 1, 1, 1). The particle velocity and spin four-vectors are denoted by uµ and

W µ, respectively. The electromagnetic field tensor is denoted by F µν and its dual is F̃ µν =

1

2
ǫµνλσFλσ, where

F 0k = Ek , F kl = ǫklmBm , F̃ 0k = Bk , F̃ kl = −ǫklmEm . (3.1)

A dot denotes a derivative with respect to the proper time. The equation of motion for the

four-velocity uµ is [6, eq. (3.22)]

u̇µ =
e

m
F µνuν −

eg

2m2
(gµν + uµuν)∂νF̃

ρλWρuλ

+
e

2m2
(g − 2)(gµν + uµuν)uα∂αF̃νβW

β .
(3.2)

The equation of motion for the spin four-vector W µ is [6, eq. (3.23)]

Ẇ µ =
eg

2m
F µνWν +

e

2m
(g − 2)(uαFαβW

β)uµ −
eg

2m2
(W α∂αF̃βγW

βuγ)uµ . (3.3)

It was noted in [6] that both of the above equations are consistent with the covariant con-

straints uµuµ = −1, W µWµ is constant and uµWµ = 0.

• As noted in [6], if the terms which contain derivatives of Fµν are neglected, we obtain

u̇µ =
e

m
F µνuν , (3.4a)

Ẇ µ =
eg

2m
F µνWν +

e

2m
(g − 2)(uαFαβW

β)uµ . (3.4b)

The equation for uν is the Lorentz force law and the equation for W ν is the spin

precession equation derived by Bargmann, Michel and Telegdi [7], which is known to

the equivalent to that derived by Thomas [3]. See the text by Jackson [4].

• The terms in eq. (3.2) which contain the spin W µ and field gradients (i.e. derivatives

of Fµν) constitute the ‘covariant Stern-Gerlach force.’ Because of the presence of the
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term in g − 2, the Stern-Gerlach force is not proportional to the particle’s magnetic

dipole moment.

• Dam and Ruijgrok noted that in the particle’s instantaneous rest frame (irf), the

nonzero components of the term in g − 2 in eq. (3.2) have the following value [6,

eq. (3.24)] (S is the spin three-vector and t is the time in the instantaneous rest frame)
[

e

2m2
(g − 2)(gµν + uµuν)uα∂αF̃νβW

β

]

irf

= −
e

2m2
(g − 2)S ×

∂Eirf

∂t
. (3.5)

The above term does not appear in the analysis in [5].

• It is theoretically possible for a particle with spin to have a magnetic moment of zero.

Setting g = 0 in eq. (3.2) yields

[u̇µ]g=0 =
e

m
F µνuν −

e

m2
(gµν + uµuν)uα∂αF̃νβW

β . (3.6)

Observe that the Stern-Gerlach force is nonzero even though the particle has no mag-

netic dipole moment. The Stern-Gerlach force in this case arises entirely from the

Thomas precession.

In the rest of this paper, we shall employ the orbital Hamiltonian and spin precession vector

in eq. (2.3), and we do not set the speed of light to unity.

IV. PASSAGE THROUGH LOCALIZED REGION WITH A FIELD GRADIENT

A. General remarks

To make contact with the analysis in [5], let the coordinate system be (x, y, z), where a

particle propagates at speed v in the positive x direction. As in [5], we employ a ‘hard edge’

approximation where the particle passes through a static magnetic or electric field which

vanishes outside a region of length Lq. The magnetic or electric field lies in the (y, z) plane.

Treating only the Stern-Gerlach force, the equation of motion for pj is

dpSGj
dt

= −
∂(Ω · s)

∂rj
(j = 2, 3) . (4.1)

As in [5], to the required level of approximation the transverse momentum transfer is cal-

culated via an impulse approximation. The change to the (y, z) coordinates and the spin is
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negligible (these are reasonable approximations). The impulse ∆pSGj is given by multiplying

the force by the time of flight ∆t = Lq/v, viz.

∆pSGj ≃
dpj
dt

∆t = −
∂(Ω · s)

∂rj

Lq

v
(j = 2, 3) . (4.2)

We analyze the four cases treated in [5] in turn, viz. a magnetic ‘skew quadrupole’ field,

a magnetic ‘erect quadrupole’ field, an electrostatic ‘erect quadrupole’ field, and finally an

electrostatic ‘skew quadrupole’ field.

B. Magnetic skew quadrupole

The vector potential is A = −kbyz x̂ and the magnetic field is given by

B = ∇×A = kb(−yŷ + zẑ) . (4.3)

The spin-orbit term in the Hamiltonian is, to the relevant level of approximation,

Ω · s ≃ −

(

a+
1

γ

)

e

mc
B · s = −

(

a+
1

γ

)

ekb
mc

(−ysy + zsz) . (4.4)

From eq. (4.2), the impulses ∆pSGy and ∆pSGz are given by

∆pSGy ≃ −

(

a+
1

γ

)

e

mc
sykb

Lq

v
, (4.5a)

∆pSGz ≃

(

a+
1

γ

)

e

mc
szkb

Lq

v
. (4.5b)

The corresponding expressions in [5, eq. (34)] are

∆p2 = −µ∗

e ŝ
∗2kb

L

v
, ∆p3 = µ∗

eŝ
∗3kb

L

v
. (4.6)

Note that the superscripts in [5], hence in eq. (4.6), denote coordinate indices, not powers.

As stated in the introduction, the transverse momentum transfer (impulse) in [5] is propor-

tional to the particle magnetic dipole moment and omits the contribution from the Thomas

precession. Expressing the above in terms of our notation,

µ∗

eŝ
∗2 = (a+ 1)

e

mc
sy , µ∗

eŝ
∗3 = (a+ 1)

e

mc
sz . (4.7)
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In our notation, the expressions in eq. (4.6) yield

∆p2 = −(ae + 1)
e

mc
sykb

Lq

v
, (4.8a)

∆p3 = (ae + 1)
e

mc
szkb

Lq

v
. (4.8b)

These are to be compared with the expressions in eq. (4.5). The two sets of results coincide

in the nonrelativistic limit γ → 1.

C. Magnetic erect quadrupole

The analysis is similar to that for a skew quadrupole. The vector potential is now A =

1

2
kb(y

2 − z2) x̂ and the magnetic field is given by

B = ∇×A = −kb(zŷ + yẑ) . (4.9)

The spin-orbit term in the Hamiltonian is, to the relevant level of approximation,

Ω · s ≃ −

(

a +
1

γ

)

e

mc
B · s =

(

a+
1

γ

)

ekb
mc

(zsy + ysz) . (4.10)

From eq. (4.2), the impulses ∆pSGy and ∆pSGz are given by

∆pSGy ≃ −

(

a+
1

γ

)

e

mc
szkb

Lq

v
, (4.11a)

∆pSGz ≃ −

(

a+
1

γ

)

e

mc
sykb

Lq

v
. (4.11b)

The corresponding expressions in [5, eq. (38)] are

∆p2 = −µ∗

e ŝ
∗3kb

L

v
, ∆p3 = −µ∗

eŝ
∗2kb

L

v
. (4.12)

These expressions are also proportional to the particle magnetic dipole moment and yield,

in our notation,

∆p2 = −(ae + 1)
e

mc
szkb

Lq

v
, (4.13a)

∆p3 = −(ae + 1)
e

mc
sykb

Lq

v
. (4.13b)

These are to be compared with the expressions in eq. (4.11). As with a magnetic skew

quadrupole, the two sets of results coincide in the nonrelativistic limit γ → 1.
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D. Electrostatic erect quadrupole

The scalar potential is Φ = 1

2
ke(y

2 − z2) and the electric field is given by

E = −∇Φ = −ke(yŷ − zẑ) . (4.14)

The spin-orbit term in the Hamiltonian is, to the relevant level of approximation,

Ω · s ≃

(

a+
1

γ + 1

)

e

mc
(β ×E) · s = −

(

a +
1

γ + 1

)

ekev

mc2
(zsy + ysz) . (4.15)

From eq. (4.1), the equations for dpSGy /dt and dpSGz /dt are given by

dpSGy
dt

≃

(

a +
1

γ + 1

)

ekev

mc2
sz , (4.16a)

dpSGz
dt

≃

(

a +
1

γ + 1

)

ekev

mc2
sy . (4.16b)

The corresponding expressions in [5, eq. (41)] are (with an allowance for a factor of c because

we employ Gaussian units)

dp2

dt
=
µ∗

ekev

c
ŝ∗3 ,

dp3

dt
=
µ∗

ekev

c
ŝ∗2 . (4.17)

Expressing these in terms of our notation yields

dp2

dt
= (ae + 1)

ekev

mc2
sz , (4.18a)

dp3

dt
= (ae + 1)

ekev

mc2
sy . (4.18b)

These are to be compared with the expressions in eq. (4.16). In contrast to the case of

magnetic quadrupoles, the two sets of results in eqs. (4.16) and (4.18) do not coincide in the

nonrelativistic limit γ → 1. Neglecting the value of a, eq. (4.16) yields

[

dpSGy
dt

]

non−rel

≃
1

2

ekev

mc2
sz ,

[

dpSGz
dt

]

non−rel

≃
1

2

ekev

mc2
sy . (4.19)

However, eq. (4.18) yields
[

dp2

dt

]

non−rel

=
ekev

mc2
sz ,

[

dp3

dt

]

non−rel

=
ekev

mc2
sy . (4.20)

There is a difference of a factor of 1

2
between the two sets of formulas. The factor of 1

2
is a

well-known consequence of Thomas precession and was derived by Thomas himself: see [3,

eq. (6.1)] (which is for the case of an electron moving in a Coulomb electrostatic field).
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E. Electrostatic skew quadrupole

The scalar potential is now Φ = keyz and the electric field is given by

E = −∇Φ = −ke(zŷ + yẑ) . (4.21)

The spin-orbit term in the Hamiltonian is, to the relevant level of approximation,

Ω · s ≃

(

a+
1

γ + 1

)

e

mc
(β ×E) · s = −

(

a+
1

γ + 1

)

ekev

mc2
(−ysy + zsz) . (4.22)

From eq. (4.1), the equations for dpSGy /dt and dpSGz /dt are given by

dpSGy
dt

≃ −

(

a+
1

γ + 1

)

ekev

mc2
sy , (4.23a)

dpSGz
dt

≃

(

a+
1

γ + 1

)

ekev

mc2
sz . (4.23b)

The corresponding expressions in [5, eq. (43)] are (again with an allowance for a factor of c

because we employ Gaussian units)

dp2

dt
= −

µ∗

ekev

c
ŝ∗2 ,

dp3

dt
=
µ∗

ekev

c
ŝ∗3 . (4.24)

Expressing these in terms of our notation yields

dp2

dt
= −(ae + 1)

ekev

mc2
sy , (4.25a)

dp3

dt
= (ae + 1)

ekev

mc2
sz . (4.25b)

These are to be compared with the expressions in eq. (4.23). As with an electrostatic

erect quadrupole, the two sets of results in eqs. (4.23) and (4.25) do not coincide in the

nonrelativistic limit γ → 1. Again neglecting the value of a, the same factor of 1

2
which

appeared for an electrostatic erect quadrupole also appears here.

V. SPIN-ORBIT COUPLING IN A CENTRAL POTENTIAL

In this section, we treat bounded nonrelativistic motion in a central potential. We employ

polar coordinates and denote the radial coordinate by r. To make contact with the analysis
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in [5], we treat the source of the potential as infinitely massive and neglect reduced mass

effects. The Hamiltonian is then (‘c’ for ‘central’)

Hc =
p2

2m
+ V (r) +Ωc · S . (5.1)

Here V (r) can be any (attractive) central potential. The spin operator will be denoted by S.

The orbital angular momentum is L = r×p and the total angular momentum is J = L+S.

There is no external magnetic field, hence in this model the spin precession vector is

Ωc = −
e

mc

(

a +
1

γ + 1

)

E × β . (5.2)

The electric field for a central potential is radial and is given by

E = −
dV

dr

r

r
. (5.3)

The velocity is given by v = p/m. For nonrelativistic motion, we set γ = 1 so the spin-orbit

coupling is

Ω · S =
(

a +
1

2

) e

(mc)2
1

r

dV

dr
(r × p) · S

=
(

a +
1

2

) e

(mc)2
1

r

dV

dr
L · S

=
(

a +
1

2

) e

2(mc)2
1

r

dV

dr
(J2 − L2 − S2) .

(5.4)

For a particle with spin 1

2
, the value of S2 = 3

4
~
2 is a constant. Also L is a dynamical

invariant for a rotationally invariant system, hence it commutes with the Hamiltonian. For

nonrelativistic motion in any central potential, the spin-orbit eigenstates are indexed by the

eigenvalues of J2 and L2, i.e. j(j+1)~2 and l(l+1)~2, employing standard textbook notation.

We also know that for spin 1

2
, j = l ± 1

2
(except if l = 0, then j = 1

2
only).

• For an orbital S state, then l = 0 by definition, hence J = S and L ·S = J2−S2 = 0.

There is no energy shift, or change to the eigenstates, for an orbital S state. In

particular, the ground state of the hydrogen atom is an S state, and the energy shift

for this state is zero. For a hydrogen atom, V (r) is a Coulomb potential.

• However, it is stated in [5, text before eq. (44)] “For simplest comparison we will

consider a hydrogen atom Z = 1, in the lowest Bohr model semi-classical case, having
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n = 1.” A nonzero energy shift is then derived for the ground state of a hydrogen

atom [5, eq. (58)]

∆E1
|E1|

= ±
α2

6
. (5.5)

Here α ≃ 1/137 is the electromagnetic fine-structure constant, and the ± signs are for

the two spin orientations of the electron. The ground state is split into a doublet.

• Formulas are then cited in [5] from a text by Leighton (see [5, ref. 9] and [8] below)

“A somewhat similar, up-to-date, quantum mechanical spin-orbit doublet separation

calculation can be copied from Leighton[9], assuming Z = 1, n = 1, l = 1.” See [5,

eqs. (59-60)].

• For the nth energy level of a hydrogen atom, the allowed values of l are l = 0, 1, . . . , n−1.

Hence for the ground state n = 1, the only allowed eigenvalue for the orbital angular

momentum is l = 0. There is no Coulombic eigenstate with the quantum numbers

(n = 1, l = 1). Leighton’s text has been misquoted.

For completeness, let us treat briefly the case of a Coulomb potential V = −Ze2/r. Then

1

r

dV

dr
=
Ze2

r3
. (5.6)

The energy shift of a Coulombic eigenstate is then given by

∆E = 〈Ω · S〉

∝ (J2 − L2 − S2)

∫

∞

0

1

r

dV

dr
|ψ(r)|2 r2dr

∝ (J2 − L2 − S2)

∫

∞

0

|ψ(r)|2

r
dr .

(5.7)

Here ψ(r) is the radial wavefunction. This integral has been calculated in textbooks for the

Coulombic eigenfunctions, for example the text by Leighton [8]. We saw that the energy

shift vanishes for an orbital S state, hence the factor 1/r (as r → 0) does not pose a problem

for these states. For l > 0, the radial wavefunction is proportional to powers of r (associated

Laguerre polynomials) and the integral (i.e. energy shift) is finite. If j = l+ 1

2
then L·S = l~2

and if j = l − 1

2
(for l > 0 only) then L · S = −(l + 1)~2.
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VI. CONCLUSION

The spin-orbit coupling term Ω · s has been extensively validated in atomic and particle

physics experiments. Hamilton’s equations then uniquely determine the orbital and spin

motion, including the Stern-Gerlach force. Covariant equations of motion for the orbit

and spin were derived in [6], and the equations therein also demonstrate that the Stern-

Gerlach force is not proportional to the particle’s magnetic dipole moment. The Hamiltonian

formalism was applied to derive expressions for the transverse impulse for passage through a

region with a localized static magnetic or electric field gradient. The corresponding analysis

in [5] neglects the contribution of the Thomas precession. A numerical example is treated

in [5, eq. (61)], for a beam of 6 MeV electrons passing through a beamline of magnetic

quadrupoles. For 6 MeV electrons, γ ≃ 12 and ae ≃ 0.001159 ≪ 1/γ. The Stern-Gerlach

angular deflection to the electron motion is therefore approximately a factor of 12 smaller

than the value estimated in [5].

The problem of the spin-orbit coupling for bounded nonrelativistic motion in a central

potential was also briefly studied. It was noted that the energy shift is zero for an orbital S

state, where l = 0 for the orbital angular momentum. Contrary to the derivation in [5], the

spin-orbit coupling does not split the ground state of a hydrogen atom into a doublet.
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