CEBAF Vertical Wien Magnetic Field Map

Results of magnet mapping on November 16, 2020

Riad Suleiman

Thursday, November 19, 2020

Magnet removed from stand

Talk Title Here

Talk Title Here

Jefferson Lab

Field Map, No Background Subtraction

Field Map, with Background Subtraction

Field Map, No Background Subtraction

Field Map, with Background Subtraction

Core (Center) Magnetic Field vs Current

Core Magnetic Field Residuals (B-p1*I)

Modified Hysteresis Loop

Magnet Current (A)

Magnetic Field Effective Length

Magnetic Field Effective Length

Use B core (center) vs I measurement with these two modifications:

- I. Subtract -0.017 A offset from Magnet Current: New I = I - (-0.017)
- I. Subtract background core field offset of -0.214 G
- II. Use measured effective length to calculate Bdl: $New Bdl = (B - (-0.214)) \times 31.07$

Summary

- Vertical Wien field map background of -3.12 G cm is found by mapping degaussed magnet with power supply off
- With background Bdl subtracted, Magnetic Effective Length of 31.07±0.01 cm is now independent of magnet current (Electric Effective Length is 31.20 cm)
- These three measurements are important in understanding field maps:
 - I. Magnet at I=0 and on loop
 - II. Magnet degaussed with power supply off
 - III. Magnet off stand but leaving everything else as is
- Hysteresis loop study of Vertical Wien magnet showed that magnet current during mapping was off by -0.017 A – fix by subtracting this offset from map current
- New Field map was generated

Thursday, November 19, 2020

How to calculate power supply current offset

- How to calculate power supply current offset when examining field maps:
 - 1. Start with B (or Bdl) vs I data
 - 2. First, correct first background fields: B = B bckg
 - 3. Fit with B=a1*I, or B=a0+a1*I or higher order polynomial (you want the linear coefficient)
 - 4. Calculate hysteresis curve: h= B a1*I
 - 5. Plot h vs l
 - 6. Calculate opposite hysteresis curve with: neg_h = -h and neg_I = -I
 - 7. Plot neg_h vs neg_l
 - 8. If end-points do not overlap then there is a current offset
 - 9. Guess an offset, re-calculate I as: I = I CurrentOffset
 - 10. Re-calculate h as: $h = B a1^*(I CurrentOffset)$
 - 11. Re-calculate neg_l as: neg_l = -l
 - 12. Re-calculate neg_h as: neg_h =-h
 - 13. Repeat for few values of current offset, till there is overlap at end-point currents

