GTS Emittance Measurement with Single Slit and Viewscreen

Joshua Yoskowitz

June 26, 2017

1/4

Single Slit and View Screen Setup

- Drift Length (L) = 500 mm
- Slit Width (d) = 0.040 mm
- Constant step size $w \approx 0.6 \text{ mm}$
- Measurement steps m = 1, ..., N: N = 6

Calculations

$$x'_{m,c} = \frac{\langle x_m - x_{m,c} \rangle}{L} = \frac{\langle x_m - mw \rangle}{L}$$

$$\sigma'_m = \sqrt{\frac{\langle x_m^2 \rangle}{L^2} - (x'_{m,c})^2} = \frac{\sigma_m}{L}$$

$$\langle x^2 \rangle = \frac{\sum_{m=1}^{N} I_m x_{m,c}^2}{\sum_{m=1}^{N} I_m}$$

$$\langle x'^2 \rangle = \frac{\sum_{m=1}^{N} I_m (x'_{m,c}^2 + \sigma'_m^2)}{\sum_{m=1}^{N} I_m}$$

$$\langle xx' \rangle = \frac{\sum_{m=1}^{N} I_m x_{m,c} x'_{m,c}}{I_m}$$

$$\langle xx' \rangle = \frac{I_m x_{m,c} x'_{m,c}}{I_m}$$

$$\varepsilon_x \equiv \sqrt{\langle x^2 \rangle \langle x'^2 \rangle - \langle xx' \rangle^2}$$

 x_c = Vertical position of the centroid of the slit image on V_2 of the center beamlet

 x_m = Vertical position of the centroid of the slit image on V_2 of the m^{th} beamlet

 $x_{m,c} = \text{Both } x_m \text{ and } x_c$

 $x'_{m,c}$ = Correlated beam divergence σ'_{m} = RMS spread in divergence

 I_m = Peak intensity of the m^{th} beamlet

 $\left\langle x^{2}\right\rangle ,\left\langle x'^{2}\right\rangle ,\left\langle xx'\right\rangle =$ Second moments of the trace space distribution (assuming beamlet distributions are symmetric about their centroids)

 $\varepsilon_x = \mathsf{RMS}$ emittance

Results

MCRGT02V (G-cm)	Centroid (pixels)	σ_m (pixels)	Peak Intensity	xm (pixels)	×′m	σ'_m
-5	14.8146	0.961	8.4134	-4.8857	-0.001032133	0.0001922
0	11.8648	0.7986	14.4176	-1.9359	-0.000442173	0.00015972
5	9.9289	0.8548	18.5942	0	-5.49933 <i>E</i> - 05	0.00017096
10	8.4728	0.9777	14.8711	1.4561	0.000236227	0.00019554
15	6.8365	0.7519	13.7286	3.0924	0.000563487	0.00015038
20	6.006	0.8615	9.454	3.9229	0.000729587	0.0001723

Table: Raw Data

$\langle x^2 \rangle$ (pixels)	7.085732145		
$\langle x'^2 \rangle$ (pixels)	3.07515E-07		
$\langle xx' \rangle$ (pixels)	0.001394881		
Emittance (pixels)	0.000482986		
Emittance (mm)	4.82986E-05		
Normalized Emitance (mm)	5.94073E-05		
Thermal Angle (mrad)	0.560446249		

Table: Calculation of Emittance and Thermal Angle