RF Resonant Polarimetry: a way to non-invasive fast measurement of beam polarization and spin tunes?

Wolfgang Fillet

Physics Institute of Bonn University

1. Functional Principle
2. Relativistic Stern-Gerlach Force
3. Cavity Modes
4. Energy Transfer per Particle Passage
5. Signal Power
6. Example: Respol with $\mathrm{TE}_{011}, \mathrm{TE}_{111}$

Resonant Polarimetry

Principle Idea (Derbenev 1993):

Coupling of the magnetic moment (caused by the spin) to the cavity's B-field (taken from Derbenev-NIM-1993, eq. 8):

$$
W_{C}=\omega_{c}|a|^{2}=\omega_{c} N^{2}\left|\left\langle\frac{e}{2 m c \sqrt{2 \omega_{c}}}\left(\left(G+\frac{1}{\gamma}\right) B_{\perp}^{c}+\frac{1+G}{\gamma} B_{\|}^{c}\right) \vec{e} \cdot e^{i k \theta}\right\rangle\right|^{2} \frac{\hbar^{2} t^{2}}{4} P_{e} \sin ^{2} \alpha
$$

?Physical understanding? $\quad ? \gamma$ and G scaling?

Transverse Mode

$$
\Delta W=\int \frac{\partial}{\partial z}(\vec{\mu} \cdot \vec{B}) \cdot d z
$$

Transverse Mode

$$
\Delta W=\int \frac{\partial}{\partial z}(\vec{\mu} \cdot \vec{B}) \cdot d z
$$

Transverse Mode

$$
\Delta W=\int \frac{\partial}{\partial z}(\vec{\mu} \cdot \vec{B}) \cdot d z
$$

Transverse Mode

$$
\Delta W=\int \frac{\partial}{\partial z}(\vec{\mu} \cdot \vec{B}) \cdot d z
$$

Transverse Mode

$$
\Delta W=\int \frac{\partial}{\partial z}(\vec{\mu} \cdot \vec{B}) \cdot d z
$$

Transverse Mode

$$
\Delta W=\int \frac{\partial}{\partial z}(\vec{\mu} \cdot \vec{B}) \cdot d z
$$

Transverse Mode

$$
\Delta W=\int \frac{\partial}{\partial z}(\vec{\mu} \cdot \vec{B}) \cdot d z
$$

Transverse Mode

$$
\Delta W=\int \frac{\partial}{\partial z}(\vec{\mu} \cdot \vec{B}) \cdot d z
$$

Longitudinal Mode

$$
\Delta W=\int \frac{\partial}{\partial z}(\vec{\mu} \cdot \vec{B}) \cdot d z
$$

Longitudinal Mode

$$
\Delta W=\int \frac{\partial}{\partial z}(\vec{\mu} \cdot \vec{B}) \cdot d z
$$

Longitudinal Mode

$$
\Delta W=\int \frac{\partial}{\partial z}(\vec{\mu} \cdot \vec{B}) \cdot d z
$$

Longitudinal Mode

$$
\Delta W=\int \frac{\partial}{\partial z}(\vec{\mu} \cdot \vec{B}) \cdot d z
$$

Longitudinal Mode

$$
\Delta W=\int \frac{\partial}{\partial z}(\vec{\mu} \cdot \vec{B}) \cdot d z
$$

Longitudinal Mode

$$
\Delta W=\int \frac{\partial}{\partial z}(\vec{\mu} \cdot \vec{B}) \cdot d z
$$

Longitudinal Mode

$$
\Delta W=\int \frac{\partial}{\partial z}(\vec{\mu} \cdot \vec{B}) \cdot d z
$$

Longitudinal Mode

$$
\Delta W=\int \frac{\partial}{\partial z}(\vec{\mu} \cdot \vec{B}) \cdot d z
$$

Longitudinal Mode

$$
\Delta W=\int \frac{\partial}{\partial z}(\vec{\mu} \cdot \vec{B}) \cdot d z
$$

Findings:

$$
B_{\perp}=B_{0} \cdot \cos (\omega t+\phi) \Rightarrow \phi_{o p t}=\frac{\pi}{2}, \quad \beta_{p h} \approx 1
$$

Transverse Mode

$$
\Delta W=\int \frac{\partial}{\partial z}(\vec{\mu} \cdot \vec{B}) \cdot d z
$$

Findings:

$$
B_{\perp}=B_{0} \cdot \cos (\omega t+\phi) \Rightarrow \phi_{o p t}=0, \quad \beta_{p h} \gg 1
$$

Transverse Mode

Findings:

$$
B_{\perp}=B_{0} \cdot \cos (\omega t+\phi) \Rightarrow \phi_{\text {opt }}=0, \quad \beta_{p h}=? ? ?
$$

Some Approaches

Conte (arXiv: 0907.2161v1-2009)

Longitudinal Stern-Gerlach force:

$$
F_{z}^{S G}=\frac{\partial}{\partial z^{*}}\left(\vec{\mu}^{*} \cdot \vec{B}^{*}\right)=\gamma\left(\frac{\partial}{\partial z}+\frac{\beta}{c} \frac{\partial}{\partial t}\right)\left(\vec{\mu}^{*} \cdot \gamma\left[\left(\vec{B}-\frac{\vec{\beta}}{c} \times \vec{E}\right)-\frac{\gamma^{2}}{\gamma+1} \vec{\beta}(\vec{\beta} \cdot \vec{B})\right]\right)
$$

Energy transfer to the cavity:

$$
\left.\Delta U=\int_{0}^{L} F_{z}^{S G} \cdot d z=\widehat{\gamma^{2}}\right) \cdot \int_{0}^{L}\left(\frac{\partial}{\partial z}+\frac{\beta}{c} \frac{\partial}{\partial t}\right) \vec{\mu} \cdot\left(\vec{B}_{\perp}-\frac{\vec{\beta}}{c} \times \vec{E}_{\perp}+\frac{1}{\gamma} \vec{B}_{\|}\right) \cdot d z
$$

Some Approaches

Conte (arXiv: 0907.2161v1-2009)

Longitudinal Stern-Gerlach force:

$$
F_{z}^{S G}=\frac{\partial}{\partial z^{*}}\left(\vec{\mu}^{*} \cdot \vec{B}^{*}\right)=\gamma\left(\frac{\partial}{\partial z}+\frac{\beta}{c} \frac{\partial}{\partial t}\right)\left(\vec{\mu} \cdot{ }^{*} \cdot \gamma\left[\left(\vec{B}-\frac{\vec{\beta}}{c} \times \vec{E}\right)-\frac{\gamma^{2}}{\gamma+1} \vec{\beta}(\vec{\beta} \cdot \vec{B})\right]\right)
$$

Energy transfer to the cavity:

$$
\Delta U=\int_{0}^{L} F_{z}^{S G} \cdot d z=\widehat{\gamma^{2}} \cdot \int_{0}^{L}\left(\frac{\partial}{\partial z}+\frac{\beta}{c} \frac{\partial}{\partial t}\right) \vec{\mu} \cdot\left(\vec{B}_{\perp}-\frac{\vec{\beta}}{c} \times \vec{E}_{\perp}+\frac{1}{\gamma} \vec{B}_{\|}\right) \cdot d z
$$

Improper procedures in Conte:

- Treatment of the fringe fields: $F \simeq \gamma^{2} \frac{\partial B_{y}}{\partial z}$ neglecting temporal changes
- No relativistic cancellation by taking use of the total derivative
- Neglecting beam deflection and spin precession in the transverse magnetic fields in the cavity using

$$
\vec{B}^{*}=\gamma\left(\vec{B}_{\perp}-\frac{\vec{\beta}}{c} \times \vec{E}\right)+\vec{B}_{\|}
$$

A simple but (hopefully) correct Approach

Transformation of derivatives: $\frac{\partial}{\partial z^{*}}=\gamma\left(\frac{\partial}{\partial z}+\frac{\beta}{c} \frac{\partial}{\partial t}\right)=\gamma \frac{d}{d z}-\frac{1}{\beta \gamma c} \frac{\partial}{\partial t}$
Transformation of the fields:

$$
\left.\vec{\mu}^{*} \cdot \vec{B}^{*}=\vec{\mu} \cdot \frac{\gamma}{1+G}\left\{\left(G+\frac{1}{\gamma}\right) \vec{B}_{\perp}-\left(G+\frac{1}{1+\gamma}\right) \frac{\vec{\beta}}{c} \times \vec{E}\right\}+\vec{B}_{\|}\right]
$$

Taking use of the relativistic compensation:

$$
\Delta U=\int_{0}^{d} F_{z}^{s G} \cdot d z=\underbrace{\left.\gamma \vec{\mu}^{*} \cdot \vec{B}^{*}\right|_{0} ^{d}}_{=0}-\frac{\vec{\mu}^{*}}{\gamma \beta c} \cdot \int_{0}^{d} \frac{\partial}{\partial t}\left[\frac{\gamma}{1+G}\left\{\left(G+\frac{1}{\gamma}\right) \vec{B}_{\perp}-\left(G+\frac{1}{1+\gamma}\right) \frac{\vec{\beta}}{c} \times \vec{E}\right\}+\vec{B}_{\|}\right] d z
$$

\rightarrow Energy transfer to the cavity:

$$
\Delta U=\int_{C} F_{z}^{s G} \cdot d z=-\frac{\vec{\mu}}{\beta c} \cdot \frac{\partial}{\partial t} \int_{C}(\underbrace{\frac{G+1 / \gamma}{1+G}}_{=\xi_{B}} \vec{B}_{\perp}-\underbrace{\left(\frac{G}{1+G}+\frac{1}{(1+G)(1+\gamma)}\right)}_{=\xi_{E}}) \overrightarrow{\vec{\beta}} \frac{\vec{c}}{c} \times \vec{E}+\frac{1}{\gamma} \vec{B}_{1}\} d z
$$

Cavity Modes: TM

Cavity Modes: TM

Cavity Modes: TE

Cavity Modes: TE

and longitudinal:

General Findings and Set-Up

$\mathrm{TM}_{m n p}$ and $\mathrm{TE}_{m n p}$ modes, on-axis fields = 0 for $m>1!!!$

odd longitudinal p :

$$
\begin{aligned}
& \vec{B}_{\perp}(z, t)=\vec{B}_{\perp}^{0} \cdot \sin \left(\frac{p \pi z}{L}\right) \cdot \cos (\omega t+\phi) \\
& B_{z}(z, t)=B_{z}^{0} \cdot \cos \left(\frac{p \pi z}{L}\right) \cdot \cos (\omega t+\phi) \\
& \vec{E}_{\perp}(z, t)=\vec{E}_{\perp}^{0} \cdot \cos \left(\frac{p \pi z}{L}\right) \cdot \sin (\omega t+\phi) \\
& E_{z}(z, t)=E_{z}^{0} \cdot \sin \left(\frac{p \pi z}{L}\right) \cdot \sin (\omega t+\phi)
\end{aligned}
$$

even longitudinal p :

$$
\begin{aligned}
& \vec{B}_{\perp}(z, t)=\vec{B}_{\perp}^{0} \cdot \cos \left(\frac{p \pi z}{L}\right) \cdot \cos (\omega t+\phi) \\
& B_{z}(z, t)=B_{z}^{0} \cdot \sin \left(\frac{p \pi z}{L}\right) \cdot \cos (\omega t+\phi) \\
& \vec{E}_{\perp}(z, t)=\vec{E}_{\perp}^{0} \cdot \sin \left(\frac{p \pi z}{L}\right) \cdot \sin (\omega t+\phi) \\
& E_{z}(z, t)=E_{z}^{0} \cdot \cos \left(\frac{p \pi z}{L}\right) \cdot \sin (\omega t+\phi)
\end{aligned}
$$

Origin of coordinate system at the center of the cavity!

Single Particle Energy Transfer

Integration of the Stern-Gerlach force:

- odd longitudinal p :

$$
\begin{aligned}
& \Delta U_{\perp}=\frac{-2 \cos \phi}{1-\left(\beta / \beta_{p h}\right)^{2}} \sin \left(\frac{p \pi}{2}\right) \cos \left(\frac{p \pi \beta_{p h}}{2 \beta}\right) \vec{\mu} \cdot\left\{\xi_{B} \vec{B}_{\perp}^{0} \cdot+\xi_{E} \frac{\beta}{\beta_{p h}}\left(\hat{e}_{z} \times \frac{\beta}{c} \vec{E}_{\perp}^{0}\right)\right\} \\
& \Delta U_{\|}=-\frac{2}{\gamma} \mu_{z} B_{z}^{0} \frac{\sin \phi}{1-\left(\beta / \beta_{p h}\right)^{2}} \frac{\beta}{\beta_{p h}} \sin \left(\frac{p \pi}{2}\right) \cos \left(\frac{p \pi \beta_{p h}}{2 \beta}\right)
\end{aligned}
$$

- even longitudinal p :

$$
\begin{aligned}
& \Delta U_{\perp}=\frac{2 \sin \phi}{1-\left(\beta / \beta_{p h}\right)^{2}} \cos \left(\frac{p \pi}{2}\right) \sin \left(\frac{p \pi \beta_{p h}}{2 \beta}\right) \vec{\mu} \cdot\left\{\xi_{B} \vec{B}_{\perp}^{0}-\xi_{E} \frac{\beta}{\beta_{p h}}\left(\hat{e}_{2} \times \frac{\beta}{c} \vec{E}_{\perp}^{0}\right)\right\} \\
& \Delta U_{\|}=\frac{2}{\gamma} \mu_{z} B_{z}^{0} \frac{\cos \phi}{1-\left(\beta / \beta_{p h}\right)^{2}} \frac{\beta}{\beta_{p h}} \cos \left(\frac{p \pi}{2}\right) \sin \left(\frac{p \pi \beta_{p h}}{2 \beta}\right)
\end{aligned}
$$

Single Particle Energy Transfer

Integration of the Stern-Gerlach force:

- odd longitudinal p :

$$
\begin{aligned}
& \left.\Delta U_{\perp}=\frac{-2 \cos \phi}{1-\left(\beta / \beta_{p h}\right)^{2}} \sin \left(\frac{p \pi}{2}\right) \cos \left(\frac{p \pi \beta_{p h}}{2 \beta}\right) \vec{\mu} \cdot \xi_{B} \vec{B}_{\perp}^{0} \cdot \xi_{E} \frac{\beta}{\beta_{p h}}\left(\hat{e}_{z} \times \frac{\beta}{c} \vec{E}_{\perp}^{0}\right)\right\} \\
& \Delta U_{\|}=\left(-\frac{2}{\gamma}\right) \mu_{z} B_{z}^{0} \frac{\sin \phi}{1-\left(\beta / \beta_{p h}\right)^{2}} \frac{\beta}{\beta_{p h}} \sin \left(\frac{p \pi}{2}\right) \cos \left(\frac{p \pi \beta_{p h}}{2 \beta}\right)
\end{aligned}
$$

- even longitudinal p :

$$
\begin{aligned}
& \Delta U_{\perp}=\frac{2 \sin \phi}{1-\left(\beta / \beta_{p h}\right)^{2}} \cos \left(\frac{p \pi}{2}\right) \sin \left(\frac{p \pi \beta_{p h}}{2 \beta}\right) \vec{\mu} \bullet\left\{\xi_{B} \vec{B}_{\perp}^{0}-\xi_{E} \frac{\beta}{\beta_{p h}}\left(\hat{e}_{z} \times \frac{\beta}{c} \vec{E}_{\perp}^{0}\right)\right\} \\
& \Delta U_{\|}=\frac{2}{\gamma} \mu_{z} B_{z}^{0} \frac{\cos \phi}{1-\left(\beta / \beta_{p h}\right)^{2}} \frac{\beta}{\beta_{p h}} \cos \left(\frac{p \pi}{2}\right) \sin \left(\frac{p \pi \beta_{p h}}{2 \beta}\right)
\end{aligned}
$$

Signal Power

Signal POWAT

Energy transfer: $\quad P_{+}=\frac{I}{e} \cdot \eta_{b} \cdot \Delta U \quad$, bunch factor: $\quad \eta_{b}=\int \rho(s) \cdot \cos \left(\frac{\omega s}{\beta c}\right) \cdot d s$
Stored energy: $\quad W_{C}=\frac{1}{2 \mu_{0}} \int_{V} B^{2} d V=\frac{1}{2 \varepsilon_{0}} \int_{V} E^{2} d V=v_{b} \cdot B_{0}^{2}=v_{e} \cdot E_{0}^{2}$
\rightarrow Energy transfer: $d W_{C}=P_{+} \cdot d t=\frac{I}{e} \cdot \eta_{b} \cdot \Delta U \cdot d t=\frac{I}{e} \cdot \eta_{b} \cdot s_{\mu} \cdot B_{0} \cdot d t=\varsigma \cdot \sqrt{W_{C}} \cdot d t$

Energy dissipation: $\quad P_{-}=\frac{\omega}{Q_{l}} \cdot W_{C}=\frac{1+\kappa}{Q_{0}} \cdot \omega \cdot W_{C}=\frac{1}{\tau} \cdot W_{C}$
Build-up of stored energy: $\frac{d}{d t} W_{C}=\varsigma \cdot \sqrt{W_{C}}-\frac{1}{\tau} \cdot W_{C} \quad \rightarrow \quad W_{C}(t)=(\varsigma \tau)^{2} \cdot\left(1-e^{-\frac{t}{2 \tau}}\right)$
Steady state conditions: $\quad W_{C}^{\infty}=(\varsigma \tau)^{2}=\frac{I^{2} \cdot \eta_{b}^{2} \cdot s_{\mu}^{2}}{e^{2} \cdot v} \cdot \frac{Q_{0}^{2}}{(1+\kappa)^{2}} \cdot \frac{1}{\omega^{2}}$
Signal Power: $\quad P_{S}=\kappa \cdot P_{-}=\kappa \cdot \frac{\omega \cdot W_{C}}{Q_{0}}=\frac{I^{2} \cdot \eta_{b}^{2} \cdot s_{\mu}^{2}}{e^{2} \cdot v} \cdot \frac{\kappa}{(1+\kappa)^{2}} \cdot \frac{Q_{0}}{\omega}$

Experiment @ MESA/Mainz:

PoP Test at the injector Mambo:

- Longitudinal polarisation \leftrightarrow long. magn. field
- Low Lorentz gamma ($\gamma \approx 10$)
- Flip helicity every bunch (2 lasers?!)
- Tune cavity to $1 / 2$ bunch repetition frequency
- Use TE mode with no long. electric fields
- Phase locking of polarimeter signal to RF

Longitudinal: TE $_{011}$

Expected Signal Power: $\quad P_{S}=\left(\frac{I \cdot \eta_{b}}{e}\right)^{2} \cdot \frac{16 \mu_{0} \mu_{e}^{2}}{\pi^{2} c^{3}} \cdot \frac{f\left(\beta_{p h}\right)}{F\left(j_{11}\right)} \cdot \frac{\kappa Q_{0}}{(1+\kappa)^{2}} \cdot\left(\frac{\omega_{C}}{\gamma}\right)^{2}$

Longitudinal: TE $_{011}$

Expected Signal Power: $\quad P_{s}=\left(\frac{I \cdot \eta_{b}}{e}\right)^{2} \cdot \frac{16 \mu_{0} \mu_{e}^{2}}{\pi^{2} c^{3}} \cdot \frac{f\left(\beta_{p h}\right)}{F\left(j_{11}\right)} \cdot \frac{\kappa Q_{0}}{(1+\kappa)^{2}} \cdot\left(\frac{\omega_{C}}{\gamma}\right)^{2}$

Experiment @ ELSA/Bonn

Transverse: $\mathbf{T E}_{111}$

Expected Signal Power: $\quad P_{s} \approx\left(\frac{I \cdot \eta_{b}}{e}\right)^{2} \cdot \frac{32 \mu_{0} \mu_{e}^{2}}{\pi^{2} c^{3}} \cdot \frac{f\left(\beta_{p h}\right)}{F\left(j_{11}^{\prime}\right)} \cdot \frac{\kappa Q_{0}}{(1+\kappa)^{2}} \cdot\left(G \cdot \omega_{C}\right)^{2}$

Transverse: $\mathbf{T E}_{111}$

Expected Signal Power: $\quad P_{s} \approx\left(\frac{I \cdot \eta_{b}}{e}\right)^{2} \cdot \frac{32 \mu_{0} \mu_{e}^{2}}{\pi^{2} c^{3}} \cdot \frac{f\left(\beta_{p h}\right)}{F\left(j_{11}^{\prime}\right)} \cdot \frac{\kappa Q_{0}}{(1+\kappa)^{2}} \cdot\left(G \cdot \omega_{C}\right)^{2}$

Low Bwdth Signal Processing

More information cf. T. Pusch et al., PRSTAB 15, 112801 (2012)

Conclusions

- Expected signal power is extremely low!
- sc cavities $\left(Q_{0} \approx 10^{10}\right)$ with weak coupling essential!
- Phase-lock techniques required
- Coupling to charge is about 14 orders of magnitude greater!

PoP will be a really hard task but doable?!

LIGO demonstrated: ultimate precision can be achieved!

Spin Coherence Time @ ELSA

POLEMATRIX-Tracking: 100 Spins in x-s plane @ $1.54227 \mathrm{GeV}(\gamma a=3.5)$

Spin Coherence Time @ ELSA

POLEMATRIX-Tracking: 100 Spins in x-s plane @ $1.10162 \mathrm{GeV}(\gamma a=2.5)$

Spin Coherence Time @ ELSA

POLEMATRIX-Tracking: 100 Spins in x-s plane @ $1.32194 \mathrm{GeV}(\gamma a=3)$

