$^{19}\mathsf{F}(\gamma,\overline{lpha})^{15}\mathsf{N}$ Rates

Seamus Riordan seamus@anl.gov

November 30, 2017

Overview

- ullet Developed new code to calcuate $^{19}{\sf F}(\gamma,lpha)^{15}{\sf N}$ rates from scratch
- Comparing to presentation made in March 2016 with similar goals
- Geometry could be improved
- Have a bunch of questions let me know where refinement can be done

Simulation

- Starting with very basic G4 from scratch based on geometry
- Just radiator and apertures
- Photons required to come from inside target cutting everything else for simplicity

- Matching G4 $T_e = 5$ MeV to Schiff formula
- G4 visually agrees well with previous G4
- Overall scaling of my Schiff off by $\times 3 4$ geometrical?
- Schiff used for remainder of calculations ¹⁹F Rates

Simulation

• Also tracks with lower energy (T = 4.5 MeV)

Cross Section

- Cross section used from table provided on wiki
- Using logarithmic-y linear-x interpolation due to extreme variation

Rate vs T_e

- Convoluting cross section with Brem spectrum
- ROOT is doing numerical integration defaults to adaptive QAG method

- Some differences in structure washed out in previous analysis?
- Absolute rates are a bit lower in mine

Unfolding

- Using simplest unfolding algorithm
- ullet Electron energies evenly spaced by Δ
- Using bin centers as photon number calculation points

$$Y_i \approx \sum_{j} N_{\gamma}(T_i^e, E_j^{\gamma}) \sigma(E_j^{\gamma})$$

$$= \sum_{j} N_{ij} \sigma_j$$

with
$$E_j^{\gamma} = T_i^e - (i - j + \frac{1}{2})\Delta$$

• Measured cross section $\bar{\sigma}_j$ for E_j^{γ}

$$\bar{\sigma}_j = B_{ji} Y_i = N_{ji}^{-1} Y_i$$

Trial Run Plan

- Solved for constant $d\sigma/\sigma$, but assuming little cross section variation
- Plan can be tweaked given variation
- Total run time about 1 week
- Rates all less than 400 counts/hour
- Not including backgrounds yet

T	E_{γ}	$I\left(\muA\right)$	t (h)	Yield	$d\sigma/\sigma$
4.80	4.75	50.0	100	1094	3.0
4.90	4.85	20.3	40	1113	7.1
5.00	4.95	8.5	17	1223	6.6
5.10	5.05	3.7	7	1302	6.6
5.20	5.15	1.4	3	1290	6.6
5.30	5.25	0.4	3	1355	5.5

Quoted cross section concerns

- Cross section varies quickly question about what cross section quoted means
- First and last bins are pulled by nearby resonance
- First and last have $\bar{\sigma}(E_i)$ 50-70% different from $\sigma(E_i)$
- Rest are $\sim 5-10\%$ level

Quoted cross section concerns ii

 Median energy for convoluated rate about equal to bin center - evenly spaced

Summary and To Do

- Put together machinery for calculating rates and doing unfolding
- Some differences from previous analysis need to be addressed
- Geometry should be finalized
- Photon spectrum from G4 should be compared over broader energy
- Question on cross section to quote and nearby resonance effects
- Backgrounds need to be included

Running Pressures/Temperatures

