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Abstract

A recent proposal to measure the proton electric dipole moment (EDM) uses protons
circulating in a storage ring with their spins “frozen” parallel or anti-parallel to their veloc-
ities. Polarimetry is required both to stabilize the frozen spin operation and to measure the
EDM-induced precession. This paper proposes a test of resonant electron (rather than pro-
ton) polarimetry using a polarized 0.5 MeV kinetic energy, 500 MHz bunch frequency linac
electron beam at Jefferson Laboratory. The resonator is a 5 cm long copper cylinder, sliced
longitudinally by a single 1 mm gap that serves as the capacity C of a high frequency LC
or “whispering gallery” microwave oscillator; the inductance L is provided by the conduct-
ing cylinder serving as a single turn solenoid. As a longitudinally polarized electron bunch
passes through the resonator its magnetization excites the fundamental oscillation mode of the
resonator. The polarimeter detects and measures the longitudinal component of polarization
by a kind of inverse NMR in which the nuclear magnetic moments excite an external cavity,
rather than the other way round. Successive bunches are arranged to have alternating forward
and backward polarizations. This moves the beam polarization frequency to odd harmonics of
250 MHz, away from the direct beam charge frequency harmonics. This greatly suppresses the
“background” response to be beam charge relative to the “foreground” polarization response.
The resonator response is read out by transformer coupling to an external cavity resonant
that surrounds the split cylinder and is tuned to the same frequency.
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1 Introduction

A proposed experiment to measure the proton electric dipole moment (EDM) uses protons stored
in a fully-electrostatic storage ring. The main bending field is produced by applying a voltage
between inner and outer chamber walls. The full ring consists of repetitions of these sector bends
separated by drifts, quadrupoles, RF cavities and so on. The nominal design orbit consists of
circular arcs of radius r0 joined by straight lines through straight sections.

To reduce systematic errors there will be two counter-circulating polarized beams, as nearly
identical as possible. The polarizations of both beams will be “frozen”, parallel or anti-parallel
to the beam directions. Polarimetry (i.e. measuring the polarization of each circulating bunch) is
required to monitor and stabilize this frozen spin operation.

Acting on whatever EDM the protons possess, the (dominant) radial electric field tends to tip
the beam polarizations up or down. It is this tipping that is to be measured to obtain the proton
EDM. Ability to perform this measurement sets stringent polarimetry requirements.

This paper proposes a test of resonant electron (rather than proton) polarimetry using a polar-
ized 0.5 MeV kinetic energy, 500 MHz bunch frequency linac electron beam at Jefferson Laboratory.

2 Resonant polarimetry

2.1 Apparatus

Consider a single, longitudinally polarized bunch of electrons in a linac beam that passes through
the split-cylinder resonator shown in Figure 1. The split cylinder can be regarded as a one turn
solenoid.

The bunch polarizations will toggle, bunch-to-bunch, between directly forward and directly
backward. This is achieved by having two symmetrically interleaved beams, an A beam and a
B beam, each having bunch repetition frequency f0 = 0.25 GHz (4 ns bunch separation). The
resonator harmonic number, relative to f0 is an odd number, tentatively it is hc = 11. Irrespective
of polarization, the charged bunch frequency will be 2f0 = 0.5 GHz. Treated as an LC circuit, the
split cylinder inductance is Lc and the gap capacity is Cc. In practice the bunches will be only
partially polarized but, for estimating the signal strength and signal to noise ratio we assume the
bunches are 100%, longitudinally polarized.

2.2 Resonator parameters

The highly conductive split-cylinder can be treated as a one-turn solenoid. In terms of its current
I, its magnetic field B is given by

B = µ0
I

lc
, (1)

and its magnetic energy Wm can be expressed either in terms of B or I;

Wm =
1
2
B2

µ0
πr2c lc =

1
2
LcI

2. (2)

Its self-inductance is therefore

Lc = µ0
πr2c
lc
. (3)

The gap capacitance (with gap gc reckoned for vacuum dielectric and fringing neglected) is

Cc = ε0
wclc
gc

. (4)

Other resonator parameters, with proposed values, are given in Table 1.
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Figure 1: Perspective view of polarized beam bunch passing through the polarimeter. Dimensions
are shown for the polarized proton bunch and the split-cylinder copper resonator, and listed in
Table 1. For the proposed test using a polarized electron beam at Jefferson Lab, the bunch will
actually be somewhat shorter than the cylinder, and have a beer can shape.

3 “Local” Lenz law (LLL) approximation

A “local” Lenz law approximation for calculating the current induced in our split cylinder by a
passing polarized beam bunch is introduced by Figure 3. The split cylinder resonator is treated
as a one turn solenoid and, for simplicity, the electron bunch is assumed to have a beer can shape,
with length lb and radius rb. The magnetization M within length ∆z of a beam bunch (due to
all electron spins in the bunch pointing, say, forward) is ascribed to azimuthal Ampẽrian current
∆Ib = ib∆z. In other words, in the volume within the beam bunch the magnetic field is also a
perfect solenoid (with end fields being neglected).

For sufficiently short cylinder lengths, the bunch transit time will be short compared to the
oscillation period of the split cylinder and the presence of the gap in the cylinder produces negligible
suppression of the Lenz’s law current induced by the passing bunch (because the charge piles up
harmlessly on the capacitance of the gap). Define iLL to be the Lenz law current per longitudinal
length. Then ∆ILL = iLL∆z is the induced azimuthal current shown in the (inner skin depth)
of the cylinder, in the “local region” of the figure. To prevent any net flux from being present
locally within the section of length ∆z, the flux due to the induced Lens law current must cancel
the Ampère flux.

The Lenz law magnetic field is BLL = µ0iLL and the magnet flux through the cylinder is

φLL = µ0πr
2
c iLL. (5)

According to Jackson’s[2] section 5.10, the magnetic field Bb within the polarized beam bunch
is equal to µ0Mb which is the magnetization (magnetic moment per unit volume) due to the
polarized electrons.

Bb = µ0MB = µ0
NeµB
πr2b lb

, (6)

where Ne is the total number of electrons in each bunch. The flux through ∆z due to this interval
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Figure 2: Space-time plot showing entry of front, followed by exit of back of one bunch, followed
by the entrance and exit of the following bunch. Bunch separations and cavity length are arranged
so that cavity excitations from all four beam magnetization exitations are perfectly constructive,
but direct excitation by bunch charge is perfectly destructive.

of the beam bunch is therefore
φb = Bbπr

2
b = µ0

NeµB
lb

. (7)

Since the Lenz law and bunch fluxes have to cancel we obtain

iLL = −NeµB
lb

1
πr2c

. (8)

For a bunch that is longitudinally uniform (as we are assuming) we can simply take ∆z = lb and
obtain

ILL = iLLlb = −NeµB
πr2c

∆z
lb
. (9)

Once the bunch is fully within the cylinder, ILL “saturates”, no longer increasing proportional to
∆z.

We now make the further assumption (somewhat contradicting the figure, but consistent with
the proposed J-LAB test) that the bunch is sufficiently shorter than the cylinder (i.e. lb << lc)
that the linear build up of ILL can be ascribed to the constant applied voltage VLL required to
satisfy Faraday’s law.
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parameter parameter formula unit value
name symbol
length lc m 0.04733
radius rc m 0.01

gap gc m 0.00103943
thickness wc m 0.001
capacity∗ Cc ε0

wclc
gc/εr

pF 0.40317

inductance Lc µ0
πr2c
lc

nH 8.3411
resonant freq. fc 1/(2π

√
LcCc) GHz 2.7445

resonator wavelength λc c/fc m 0.10923
copper resistivity ρCu ohm-m 1.68e-8

skin depth δs
√
ρCu/(πfcµ0) µm 1.2452

eff. resist. Rc 2πrcρCu/(δslc) ohm 0.017911
quality factor Qc 8030.7

bunch frequency fA = fB = f0 GHz 0.2495
cavity harm. number hc fc/f0 11

electron velocity ve c
√

1− 1/22 m/s 2.5981e8
cavity transit time ∆t lc/ve ns 0.18230

transit phase advance 2πf0∆t 2πf0lc/ve 0.28578
transit cycle advance ∆φc fc∆t 0.50032
electrons per bunch Ne 4e6

bunch length lb m 0.01
bunch radius rb m 0.005

entry cycle advance ∆φclb/lc 0.15011

Table 1: Resonator and beam parameters. The capacity has been calculated using the parallel
plate formula. The true capacity will probably be somewhat greater, and the the gap gc will have
to be adjusted to tune the natural frequency. When the A and B beam bunches are symmetrically
interleaved, the bunch repetition frequency (with polarization ignored) is 2f0.

For a CEBAF 160µA, 0.5 GHz bunch frequency beam the number of electrons per bunch is
approximately 2 × 106. Using parameters from Table 1 we obtain the saturation level Lenz law
current to be

Isat.
LL = −NeµB

πr2c

(
e.g.
= −5.9078× 10−14 A

)
. (10)

The charge that has flowed onto the capacitor during the linear current entrance build up, at the
instant the bunch is fully within the cylinder is

Qmax.
1 =

1
2
Isat.
LL

lb
ve

(
e.g.
= −1.6156× 10−24 C.

)
. (11)

The meaning of the superscript “max” is that, if there were no further resonator excitations, the
charge on the capacitor would oscillate between −Qmax.

1 and Qmax.
1 .

Except for the back voltage due to charge accumulating on the capacitor, Isat.
LL is the constant

current that would flow in the inductance while the first bunch remains within the cylinder. But,
because the resonator natural frequency is so high, it is not legitimate to neglect the back voltage.
As Figure 2 indicates, by the time the bunch exits the cylinder, the capacitor voltage is supposed
to be just reversed. The transit time is

∆t =
lc
ve

e.g.
=

0.04733
2.598× 108

= 0.1825 ns, (12)
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Figure 3: Schematic of beer-can-shaped electron bunch entering the split-cylinder resonator, which
is longer than the bunch. Lenz’s law is applied to the local overlap region of length ∆z. Flux due
to the induced Lenz law current is assumed to exactly cancel locally the flux due to the Ampère
bunch polarization current.

for which, fc∆t = 0.5. As a result the (now negative) Lenz e.m.f. during the exit effectively
doubles the amount of charge that, in effect, has been allowed to bypass the inductance, to appear
on the capacitor.

In a lumped constant circuit model Qmax. = 2QLL1 is the excess (maximum) charge on the
capacitor due to the passage of the first bunch. Without subsequent bunch passages this maximum
charge would decay exponentially with time constant τc = 2Q/ω0, where Q is the resonator “quality
factor”.

As Figure 2 also indicates, the parameters have been adjusted so that all bunch entrances
and exits contribute constructively to Qmax.. On subsequent bunch passages there will already
be current flowing due to previous bunch passages. Eventually a steady state will be achieved, in
which the resonator energy gained during each bunch passage exactly cancels the ohmic energy
lost during the interval between bunch passages.

4 Resonant excitation

When a longitudinally polarized bunch enters the conducting cylinder its magnetization tries to
change the flux linking the cylinder. By Lenz’s law this change in flux is opposed by azimuthal
current flowing in the cylinder. The resulting voltage due to charge on the capacitor opposes and,
after many cycles, establishes a steady state in which the induced response each cycle just matches
the resistive decay of the resonator.

In any case the Lenz law current is present only while the bunch is passing through the cylin-
der. It is a quite good approximation to treat the applied voltage as having a square “top hat”
shape, with one sign on entry and the opposite sign on exit. For the circuit to respond to beam
magnetization, but not to the charge itself, the bunch magnetizations alternate, pulse-to-pulse.
This is accomplished by tuning the resonator to an odd harmonic of the bunch frequency divided

7



by 2.
The effect of the pulse-to-pulse toggling of the polarization is the reduce the (current-weighted)

polarization frequency from 0.5 GHz to 0.25 GHz. Odd harmonics of 0.25 GHz that are excited
by the beam polarization will therefore be isolated in the frequency domain by direct current
excitation at harmonics of 0.5 GHz.

In actual practice, as well as having alternating polarization, the bunch charge will also have
slightly different charges, which will cause some direct current excitation to leak into odd har-
monics. However this spurious signal will also be reduced by the symmetry of the split-cylinder
configuration. Even for imperfect alignment and positioning the direct charge excitation will there-
fore be further reduced.

In a MAPLE program used to calculate the response, the excitation is modeled using “piecewise
defined” train of pulses. The bipolar pulses modeling entry to and exit from the resonator are
obtained as the difference between two “top hat” pulse trains, one slightly displaced from the
other in time. Here is a fragment of this code:

TopHatAltWave0p3 := t-> piecewise(
0<(t-0.3) and t< 0+(1+0.3), 1,
11<(t-0.3) and t< 11+(1+0.3), -1,
22<(t-0.3) and t< 22+(1+0.3), 1,
33<(t-0.3) and t< 33+(1+0.3), -1,
.................

572<(t-0.3) and t<572+(1+0.3), 1,
583<(t-0.3) and t<583+(1+0.3), -1,
594<(t-0.3) and t<594+(1+0.3), 1,
605<(t-0.3) and t<605+(1+0.3), -1,
616<(t-0.3) and t<616+(1+0.3), 1, 0):

.................
TopHatAltWaveDiff := t-> TopHatAltWave0(t) - TopHatAltWave0p3(t):

The last line shows the subtraction of a wave displaced by 0.3 time units (the earlier instructions
show a few lines) from an identical, but undisplaced train.

In this form the bipolar pulse separations are 1 unit and the bunch-to-bunch separations are
11 units. (The choice of 11 is based on the tentatively adopted harmonic number hc = 11, which is
the ratio between resonator frequency and (same polarity) bunch frequency.) Two short sections
of the pulse train is shown in Figure 4.

The bunch train terminates after 56 pulses, by which time a steady state has almost been
achieved. This enables the complete analysis, including transients, to be performed by Laplace
transformation. An alternate approach, that would describe only the steady-state response, would
be to represent the bunch train by a Fourier series and to use the complex impedance formalism.

As explained in a later figure caption, in order to reduce the computation time (and avoid
saturating the figure data sets) the circuit resistance has been artificially increased by a factor of
10, rc → 10rc. This only affects the figures. The actual excitation is obtained from the analytic
formulas described next.

Lumped constant representation of the split-cylinder resonator as a parallel resonant circuit is
shown in Figure 5. The resistor symbol is lower case r as mnemonic reminder that we are dealing
with a circuit for which inductance L and capacitance C are dominant. The resistor r is taken
in series with the inductance under the assumtion that its resistance dominates all other circuit
resistances.

The element impedances are given in the figure. The exitation caused by polarized beam passing
through the split-cylinder is represented by Lenz law voltage source V̄LL, which is the alternating
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Figure 4: Pulsed excitation voltage pulses caused by successive polarized bunch passages through
the resonator. A few initial pulses are shown on the left. The units of the horizontal time scale are
such that, during one unit along the horizontal time axis, the natural resonator oscillation phase
advances by π. The second pulse starts exactly at 1 in these units, because the resonator length
lc has been arranged so that this time interval is also equal to the bunch transit time through
the split-ring. Also, hc=11 units of horizontal scale advance corresponds to a phase advance of π
at the fA = fB = f0 = 0.2495 GHz “same-polarization repetition frequency”. In other words, 1
unit corresponds almost exactly to 2/11 ns time duration and is a phase advance of π at the hcf0
polarization repetition frequency and 2π at the 2hcf0 charge repetition frequency. The interval
exhibited on the right is a section of the same pulse train plotted with a different horizontal scale,
and runs from 340 units to 440 units.

bunch train already described. Voltage division in this series circuit produces capacitor voltage
transform V̄C(s);

V̄C(s) =
1/(Cs)

1/(Cs) + r + Ls
V̄LL(s) =

V̄LL(s)
1 + rs+ CLs2

. (13)

For excitation voltage VLL(t) as shown in Figure 4, MAPLE has been used to determine the Laplace
transform V̄LL(s) for substitution into this equation, to obtain V̄C(s). MAPLE is then used to
invert this transform to obtain the capacitor voltage VC(t), which is plotted in Figures 7 and 8.
A short section of the output, superimposed on the input is plotted in Figure 9. Comparing this
figure with the early time relation between resonator amplitude and excitation in Figure 6 shows
that the response is very nearly in phase with the excitation.
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Figure 5: Circuit model for excitation voltage division between capacitance C and inductance L of
the resonant LC. The overhead bar on the Ī symbols indicate they represent Laplace-transformed
currents.

Figure 6: Alternating polarization excitation pulses superimposed on resonator amplitude and
plotted against time. Bunch separations are 2 ns, bunch sepraration between same polarization
pulses is 4 ns.
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Figure 7: Accumulating capacitor voltage response VC while the first five linac bunches pass the
resonator. The accumulation factor relative to a single passage, is plotted.

Figure 8: Relative resonator response to a train of beam pulse that terminates after about 110 ns.
(The Laplace transform formalism requires the time duration of the excitation to be finite.) After
this time the resonator rings down at roughly the same rate as the build-up. With just one
exceptions the circuit parameters are those given in Table 1. The exception is that the resistance
for the plot is r = 10rc. The true response build up would be greater by a factor of 10, over a
factor of 10 greater build-up time.
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Figure 9: Phases of drive and response after 100 ns. Surprisingly, the response is almost in phase
with the excitation. This is presumeably because the entrance and exit excitations are separated
in phase by π.
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5 Tentative conclusions

For resonator parameters shown in Table 1, the maximum charge Qmax.
1 residing on the resonator

capacitor when the first bunch has just entered the resonator was determined in Eq. (11). Figure 7
shows the capacitor charge building up constructively over the next several excitation pulses. The
synchronism has been arranged so that every entrance and exit Lenz law excitation is constructive.
Multiplying VC by 10 in Figure 8 (to correct for the actual circuit resistance rc having been
artificially increased by a factor of 10 to reduce the computation time) the capacitor build-up
factor when steady state has been reached is approximately 700. This is less than the resonator Q
value of 8031 by a factor more or less equal to the hc = 11 resonator harmonic number. At that
time the capacitor charge is 700Qmax.

1 = 1.6156 × 10−24 = 1.1309 × 10−21 C, and the maximum
capacitor voltage is

V max
c =

(Qc/hc)Qmax.
1

Cc
=

(8031/11) · (1.1309× 10−21)
0.4032× 10−12

= 2.926× 10−9 V. (14)

As an aside, one can comment that, since the electron velocity of 0.866 c is almost fully rela-
tivistic, this voltage is very nearly independent of γ. As far as I am concerned this lays to rest
a decade old controversy concerning the γ-dependence of cavity excitation by a passing bunch of
polarized particles. This paper has shown that, once the particles have become fully relativistic
there is no further dependence on γ of the resonator excitation.
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