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Abstract—Software defined radio (SDR) systems generally 

describe transceiver applications; however, the processing 

requirements of the receiver section are particularly demanding, 

and require special attention with respect to digital signal 

processing (DSP). Although the architecture of a digital receiver 

is closely related to the analog implementation, the numerical 

operation of each sub-stage can only be realized with fast, 

efficient algorithms. These include frequency translation, 

detection, demodulation, filtering, and coding of information for 

output. This paper analyzes each major subsection of a typical 

digital diagnostic receiver designed for use in a particle 

accelerator (without loss of generality), and offers guidance on 

the implementation and expected performance. An actual SDR 

platform is presented, with data and analysis. 

 
Index Terms—CORDIC, IIR filter, Nyquist zone, quadrature 

sampling. 

 

I. INTRODUCTION 

INCE the advent of the superheterodyne (superhet) 

receiver by Armstrong in 1918, little has changed in the 

mathematical functionality of the receiver subsections [1]. 

With the recent introduction of software-defined radios (SDR) 

for communications and instrumentation, the computational 

blocks are subject to optimization in ways not possible with 

respect to conventional mixing, phasing, and filtering. A 

comparison of some of these techniques provides mixed-signal 

designers with efficient blocks capable of embedding in 

microprocessors, digital signal processors (DSP), and field-

programmable gate array (FPGA) designs.  

II. RECEIVER ARCHITECTURE 

A. Analog Systems 

Extensive analysis and experience has determined that the 

superheterodyne receiver architecture is superior to other 

forms, for general use [2]. Although other system topologies 

may facilitate sub-optimal performance, lower cost, or energy 

conservation, the superhet is by far the most common. 

 The canonical radio receiver is based on the ability to 

obtain a signal, translate the frequency to an intermediate 

value, and sweep it past a highly selective filter. Subsequently, 

the signal is then translated a second time, whereby it is 

detected, and finally demodulated,  such that the information 
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can be extracted. This process is depicted in Figure 1, which 

shows a typical analog superhet receiver, without loss of 

generality [3]. 

 

 
 

Figure 1. Functional block diagram of a basic superhet 

receiver, describing major subsystems. 

 

Of interest are the blocks representing frequency translation 

(i.e. mixer), and demodulation, which also includes the 

detection operation. Mathematically, the mixer combines the 

desired signal from the antenna with a sinusoid, and subjects 

the pair to a nonlinear element. The Fourier analysis of the 

result consists of a translation involving the sum of the two 

signal frequencies (the upper sideband, USB), and the 

difference of the two frequencies (the lower sideband, LSB), 

along with undesirable cross-terms. In the case of a pure 

multiplier block, the equations are simply: 

 

 
 

where θ and φ represent the incoming signal and local 

oscillator (LO) signals, respectively.  

 Receiver performance is largely determined by how well 

the pure multiplication is performed, and is described by 

linearity, or dynamic range. By definition, dynamic range is 

the ratio of the desired USB or LSB signal and the worst-

offending harmonic from the mixing process, described in 

decibels (dB) [4]. Therefore, a true multiplication has perfect 

linearity, but is never achievable, in practice. Figure 2 is a 

depiction of a nomograph of parameters commonly used to 

describe system and susb-system linearities, and is known as a 

third-order intercept diagram, since the third-order cross term 

is usually the most prevalent offending signal, and often 

resides within the desired signal’s  passband [4]. 
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Figure 2.  Third-order intercept diagram, often used to determine system 

linearity. The desired system gain is depicted by the blue line, while the red 

line demonstrates the appearance of undesired third-order signals from the 

mixing process, and/or other nonlineraities.  

 

Receiver development has concentrated on minimizing the 

cross-term production of mixers, but since these are usually 

constructed from semiconductors or vacuum tubes, only an 

approximation to the ideal response is achievable.  

 Signal detection is a function of extracting the amplitude 

and/or frequency variations from the pure received carrier 

frequency, prior to the demodulation process. Typical received 

signals are solely amplitude (AM) or frequency modulated 

(FM), but also can contain both, as in the case of quadrature 

amplitude (QAM) or single-sideband (SSB) modulated signals.  

 AM signals are usually detected using a diode which 

performs an absolute-value operation, followed by a lowpass-

filter. Alternatively, the AM IF signal can be multiplied by a 

sinusoid of the same frequency and phase, yielding the same 

result, but with improvement to signal-to-noise ratio [5]. If two 

quadrature sinusoids (i.e. cosine and sine) are used, the 

requirement of the LO having phase coherence with the 

transmitted carrier is removed [5]. In each case, oscillators 

within the receiver are required to have good spectral purity, 

minimal amplitude and phase fluctuations, and overall 

stability.  

 FM has seen many methods appear for detection, 

including slope detection, Foster-Seeley discrimination (for 

wideband FM), zero-crossing detection, and phase-lock loop 

detection. As in the case of AM, high-quality semiconductor 

components and chipsets are needed. Also, the demands on 

oscillators and frequency references are extreme, for high 

performance [6].  

B. Digital Systems 

Many of the concepts employed by modern digital receivers 

have been proposed long before they were practicable, as in 

the case of the work by Shannon in the early 20
th

 century on 

Information Theory [7]. As digital systems began to improve 

in speed and computational agility, so did their ability to 

realize radio system functions in near real-time. The 

consequence of numerical replacements for semiconductor 

approximations is the realization of true multiplication and 

filter operations, with minimal-to-zero cross-term production.  

Although a typical digital receiver system closely resembles 

that of the analog receiver, the sub-system blocks after signal 

digitization are numerical, and therefore nearly ideal in 

performance. The design challenge is shifted from one of 

component optimization to that of minimizing system latency 

and maximizing the computational resources of the central 

processing unit (CPU). 

A digital receiver system is shown in Figure 3, for 

comparison with the analog system [8]. 

 

 
Figure 3. Functional block diagram of a digital receiver system, 

demonstrating similarity to analog system architecture, but with DSP-specific 

blocks. All blocks after the ADC are numerically implemented, achieving 

near-perfect performance. 

III. NUMERICAL SYSTEM BLOCKS 

After an input signal is digitized, it is represented by a 

fixed-width binary number. In nearly all cases, the subsequent 

calculations are performed using integer math, as opposed to 

floating point. This is primarily due to the limited amount of 

resources available on the CPU, and also to reduce end-to-end 

latency [9].  Since the ADC is capable of directly outputting 

twos-complement representations of the input signal (to 

whatever bit resolution the designer chooses), it is most natural 

to continue with integer computations; full 32-bit, IEEE 

representation is not necessary. 

A. Quadrature Sampling and Frequency Translation 

Since the incoming signal is to be sampled by the ADC, a 

decision must be made as to the sampling frequency. One  

choice is to appeal to the Nyquist Theorem, which could 

(incorrectly) be interpreted to sample at twice the carrier 

frequency. In reality, the theorem only requires that the sample 

rate be twice that of the information passband width, 

regardless of the carrier frequency. However, if the input 

signal is represented by a spinning vector, a sample frequency 

of four times the carrier frequency results in an output of the 

cardinal points (with constant phase offset), X, Y, -X, -Y, … 

or more conventionally, I, Q, -I, -Q, …where I and Q represent 

the In-phase (real) and Quadrature (imaginary) components of 
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the received signal, respectively. Since the amplitude and 

phase can be obtained by a rectangular-to-polar 

transformation, the following signal parameters are instantly 

available: 

 

 
Therefore, all of the necessary information is obtained by 

simply sampling at a 4x rate. A time domain description of the 

4x I/Q sampling process is shown in Figure 4, for 70 MHz 

carrier sampled every 90 degrees. 

 

 
 
Figure 4. Time-domain description of 4x I/Q sampling process. The output 

stream contains the rectangular representation of the input signal. 
 

 The frequency-domain representation is derived by 

establishing every combination of: 

 

(n fc +/- m fs) 

 

Where fc is the input carrier frequency, fs is the ADC sampling 

frequency, and n,m are integers. The next step involves de-

multiplexing the stream into the I-only, and Q-only 

components, resulting in a decimation of 2 (1/2 the sample 

rate). This stretches the spectra, such that they are nearly 

touching. Finally, multiplying by alternating +/- 1 produces a 

positive stream of I and Q values,. And has the consequence of 

shifting the near-basebend signal by fs/2, such that it is finally 

centered about DC. Lowpass filtering removes the unwanted 

frequencies (and replicated spectra), resulting in a baseband, 

detected signal. The entire process is shown in Figure 5 [10]. 
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Figure 5. Frequency-domain description of the 4x I/Q sampling process. The 

original carrier (a) ,with information BW = B, is translated to baseband (b) by 

the sampling frequency. Decimation stretches the spectra (c), while reducing 

the data rate. Finally, multiplying by +/-1 sequence and filtering produces a 

faithful baseband signal.(d). 

 Although the 4x sampling process is efficient and attractive, 

the sampling rates required for IF frequencies are extreme for 

even high-performance processors. Therefore, an 

undersampling scheme, known as “harmonic sampling,” 

readily exploits the fact that an aliased signal still retains the 

magnitude and phase relationships of the original signal [11]. 

As long as the sampling frequency is still larger than twice the 

information bandwidth, Nyquist criteria are not violated, and 

the information can be extracted without distortion [12]. In 

time domain, the concept requires the spinning input vector to 

over-rotate by either 90 degrees (0.8 fc),  or 270 degrees in 

between subsequent samples. The slippage results in the same 

I, Q, -I, -Q,…. sequence, but at a much reduced rate of fc - fs. 

This rate reduction permits the CPU to properly process the 

input stream, without loss of data.  The time-domain 

description is shown in Figure 6. 

 

Figure 6. Time domain description of harmonic sampling, whereby the input 

signal is sub-sampled at a rate of 0.8 fc , resulting in an aliased signal of  

fc - fs retaining the phase and amplitude features of the original carrier. 

 

 As with the oversampled case, the harmonically-sampled IF 

is translated to baseband through the operation of decimation 

and multiplication of alternating +/-1. The low-passed result 

are DC values of I and Q. Spectrally, the process more closely 

resembles conventional mixing, in that the carrier is translated 

by the lower-frequency fundamental of the sampling 

frequency, as shown in Figure 7 [13, 10]. 

 

f

IF INPUT

fc

(a)

f

LO CLOCK

3fs

(b)
2fsfs

f

SAMPLED IF

(c)
3fs - fc 4fs - fc 5fs - fcfc - 2fs fc - fs fc  

 
Figure 7. Frequency domain representation of Harmonic Sampling. The 

carrier is sub-sampled, resulting in a near-baseband representation of the 

original carrier. 
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 Sub-sampling is not limited to 0.8 fc rates for the sampling 

frequency. Theoretically, any (0.8 fc)/n is permitted, as long as 

the result is larger than the 2 BW Nyquist rate [12]. However, 

there is a penalty for extreme undersampling, imposed by the 

phase noise of the sampling clock. The resulting jitter 

produces output noise, due to the imprecise sampling instant 

upon a rapidly changing sine wave, as shown in Figure 8 [6]. 

 

 
 
Figure 9. Noise voltage produced from the presence of clock jitter for 

moderately-undersampled (a) and largely-undersampled (b) cases.  

 

Clock jitter effectively puts a lower bound on the amount 

undersampling as a function of IF frequency and RMS clock 

jitter. However, for moderate undersampling, the resulting 

output rate is generally much larger than the Nyquist rate, 

which facilitates averaging, known as processing gain. In 

addition, the quantization noise energy from the ADC process 

is spread over fs/2, which has the effect of improving the SNR 

by 10 log (fs / B), where B is the information bandwidth [14]. 

Therefore, it is possible to optimize the benefit of 

oversampling the baseband signal, with the cost of noise 

generated from clock jitter, which goes as  (fs /fs)
2
 [6]. The 

effect of noise reduction from oversampling is shown in Figure 

9. 

 

 

 

Figure 9. SNR improvement of oversampling baseband. The ADC 

quantization noise is spread over fs/2, which results in lower overall noise 

within the passband for higher sample rates. 

 

 

B. Coordinate Rotation Digital Computer (CORDIC) 

Trigonometric evaluations have long plagued both analog 

and signal processing. Approximations using semiconductors 

are possible, by exploiting the exponential characteristics of 

the devices, and Euler’s identities. However, the temperature 

dependence and device variables make this approach relatively 

expensive with respect to repeatability. Infinite series is 

attractive for some functions, but convergence and device 

count are design constraints. For digital systems, the speed of a 

look-up table is unparalleled, but requires large memory maps 

if 16-bit (or higher) resolution is needed. 

A computational compromise exists with a routine 

developed in 1959 which iteratively solves a myriad of 

trigonometric, as well as other linear functions, utilizing a 

binary search [15]. In this way, it is possible to perform 

rectangular-to-polar transformations, without having to 

compute arctan, or the even more taxing sqrt( I
2
 + Q

2
).  In fact, 

the algorithm avoids multiply operations, altogether. 

The development of the CORDIC revolves around the 

familiar coordinate rotation matrix [16]: 
 

 
 

If each term is divided by cos γi, the matrix becomes: 
 

 
 

After applying the matrix to the input vector [x y],  the 

system is described by: 

 

 
 

Numerically, the tangent terms require a lookup table, 

followed by a multiply to complete the rotation. However, the 

process can be further streamlined by examining the 

mechanics of the binary search algorithm. The strategy lies in 

rotating the unknown vector such that it lies on the positive 

real (x) axis. The value of x is exactly the vector’s magnitude, 

while a tally of the rotations yields the original phase angle.  

The process begins by rotating the vector by 90 degrees, and 

evaluating the sign of the resulting y term, sgn(y). If it is 

negative, over-rotation has occurred, and the next rotation 

must be in the opposite sense. Otherwise, proceed in the same 

direction. The next rotation is 45 degrees, followed by 22.5 

degrees. The process is repeated b times, where b=number of 

resolution bits of the input word. So, for a 16-bit input word, 

16 iterations are required for the vector-search to converge.  

The true utility of the CORDIC lies in the comparison 

between the tangent of the necessary rotation angles, and the 

arctangent of the nearest power of ½, as shown in Table 1 

[16]. If the tan function can be replaced by a simple division 
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by 2, then the multiply operation is simply a right-shift, 

requiring a single clock cycle on all processors. 
 

Table 1. Comparison between CORDIC rotation angles and arctangent of 

nearest power of ½. The resulting multiplication only requires a right-shift to 

accomplish. 

Angle, γ Tan γ Nearest 2-n Tan-1 2-n 

45 1.0 1 45 

22.5 0.414 0.5 26.6 

11.25 0.199 0.25 14.04 

5.625 0.095 0.125 7.13 

2.1825 0.049 0.0625 3.58 

1.4061 0.0246 0.03125 1.79 

0.7031 0.0123 0.01563 0.90 

 

Mathematically, the rotation matrix is simplified with the 2
-n 

substitution for the tan function: 

 

 
 

Where σi represents the decision rule sgn(y), described 

earlier, and Ki is known as the CORDIC constant which 

converges to a value of ~ 1.6 for more n >  5 iterations [16]: 

 

 
 

Although a lookup table is still required, it contains at most 

b entries, and is used in a summation role, rather than to 

perform multiplications. The efficiency of the CORDIC finds 

its use in many processing environments, and is not limited to 

trigonometric applications. In addition, the deterministic 

convergence of b clock cycle iterations makes this algorithm 

ideal for control-feedback applications, since the latency is 

absolutely known for every calculation. 
 

C. Filters 

Because a receiver’s performance is primarily a function of 

SNR, filtering is required at several points in the receive chain, 

in order to manage thermal noise, and out-of-band 

interference. DSP filters tend to favor finite-impulse-response 

(FIR) topologies, due to their inherent stability, and ability to 

mimic any magnitude response, given enough taps. No 

feedback is present, thereby controlling number growth within 

the filter [12]. Drawbacks of such topologies occur when very 

narrow passbands are needed, or if phase is an issue. In these 

cases, the extreme number of taps results in unacceptable 

latency, while the phase control often results in the use of 

complex coefficients [12].  

To avoid these problems, simple feedback filters, known as 

infinite impulse response (IIR) are often used, since they are 

reasonably efficient, computationally, and can model typical 

RLC network responses with respect to phase and amplitude. 

Drawbacks include possibly instability, as well as large 

number growth.  

Figure 10 compares the FIR and IIR filter topologies. 

 

 
 

Figure 10. Comparison of FIR and IIR filter topologies, illustrating tap 

weighting and feedback.  

 

One such IIR topology exploits the divide-by-two concept, 

thereby removing any multiply operations [17]. The major 

drawback is lack of frequency control for bandwidths other 

than powers of 2, but octave resolution is usually sufficient for 

most narrowband receiver IF filters, and certainly for wider 

de-noising filters [13]. The filter diagram, and associated 

bandwidths are given in Figure 11, normalized to a 1Hz input 

sample rate. 

 

 
 

Figure 11. System diagram of a novel recursive IIR filter which exploits 

efficient binary arithmetic (right-shift with add). The associated table 

provides expected frequency response, normalized to 1Hz input sample rate. 

 

Typical digital receiver topology usually includes a filter 

immediately following the ADC, in order to begin the noise-

limiting, as well as to ensure out-of-band signals are excluded. 

In addition, copies of the replicated input spectrum must be 

eliminated, to prevent aliasing. This filter must also be able to 

begin to extract energy from the signal, and reduce the data 

rate such that subsequent stages are able to optimize their data-

rate-dependent functions [14]. Therefore, a decimating filter is 

sought, such that the output data is filtered, and has a rate 

significantly less than the input rate. 

A popular input filter which meets these criteria is known as 

the cascaded integrator-comb filter (CIC). The CIC is simply 

an accumulator (integrator), followed by a differentiator. The 

presence of a decimation stage in between the others controls 

the output data rate, as well as the aggressiveness of the filter 

[14]. Since the differential basically undoes the effect of the 

integral, low-frequency coherent signals are unaffected. 

However, uncorrelated noise is eliminated by the integral, 

hence improvement in SNR. The computational efficiency is 

very good for this topology, and only requires sum and 

difference operations, followed by a single scale factor. 
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Careful choice of the number of integration, comb, and 

decimation filters often leads to a scale factor which is a power 

of 2, requiring only right-shifts. Alternately, other stages can 

be combined until such a power of 2 is reached within the 

system, where the right-shift can then be applied. An 

interesting aspect regarding the integrator is that it is allowed 

to grow, until the maximum bit representation is reached. In 

twos-complement systems, the number simply “rolls under.” 

Since the differentiator only cares about the slope of the 

integration process, overflow is not a concern. 

Since the integration can grow without bound, the filter is 

inherently stable, and easily implemented by the use of a 

spreadsheet. The topology and typical frequency response are 

shown in Figure 12. 
 

  
Figure 12. System diagram of CIC filter, showing integration, decimation, 

and differentiation. Also, a typical frequency response is shown, verifying the 

effectiveness of the topology. 

 

IV.  END-TO-END SIMULATION 

 A four-channel digital receiver utilizing these numerical 

concepts was designed and constructed for use as a beam 

diagnostic system in a particle accelerator [18]. Before actual 

construction, dynamic modeling was performed using 

SystemVue, a commercial simulation package which utilizes 

the popular MATLAB software as an engine [19]. SystemVue 

enables the designer to construct a mixed-signal system using 

blocks comprised of data taken directly from data sheets. 

Digital flow is manipulated with every parameter, and output 

is easily analyzed using time-domain and frequency-domain 

tools. 

The specifics of the receiver include a conventional 

heterodyne analog front-end, in order to preserve ultra-low 

noise figure. The 45 MHz IF is then sampled using a 0.8 rate 

of 36 MHz, resulting in the alternating I, Q, -I, -Q sequence. 

Once digitzed, the signal is subjected to a decimating CIC 

filter, in order to limit the noise energy, extract signal energy, 

and slow the data rate for subsequent stages.  

A narrowband IIR filter, based on the power-of-two design 

was implemented for ease of configurability, and 

computational efficiency [17]. Subsequently, a CORDIC 

algorithm was employed to extract phase and magnitude of the 

received signal. This signal was then compared to the other 

channels, in order to calculate the position of the electron 

beam as it travels down the beam pipe towards the target.  

Design parameters include low noise for high resolution, 

large dynamic range to facilitate a wide scope of beam 

currents, low latency for control-feedback and machine 

protection, and affordability for mass implementation. 

Figure 13 is a screenshot of the SystemVue model, which 

contains all non-linear parameters, as well as expected noise 

components. The three channels represent resonant cavity 

signals proportional to transverse X and Y beam position, as 

well as a signal proportional to beam current for amplitude and 

phase normalization. The inset is the calculated beam position, 

with respect to cavity boresight. 
 

 

 
Figure 13. Dynamic simulation of diagnostic receiver, intended for 

particle accelerator implementation. All parameters representing thermal and 

system noise elements are included, along with non-linear elements. The inset 

is the final calculated beam position, with respect to cavity boresight.  

 

Ultimately, the design was constructed and implemented as 

a SDR, using an Altera FPGA, capable of producing precise 

beam position estimates with a 100 kHz output rate. In 

addition, a single-board computer (PC-104) was included as a 

high-level input-output controller able to perform low-priority 

high-level applications, such as Fourier analysis, lock-in 

functionality, and digital storage oscilloscope capability. The 

receiver performance is shown in Table 2. 

V. CONCLUSION 

Numerical algorithms utilized in digital receivers have 

evolved into powerful computational sub-systems, capable of 

performing ideal functionality, to within any accuracy. As 

speed increases, so does the capacity to include more complex 

arithmetic. The efficiency of the algorithms presented 

facilitates SDR performance equal to, or better than, 

conventional analog systems, while providing enormous cost 

savings and operational flexibility. Also, despite the initial 

appeal of full floating point math, integer math is fully capable 

of providing accuracy and precision to any degree, and is 

naturally compatible with modern ADC systems. 
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Table 2. Digital receiver (SDR) performance for the beam position monitor 

application. Actual parameters fell within 3 dB of modeled, validating the 

simulation. 
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