Operation of Jefferson Lab Polarized Electron Sources at High Currents

Challenges and Lessons-learned

R. Suleiman, P. Adderley, J. Clark, S. Covert, J. Grames, J. Hansknecht, M. Poelker, M. Stutzman

> Jefferson Lab EIC14, March 17-21, 2014

Source Parameter Comparison

Parameter	CEBAF	JLab/FEL	EIC eRHIC	EIC MEIC	Cornell ERL	LHeC	CLIC	ILC
Polarization	Yes	No	Yes	Yes	No	Yes	Yes	Yes
Photocathode	GaAs / GaAsP	Bulk GaAs			K ₂ CsSb			
Width of microbunch (ps)	50	35	100	50	2	100	100	1000
Time between microbunches (ns)	2	13	106	1.34	0.77	25	0.5002	337
Microbunch rep rate (MHz)	499	75	9.4	748.5	1300	40	1999	3
Width of macropulse	-	-	-	2.3 µs	-	-	156 ns	1 ms
Macropulse repetition rate (Hz)	-	-	-	20	-	-	50	5
Charge per microbunch (pC)	0.4	133	5300	173.5	77	640	960	4800
Peak current of microbunch (A)	0.008	3.8	53	3.5	38.5	6.4	9.6	4.8
Laser Spot Size (cm, diameter)	0.1	0.5	0.6	0.3	0.3	0.5	1	1
Peak current density (A/cm ²)	1	19	188	50	500	32	12	6
Average current from gun (mA)	0.2	10	50	0.006	100	25	0.015	0.072

* Unpolarized: Bulk GaAs (Cs,F), K₂CsSb, Na₂KSb, ... Polarized: GaAs/GaAsP (Cs,F). Proposed

Outline

- Key Features of Polarized Electron Source:
 - Photocathode
 - Drive Laser: Reliable, Phase Locked to Accelerator, Adequate Power
 - Load-Lock Gun:
 - Vacuum and Ion Bombardment
 - High Voltage and Eliminating Field Emission
- High Current Runs at Injector Test Facility
- How to Prolong Charge Lifetime?
- R&D for High Current Polarized Electron Source

Photoemission from GaAs

NEA Activation of GaAs

 $QE(\hbar\omega) = (1-R)d\alpha(\hbar\omega)B(\chi)$

- *R* GaAs Light Reflection Coefficient (~ 0.3)
- d GaAs layer thickness (~ 0.1 μ m)
- $\alpha(h\omega)$ Photo-absorption Coefficient (~ 5x10³ cm⁻¹)
- $B(\chi)$ Surface Tunneling Probability(~ 0.2)

High P: Breaking GaAs Degeneracy

- Split degeneracy of P_{3/2} : Introduce strain on GaAs crystal by growing it on substrate (GaAsP) with different lattice constant
- ➢ High polarization by circularly polarized laser excitation from P_{3/2} to $S_{1/2}: E_{gap} < E_{\gamma} < E_{gap} + \delta$

Higher QE: Alternating layers of GaAs and GaAsP – Superlattice
 GaAs

GaAs Photocathode Evolution

QE ~ 20%, 120 μA/mW Unpolarized @ 532 nm

QE ~ 5%, 30 μA/mW Pol ~ 35% @ 780 nm

Superlattice GaAs: Layers of GaAs on GaAsP

No strain relaxation QE ~ 1%, 6 μA/mW Pol ~ 85% @ 780 nm (1.59 eV)

Superlattice GaAs

Pe-35% 35% 75% 75% 85% 85% **Timeline of** 100µA 50µA **100μΑ 150μΑ 180μΑ** 30µA le. **Polarized Source** at CEBAF 1995 1998 2000 2004 2010 1999

Bulk GaAs

Strained GaAs

Fiber-based Drive Laser

Inverted Guns at JLab

Inverted Gun #1 at CEBAF

- HV Conditioned to 150 kV with Stainless Steel Electrode
- Operating at 130 kV. Charge lifetime ~ 200 C at 180 μA with transmission of 95%
- Delivered 1800 C of polarized beam to QWeak

Inverted Gun #2 at Injector Test Facility

- HV Conditioned to 225 kV, with large grain Niobium (Nb) Electrode
- Operating at 200 kV
- Used for photocathodes lifetime studies at high currents

Load-lock Photogun

- Best vacuum inside HV Chamber, which is never vented except to change electrodes
- Photocathode Heat and Activation takes place inside Preparation Chamber
- Use "Suitcase" to replace photocathodes through a Loading Chamber

Key Features:

- 5 pucks can be stored in Storage Manipulators
- 8 hours to heat and activate photocathode
- Mask to limit active area
- Suitcase for installing new photocathodes (one day to replace all pucks)

Vacuum

- I. Static Vacuum:
 - I. Primary source of gas in Polarized Gun is hydrogen outgassing
 - II. Reduce outgassing:
 - Reduce thick flange area
 - HV Chamber 400°C bake for 10 days
 - Diffusion barrier coatings (TiN)
 - III. Improve Pumping:
 - Non-Evaporable Getters (NEGs) (Zr-V-Fe)
 - Ion Pumps
 - Cryo-pump (planned)
 - IV. Improve beamline vacuum
- II. Dynamic Vacuum:
 - I. Eliminate field emission
 - II. No beam loss

✓ Outgassing rate:
 1.0×10⁻¹³ TorrL/s⋅cm²

✓ Extractor Gauge:
 2.0×10⁻¹² Torr (raw value),
 our lowest value

NEGs

Imperfect Vacuum = Finite Lifetime

- Ion bombardment with characteristic QE "trench" from laser spot to electrostatic center of photocathode – damages NEA of GaAs
- High energy ions are focused to electrostatic center: create QE "hole" (We don't run beam from electrostatic center)
- QE can be restored, but takes about 8 hours to heat and reactivate

Ion Bombardment

High Polarization Runs

Parameter	Value	Value	5.0
Laser Rep Rate	499 MHz	1500 MHz	4.5 ₹ 4.0
Laser Pulse Length	30 ps	50 ps	E 3.5
Laser Wavelength	780 nm	780 nm	2.5
Laser Spot Size	0.45 mm	0.35 mm	O 2.0 E 1.5
Photocathode	GaAs/GaAsP	GaAs/GaAsP	
Gun Voltage	100 kV	200 kV	
Beam Current	1 mA	4 mA	Time (hour)
Run Duration	8.25 hr	1.4 hr	1.3
Extracted Charge	30.3 C	20 C	12^{-1} OF(a) - OF $a^{-(q/80)}$
Charge Lifetime	210 C	80 C	$\mathbf{QE}(\mathbf{q}) = \mathbf{QE}_0 \mathbf{e}^{(1)} \mathbf{q}^{(1)}$
Fluence Lifetime	132 kC/cm ²	83 kC/cm ²	
Bunch Charge	2.0 pC	2.7 pC	۳ ال
Peak Current	67 mA	53 mA	
Peak Current Density	42 A/cm ²	55 A/cm ²	

J. Grames *et al.,* PAC07, THPMS064 R. Suleiman *et al.*, PAC11, WEODS3

Extracted Charge (C), I = 4.0 mA

How Long Can We Run at 4 mA?

- Photocathode with 1% initial QE, 10 W laser at 780 nm and gun with 80 C charge lifetime. 4.0 mA operation, 14 C/hr, 346 C/day
- Need initial laser power of about 1 W to produce 4 mA
- Should be able to operate at 4 mA for 13 hours before running out of laser power
- Spot Move (it takes 1 hr). With 6 spots, this provides <u>3 days</u> of operation (since laser spot size is much smaller than active area) before heat and reactivate

Message: High current polarized electron sources need photoguns with kC lifetime

How to Prolong Charge Lifetime?

- I. Larger Laser Size (also reduces space-charge emittance growth and suppresses surface charge limit)
- II. Laser Position on Photocathode and Active Area
- III. Higher Gun Voltage:
 - I. Less ions are created
 - II. Reduce space-charge emittance growth, maintain small transverse beam profile and short bunch-length; clean beam transport
 - III. Increase QE by lowering potential barrier (Schottky Effect)
 - IV. Compact, less-complicated injector

Biggest Obstacle: Field emission and HV breakdown... which lead to bad vacuum and photocathode death

"Charge and fluence lifetime measurements of a DC high voltage GaAs photogun at high average current.," J. Grames, R. Suleiman, et al., Phys. Rev. ST Accel. Beams 14, 043501 (2011)

Improve Lifetime with Larger Laser Size

Fluence Lifetime

Enhanced Charge Lifetime for QWeak: Increase laser size from 0.5 mm to 1.0 mm (diameter)

Can we use cm size laser beams?

- Not in today's CEBAF photogun
- Need a better cathode/anode beam transport optics

Lifetime vs. Laser Position and Active Area

Mask

Bias Ring

+200 V

Cs

Jefferson Lab

- I. Activate with different Masks: 5 mm, 7 mm, and No Mask (12.8 mm)
- II. Measure Lifetime from different spots on Bulk GaAs with 532 nm green laser

- Extremely important to manage ALL of extracted beam
- > Beam from outside 5 mm active area hits beam-pipe walls, degrades vacuum, reduces lifetime
- Stay away from Electrostatic Center and limit Active Area

Will Higher HV Improve Lifetime?

Field Emission

Jefferson Lab

Poor Lifetime with Field Emission

Distance to Electrostatic Center (mm)

	I = 2 mA, Bulk GaAs (5 mm Active Area, 0.35 mm Laser Size)		
Gun HV	100 kV	140 kV	200 kV
Anode Current (pA)	0.0 ± 0.3	-8 ± 1	-520 ± 20
X-ray Detector (E-2 mR/h)	1.5 ± 0.5	105 ± 5	5700 ± 300
Gun Vacuum (pA)	0	0	400
Y-Chamber Vacuum (nA)	3.0	3.0 - 3.2	3 – 4

500 kV Inverted Gun

See C. Hernandez-Garcia Talk

Summary and Outlook

- Polarized sources require kC charge lifetime:
 - Improve vacuum
 - large laser spot size to accommodate ion bombardment
 - Cathode/anode design for 100% beam transport
- Operation at higher gun voltage (500 kV) is beneficial
- With high laser power ... need photocathode cooling
- Polarized photocathode R&D Goals:
 - Higher QE (>1%): thicker superlattice absorber region and more efficient photon absorption
 - Longer Lifetime: reduce structural and surface decomposition, more robust in poor vacuum
 - Higher Polarization: higher-gradient-doping to reduce surface charge limit and depolarization
 - Possible candidate: GaAsSb/AlGaAsP Superlattice (SVTA DOE SBIR)

BACKUP SLIDES

QE Scans – 4 mA SSL

Electric Field Enhancement of QE

> NEA of GaAs depends on Gun HV. QE increases with external Electric Field at GaAs surface, E_s ,

$$QE = QE_0 \left(1 + \frac{\delta U(E_s)}{\chi}\right)$$

Where χ (~200 meV) is the zero-field NEA value (Physics Letters A **282**, 309) and potential barrier lowering due to Electric Field (Schottky Effect) is

$$\delta U(E_s) = \sqrt{\frac{e^3 E_s(\varepsilon_s - 1)}{4\pi\varepsilon_0(\varepsilon_s + 1)}}$$

Where ε_s (= 13.1) is GaAs relative permittivity.

Gun HV (kV)	${f E}_{ m s}$ (MV/m)	$\delta U(E_s)$ (meV)
100	2.0	50
200	4.0	70

Surface Charge Limit

Surface Charge Limit, also known as Surface Photovoltage Effect, reduces NEA of GaAs: Photoelectrons trapped near GaAs surface produce opposing field that reduces NEA resulting in QE reduction at high laser power (LP),

- For heavily Zn doped GaAs surface, $U(LP) \rightarrow 0$ (doping introduces high internal electric field to facilitate charge transport, increase diffusion length, and reduce chance of depolarization in active layer)
- Higher Gun HV suppresses photovoltage

Jefferson Lab

Space Charge Limit

Maximum current density that can be transported across cathode-anode gap is (for an infinite charge plane):

Child's Law (1D)
$$j_1 = (2.33 \times 10^{-6}) V^{3/2} / d^2 [A/cm^2]$$

For electron emission from a finite circular spot on the cathode:

Child's Law (2D) (PRL 87, 278301)

$$j_2 \sim j_1 \left(1 + \frac{1}{4} \frac{d}{r} \right)$$

For CEBAF electron beam (499 MHz): Short Bunch (PRL **98**, 164802) $j_{SCL} = j_2$

$$j_{SCL} = j_2 \left(2 \frac{1 - \sqrt{1 - 3X_{CL}^2 / 4}}{X_{CL}^3} \right),$$

$$X_{CL} = \frac{t_b}{\tau_{CL}}, \tau_{CL} = \frac{3}{2} \tau_{Single-electron}$$

V	Gun HV
d	Cathode-anode Gap (6.3 cm)
r	Laser Spot Size (2r = 0.1 cm)
t _b	Bunchlength (50 ps)
τ _{cL}	Gap Transit Time (0.713 ns at 200 kV)

