MHD Steering Magnet: Conceptual Magnetic Design and Results (V01)

S-L. Lalitha July 28, 2020

Contents

- Design Requirements
- Assumptions
- Magnetic Design
 - -Coil geometry, physical dimensions
 - -Conductor choice
- Magnetic Analysis Results
- Summary

- The steering magnets (MHD) mounted onto the A1 and A2 cube should be identical in design and performance.
- The new coil assembly should fit within the space available on the A1/A2 cube assembly.
- The maximum integrated field along the longitudinal axis for the vertical/ horizontal dipole coil assembly : 5.5×10⁻⁵ T.m
- Magnetic field homogeneity requirements- TBD (No specification available. It will be optimized through magnetic design analysis and quantified using multipole field analysis).

Assumptions made for the Magnetic Design Calculations

- Steering magnet uses air-core copper coils.
- The components used in the coil winding should be able to withstand a maximum of 200 °C.
- The fringe field of the neighboring coil assemblies have no impact on the magnet performance.

Design Considerations

MHD steering magnet on A1 cube Coil (Upper) Coil (Left) Coil (Right) MHD Magnet Design (V01), S-L. Lalitha

- MHD steering magnet consists of four identical pancake coils
 - -Forms two independent dipole coil assemblies for steering the beam in vertical or horizontal direction.
 - The vertical coil assembly (upper + lower coils) and the horizontal coil assembly (right + left coils) can be energized separately.
- Stainless steel support structure (base plate, top plate and mandrel) for coils.
- Kapton for electrical insulation between the coil and bobbin -0.254 mm thick kapton film wrapped around the bobbin core.
 - —0.254 mm thick kapton spacers (pre-cut) placed between the flat surface of the coil and bobbin end plates.

Design Considerations : Copper Conductor (Magnet Wire)

• The coil design is optimized for the use of 14 AWG insulated round copper conductor (potential supplier- MWS Wire Industries, CA)

Magnet wire parameters (Max. dimensions)	Unit	Value
Shape		Round wire
Copper grade		C101 or C102
Bare conductor size (equivalent AWG)		14
Bare wire diameter	mm	1.643
Radial thickness of the insulation	mm	0.044
Diameter of the insulated wire (Kapton heavy film insulation)	mm	1.732

Coil Bobbin Dimensions

Bobbin is made of stainless steel

Bobbin for MHD pancake coils (based on the dimensions of the new coil)	U	nit	Value
Inner diameter of the mandrel	m	nm	76
Radial thickness of the mandrel	m	m	3.175
Outer diameter of the mandrel	m	nm	82.35
Radial thickness of the Kapton insulation on the mandrel	m	nm	0.254
Outer diameter of the base plate/top plate for the bobbin	m	nm	118.252
Bobbin base plate height	m	nm	12.7
Bobbin top plate height	m	m	6.35

Coil Dimensions	Note: uses single piece length of conductor; winding tight against the thick flange of the bobbin; filler can		
 wet wound coils (Epoxy: AREMCO 526 N) 	be used, as needed, against the thin flange of the bobbin)		
MHD pancake coil parameters (estimated using the max. dimensions of the conductor)		Unit	Value
Distance between the opposite coils in the MHD steering magnet	t	mm	174.752
Radial thickness of the epoxy surrounding the wire (assumed)		mm	0.051
Inner diameter of the coil *		mm	83.366
Radial thickness of the winding	9.268 mm	mm	12.951
Height of the winding		mm	22.007
Outer diameter of the coil	22 007 mm	mm	109.268
Total turn counts in the coil winding			92
Number of layers (L) of winding			8
Number of turns per layer (Hexagonal close pack winding); (2 layers of 0.1 mm thick E-glass wrap under tension and painted with epoxy on the outer surfac	22.007 mm e of the coil)		12 (L1, 3, 5, 7), 11 (L 2, 4, 6, 8)
Estimated length of conductor per coil (+1m for each lead wire)		m	29.84
Req. length of conductor per magnet (four coils+ lead wires)	12.951 mm	m	~120
* Based on the dimensions of the bobbin that can be accommodated on the A1 cube assemb MHD Magnet Design (V01), S-L. Lalitha 8	bly		Jefferson Lab

Magnetic Performance Parameters- Dipole Coil Assembly

• The EM design fulfills the sufficient operating margin

Parameter		Unit Value		
Operating current		А	2.535	3.18
Current density in the copper conductor		A/mm ²	1.12	1.5
Magnetic field strength at the center of the magnet		mT	0.514	0.644
Max. field strength in the coil		mT	6.45	8.09
Integrated field strength along the longitudinal axis (Z-a assembly (Vertical/ Horizontal) (required: 5.5×10 ⁻⁵ T.m.	axis) of the dipole)	T.m	5.51×10 ⁻⁵	6.91×10⁻⁵
Effective magnetic length of the dipole assembly (Verti	cal / horizontal)	m	0.107	0.107
Integrated dipole field homogeneity within GFR (2 mm (only the 6-pole higher order harmonics is present)	radius)	%	99.91	99.91
Cumulative strength of Lorentz force		mN	0.9	1.41
Magnetic stored energy of the dipole assembly		mJ	6.32	9.95
Inductance of each coil		mH	0.97	0.97
Resistance of each coil at 20°C		Ω	0.24	0.24
MHD Magnet Design (V01), S-L. Lalitha	9 Wi	th margin fo	r integrated fiel J e	fferson Lab

Magnetic Field Distribution in the Vertical Dipole Coil Assemblies

Summary

- The new coil design meets the performance requirements.
- 3A and 10 A power supply (trim card) can be used. The max. operating current should be limited to 4.1 A.
- Use a clamp shell around the coils when the magnet together with other beamline components undergo 200 °C heat treatment (Recommendation).
- Structural analysis is performed to support the coil support structure design.

Note: Technical note describing the magnet design and engineering, and the performance characteristics will be prepared later.

