Magnetized Beam
LDRD

Abdullah Mamun
On behalf of Jlab Injector Group

EIC Collaboration Meeting, October 10-12, 2017, BNL, Long Island, NY
Outline

• Magnetized Bunched-Beam Electron Cooling
• LDRD Magnetized Electron Source
 I. K_xCs_ySb Photocathode and HV Chambers
 II. Gun Solenoid
 III. Beamline
• Generation of Magnetized Electron Beam
• Measuring Electron Beam Magnetization
 – Slit and Viewscreens
 – TE_{011} Cavity: new method
• Measuring Emittance of Non-magnetized beam
• Measuring Charge Lifetime from High Current Beams
• Outlook
• Summary
JLEIC High Energy Electron Cooler

- Ion collider ring
- Electron collider ring
- Booster
- Interaction point
- Ion source
- Electron source
- 12 GeV CEBAF
- 100 meters

Circulator Cooler Ring

- Cooling solenoid (B<0)
- Magnetization flip
- Cooling solenoid (B>0)
- Injector
- Linac
- Fast extraction kicker
- Beam dump
- Circulating bunches
- Extracted bunches
- Exchange septum
- Vertical bend to CCR
- Dechirper
- Rechirper
- Vertical bend into ERL
- Fast injection kicker
- Ion beam
- ERL Ring
- Ion beam
Magnetized Bunched-Beam Electron Cooling

- Ion beam cooling in presence of magnetic field is much more efficient than cooling in a drift (no magnetic field):
 - Electron beam helical motion in strong magnetic field increases electron-ion interaction time, thereby significantly improving cooling efficiency
 - Electron-ion collisions that occur over many cyclotron oscillations and at distances larger than cyclotron radius are insensitive to electrons transverse velocity

- Long cooling solenoid provides desired cooling effect:
 - Counteracting emittance degradation induced by intra-beam scattering
 - Maintaining ion beam emittance during collisions and extending luminosity lifetime
 - Suppressing electron-ion recombination

but putting the electron beam into the cooling solenoid represents a challenge
Electron beam suffers an azimuthal kick at entrance of cooling solenoid. But this kick can be cancelled by an earlier kick at exit of photogun. That is the purpose of cathode solenoid.

Electrons born in strong uniform B_z

$$\langle L \rangle = \frac{e B_z a_o^2}{4}$$

$a_0 = R_{\text{laser}} = 3.14 \text{ mm}$

$B_z = 0.5 \text{ kG}$

Upon exit of Cathode Solenoid

$$\langle L \rangle = \gamma m_e \langle r^2 \rangle \phi$$

$\phi = \frac{e B_z a_e^2}{8 m_e c} = 36 \text{ } \mu\text{m}$

Upon entering Cooling Solenoid

$$\langle L \rangle = \frac{e B_{\text{cool}} r_e^2}{4}$$

$r_e = 0.7 \text{ mm}$

$B_{\text{cool}} = 1 \text{ T}$

$$\frac{B_{\text{cool}}}{B_z} = \frac{a_0^2}{r_e^2}$$
JLEIC Magnetized Source Requirements

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bunch length</td>
<td>60 ps (2 cm)</td>
</tr>
<tr>
<td>Repetition rate</td>
<td>43.3 MHz</td>
</tr>
<tr>
<td>Bunch charge</td>
<td>3.2 nC</td>
</tr>
<tr>
<td>Peak current</td>
<td>53.9 A</td>
</tr>
<tr>
<td>Average current</td>
<td>140 mA</td>
</tr>
<tr>
<td>Transverse normalized emittance</td>
<td><19 microns</td>
</tr>
<tr>
<td>Cathode spot radius – Flat-top (a_0)</td>
<td>3.14 mm</td>
</tr>
<tr>
<td>Solenoid field at cathode (B_z)</td>
<td>0.5 kG</td>
</tr>
</tbody>
</table>

- Cornell University demonstrated 65 mA and 2 nC, but not at same time, and non-magnetized

- Fermilab Magnetized Photoinjector Laboratory:
 - Pulsed NCRF gun with Cs$_2$Te photocathode and UV laser (λ=263 nm)
 - Bunch charge: 0.5 nC and bunch length: 3 ps
 - 0.5% duty factor (average current: 7.5 μA)
 - Bunch frequency: 3 MHz
 - Macropulse duration: 1 ms
 - Number of bunches per macropulse: 3000
 - Macropulse frequency: 5 Hz
Magnetized Source for e-cooler at 32 mA

- A high charge (420 pC) magnetized source is funded by the Jefferson Lab LDRD program that should operate up to 32 mA average current. This project concludes in 2018.
- Funding awarded for the 3rd year.

Magnetized beam parameters:
- $a_0 = 1 - 5$ mm, $B_z = 0 - 2$ kG
- Bunch charge: 1 – 500 pC
- Frequency: 15 Hz – 476.3 MHz
- Bunch length: 10 – 100 ps
- Average beam currents up to 32 mA
- Gun high voltage: 200 – 350 kV
Magnetized Beam LDRD

• Three-year project (FY16 – FY18):
 – Generate magnetized electron beam from dc high voltage photogun and measure its properties
 – Explore impact of cathode solenoid on photogun operation
 – Simulations and measurements will provide insights on ways to optimize JLEIC electron cooler and help design appropriate source
 – JLab will have direct experience magnetizing electron beams at high
LDRD Magnetized Electron Source

- Bialkali Antimonide Photocathode Preparation Chamber, Gun, Solenoid and Beamline are all operational
Photocathode Preparation Chamber

• K_xCs_ySb grown with a mask – limit photocathode active area (3 mm diameter) to reduce beam halo, minimize vacuum excursions and high voltage arcing, prolong photogun operating lifetime

• Active area can be offset from electrostatic center

• 5 mm active area available, entire photocathode can be activated too

• Consistently growing photocathodes with 5-7% QE
Photocathode Preparation

- Co-deposition of alkalis (K and Cs) on Sb layer using an effusion alkali source to grow bialkali photocathode.
- Deposition chamber was initially baked at 200 °C for >180 h.
- Vacuum with NEG pumps and an ion pump. Vacuum ~10 nA (~10^{-10} Pa)
- Sb (99.9999%), K (99.95%), and Cs (99.9+%).
- Working distance: 2 cm, -280 V bias, low power (4 mW) laser (532 nm) and wavelength tunable light source.
- Substrate temperatures: 120 °C (for Sb), dropping from 120 °C to 80 °C (for alkalis).
- Sb heater current supply from 25 A for 10-20 minutes.
- Temperature kept stable at effusion source and adjusted to control alkali evaporation rate: hot air inlet tube (381-462 °C), dispensing tube (232-294 °C), and reservoir tube (153-281 °C).
- Chamber pressure: during bialkali deposition, > 1x10^{-6} Pa and post-deposition to ~10^{-7}-10^{-8} Pa quickly.
- H$_2$O partial pressure < 2x10^{-9} Pa.
Gun HV Chamber

- Upgraded HV Chamber with new doped-alumina inverted insulator and newly designed screening electrode (triple point junction shield) to lower gradient from 12 MV/m to 10 MV/m at 350 kV
- Photogun now operating at 300 kV with gun solenoid at 400 A
Use slit and viewscreens to measure mechanical angular momentum:

\[\langle L \rangle = 2p_z \frac{\sigma_1 \sigma_2 \sin \varphi}{D} = eB_z a_0^2 \]

- \(B_z \): solenoid field at photocathode
- \(a_0 \): laser rms size
- \(\varphi \): rotation (sheering) angle
Gun Solenoid

<table>
<thead>
<tr>
<th>Size</th>
<th>11.811" ID, 27.559" OD, 6.242" Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conductor</td>
<td>L=500 m, A=0.53 cm² 16 layers by 20 turns</td>
</tr>
<tr>
<td>Coil Weight</td>
<td>254 kg (560 lbs)</td>
</tr>
<tr>
<td>Resistance</td>
<td>0.198 Ω</td>
</tr>
<tr>
<td>Field at Photocathode</td>
<td>1.5 kG</td>
</tr>
<tr>
<td>Voltage</td>
<td>79 V</td>
</tr>
<tr>
<td>Current</td>
<td>400 A</td>
</tr>
</tbody>
</table>

- Using spare CEBAF Dogleg magnet power supply (500 A, 80 V)
- Learned that gun solenoid can influence field emission
- First trials with gun at high voltage and solenoid ON resulted in new field emission and vacuum activity
- Procedure to energize solenoid without exciting new field emitters
- New steel holders (pucks) to enhance field to 2.0 kG at photocathode. Two types:
 1) Molybdenum and carbon steel hybrid puck, and, 2) Carbon steel puck
Slit and Viewscreen Measurement

0 G at photocathode

Beamlette observed on downstream viewer

1511 G at photocathode
Gun solenoid magnetizes beam but also focuses beam.

Rotation angle influenced by Larmor oscillation in gun solenoid.

Three curves correspond to measurements at three beamline viewers.

Beam Size Oscillation

Graphs showing:
- Beam Size (rms), mm vs. B_z@cathode, Gauss
- Rotation Angle, degree vs. B_z@cathode, Gauss

Legend:
- σ (V1), mm
- σ (V2), mm
- σ (V3), mm
- Slit1-V3
- Slit2-V3

Additional data:
- Laser spot size (rms), mm: 0.106
- S_1-V2: 0.5
- S_1-V3: 2.2965
- S_2-V3: 1.7965
- Gun HV: 300 kV
Beam Sizes at Viewer 1

Making good progress in modeling our apparatus and beam magnetization
TE\textsubscript{011} Cavity: Non-invasive Technique

- New non-invasive technique to measure electron beam magnetization
- Filed inventor disclosure entitled “Non-invasive RF Cavity to Measure Beam Magnetization”

E-field: only in azimuthal direction

H-field: only in longitudinal and radial direction

Copper cavity in progress

Waveguide-coax out-coupler
Non-magnetized Beam

- Measured beam emittance, typical thermal angle \((\theta_{th}) \) value of 0.6 mm rad/mm(rms), consistent with published data

- Inconsistency in emittance results for different solenoid-viewer combination and slit measurements
 - limited by camera resolution and viewer saturation
 - In the process of wire scanner installation

- Delivered 4.5 mA dc
 - Few events of trips, QE suffered, QE in neighboring area is intact
Delivered 4.5 mA DC magnetized beam for ~7 h

- Investigating charge lifetime from twenty two 1 h long runs of 3-4.5 mA beams at 200-300 kV gun HV, and 0-400 A gun solenoid current conditions

- Investigating the efficacy and necessity of installed dc ion-clearing electrodes to stop ions in beamline from reaching gun and causing HV arcs
No apparent Lifetime dependency on gun HV, magnetization effect, or run sequence

Only 3 times QE dropped due to arcing and happened only with non-magnetized beam

Strong focusing due to gun solenoid might have helped keeping ions stay away from e-beam
Charge Lifetime of High Current Beam

- Same laser spot size (0.38 mm rms) and gun HV
 - Better lifetime at lower beam current, or
 - Increased lifetime at lesser laser power
 - Good beam alignment is important

- With HV off: No QE drop from 22 h illumination at 0.8 W (required for 4.5 mA runs), not even at 2 W for 2 h.

- Laser spot size↑ and QE↑, good beam alignment = Photocathode Lifetime↑
Outlook

- Continue to characterize magnetized beam and cross check measurements with simulation
- Test magnetic puck (i.e., steel photocathode holder), which should enhance beam magnetization for given solenoid current
- Install wire scanner and measure emittance.
- Install RF pulsed laser
- Build and install TE_{011} cavity to measure beam magnetization in collaboration with JLab SRF Institute and Brock Roberts (Electrodynamics LLC)
- Demonstrate 32 mA magnetized beam

Next: Funded Phase-II SBIR with Xelera, to develop rf-pulsed dc high voltage thermionic gun to be installed at Gun Test Stand (GTS) in FY19 – will use LDRD beamline
Summary

- $K_x \text{Cs}_y \text{Sb}$ Photocathode Preparation Chamber, Gun, Solenoid and Beamline are all operational
- Photogun operates reliably at 300 kV
- Cathode solenoid can trigger field emission but we have learned how to prevent this
- Have successfully magnetized electron beam and measured rotation angle
- Demonstrated 4.5 mA magnetized beam and measured lifetime
- Preparing to install a modelocked drive laser, to generate mA magnetized beam with RF structure
- Then switch to 32 mA 225 kV HV power supply….

Thanks to the people involved in this team work:

ODU Graduate Students