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These working notes contain the basic theory employed to obtain the theoretical results used in
the calibration of the Mott polarimeter at the Jefferson Laboratory, USA. The presented calculations
and notes are based on Refs. [1–4].

I. INTRODUCTION

Elastic collisions of electron projectiles with atoms and
ions are usually described by means of the static-field ap-
proximation. The target atom is considered as a frozen
distribution of charge and the interaction with the projec-
tile is assumed to reduce to the instantaneous Coulomb
interaction [5]. Exchange effects, accounting for the oc-
currence of a rearrangement collision in which the projec-
tile electron exchange place with an atomic electron, can
be approximately accounted for by adding an approxi-
mate local-exchange interaction [6] to the electrostatic
potential. The accuracy of the static-field approximation
is limited by inelastic absorption and charge-polarization
effects. The existence of open inelastic channels implies
a loss of projectile flux from the elastic channel, i.e. a
depletion of the elastically scattered wave function. This
causes a reduction of the elastic differential cross section
(DCS) at intermediate and large angles that can be de-
scribed approximately by means of an absorptive (nega-
tive imaginary) potential. On the other hand, under the
action of the electric field of the projectile, the target-
charge distribution is polarized, and the electric field of
the induced dipole acts back on the projectile. The po-
larization interaction can be described approximately by
means of a local correlation-polarization potential that
decreases as r−4 at large distances. This interaction af-
fects the elastic DCS mostly at small angles because of
the long range of the dipole field. Thus, the effective
interaction takes the form of an optical-model potential
that consists of the electrostatic interaction, the absorp-
tive imaginary potential and the correlation-polarization
potential1.
Within the static-field approximation, the interaction

potential is completely determined by the adopted nu-
clear and electronic charge-density models. The nuclear
charge density of the target nucleus can be modelized by
a parametrized function [7] fitted to experiment or de-
rived from microscopic models such as those based on ef-
fective interactions solved within the mean-field approach
[2, 3]. The latter framework has been shown to be reason-
able in the description of bulk nuclear properties along
the whole nuclear chart [8]. For incident electron energies
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1 For electron energies of the order of few MeV the absorptive and
correlation-polarization effects become negligible.

of some MeV, parametrized densities that reproduce the
experimental charge radius of the studied nucleus or ac-
curate microscopic models predict negligible differences
on the scattering observables. Regarding the electronic
charge-density in neutral atoms, they are generated using
the multiconfiguration Dirac-Fock code of Desclaux [9].
Those correspond to the most accurate electron densities
available for free atoms.

A theoretical description of high-precision measure-
ments on electron scattering observables, may require
to also account for the so called radiative corrections or
quantum electrodynamic (QED) corrections. The low-
est order correction in the fine-structure constant con-
sist on the self-energy and the vacuum polarization cor-
rections. For heavy nuclei with a large charge num-
ber Z the QED effects cannot be treated perturbatively.
Such calculations were performed for the QED correc-
tions to electronic energy levels [10], radiative electron
capture in ion-atom collisions [11] or radiative recombina-
tion in electron-atom collisions [12]. The self-energy and
vacuum-polarization contributions, being of the same or-
der in the expansion on the fine-structure constant, are
expected to be of the same order of magnitude. More-
over, they are of opposite sign when evaluated on atomic
electrons [12] and, therefore, they are also believed to be
of opposite sign in the case of incident electrons. Self-
energy corrections are very complicated to be reliably
evaluated with high accuracy. They introduce a non-
locality in the interaction potential, requires renormaliza-
tion –divergent terms appear– and, within our approxi-
mation, require to work with electron wave functions that
are eigenstates of the Coulomb potential and not simple
plane waves. On the other side, the vacuum-polarization
correction can be more easily estimated by means of the
Uehling approximation [13].

The calculations presented here have been performed
by using the code elsepa [1] and later modifications
[2]. The last modification, not published before, cor-
responds to the inclusion of the Uehling potential to
evaluate the effect of the vacuum-polarization correction.
elsepa allows relativistic partial-wave calculations to be
performed for projectiles with kinetic energies up to sev-
eral MeV and for a variety of interaction potentials. Elas-
tic DCSs and spin-polarization functions calculated in
this way constitute the state-of-the-art for energies at
the MeV level. For higher energies, the convergence of
the partial-wave series becomes too slow and the code
has recourse to approximate factorization methods that
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permit the calculation of electron DCSs up to few GeV.
These notes are organized as follows. In Sec.II, a re-

view of the theory necessary to produce the results shown
in Sec.III is briefly discussed. Our conclusions are laid in
Sec.IV.

II. THEORY

We consider here the elastic interaction of an electron
with a target atom—or ion—of atomic number Z placed
at the origin of coordinates. We have assumed that the
charge distribution of the target is spherically symmet-
ric. The effective interaction between the electron at a
distance r and the target is described by means of an
optical-model potential,

V (r) = Vst(r) + Vex(r) , (1)

where Vst(r) is the electrostatic interaction potential and
Vex(r) is an exchange potential that accounts for the oc-
currence of rearrangement collisions in which the pro-
jectile electron exchange place with an atomic electron
[6]. We do not take into account here the correlation-
polarization potential which is only needed for slow pro-
jectiles, with E less than about 10 keV. We do not con-
sider an imaginary absorption potential to modelize the
loss of particles from the elastic channel to inelastic chan-
nels since it may affect the scattering amplitudes for
beam energies up to about 1 MeV, depending on the tar-
get atomic number [1]. In addition, owing to the assumed
spherical symmetry of the atomic charge distribution, the
potential and all its components are also spherical. Then,
elastic-scattering properties can be calculated by using
conventional partial-wave methods [1].
The potential energy of an electron at a distance r from

the center of the nucleus is given by

Vst(r) ≡ −eϕ(r) ≡ −e[ϕnucl.(r) + ϕat.elec.(r)] (2)

= −4πe

(

1

r

∫ r

0

ρn(r
′) r′2dr′ +

∫

∞

r

ρn(r
′) r′dr′

)

−4πe

(

1

r

∫ r

0

ρe(r
′) r′2dr′ +

∫

∞

r

ρe(r
′) r′dr′

)

where ρn(r) denotes the charge density of the nucleus
normalized to Z and ρe(r) that of atomic electrons nor-
malized to Z for neutral atoms—and to the total number
of electrons for ions. At the energies of interest, the effect
of screening by the orbiting atomic electrons is limited to
small scattering angles.
To quantify the screening of the nuclear charge by the

atomic electrons, it is customary to introduce the screen-
ing function, χ(r), defined as the fraction of the nuclear
charge seen by a particle at a distance r from the center
of the nucleus,

χ(r) ≡
r

Ze
ϕ(r) (3)

Evidently, for neutral atoms the screening function van-
ishes for large r. For a positive ion with N orbiting elec-
trons (N < Z), the screening function at large distances
tends to the constant value 1−N/Z, i.e. far from the ion
the potential is Coulombian. The electrostatic potential
and the particle densities of the atom are linked by Pois-
sons equation which for spherically symmetric systems
and r > 0 simplifies to

ρn(r)− ρe(r) = −
Z

4πr

d2χ(r)

dr2
(4)

In the cases in which the effects of the atomic elec-
trons can be neglected, since the nuclear charge density
is assumed to vanish beyond a certain radius rB (i.e. the
radius of the box where the nuclear charge distribution
is calculated), the potential (3) is purely Coulombian,
V (r) = −Ze2/r, beyond that radius. Globally it can
be regarded as a Coulomb potential with the short-range
distortion arising from the finite size of the nucleus, i.e.,
as a modified Coulomb potential.
The DCS for elastic scattering of spin unpolarized elec-

trons is given by

dσ

dΩ
= |f(θ)|2 + |g(θ)|2, (5)

where

f(θ) =
1

2ik

∞
∑

ℓ=0

{

(ℓ+ 1) [exp (2iδκ=−ℓ−1)− 1]

+ ℓ [exp (2iδκ=ℓ)− 1]

}

Pℓ(cos θ) (6)

and

g(θ) =
1

2ik

∞
∑

ℓ=0

[

exp (2iδκ=ℓ)

− exp (2iδκ=−ℓ−1)

]

P 1

ℓ (cos θ) (7)

are the direct and spin-flip scattering amplitudes, respec-
tively. Here k denotes the wave number of the projectile
electron,

c~k =
√

E(E + 2mec2), (8)

and the functions Pℓ(cos θ) and P 1

ℓ (cos θ) are Legendre
polynomials and associated Legendre functions, respec-
tively. The phase shifts δκ represent the behavior of the
Dirac spherical waves at large r distances. Relative nu-
merical uncertainties of the computed scattering ampli-
tudes and DCS are estimated from the convergence of
the partial-wave series, they are typically smaller than
10−6. elsepa also provides the Sherman function—or
analyzing power,

S(θ) ≡ ı
f(θ)g∗(θ)− f∗(θ)g(θ)

|f(θ)|2 + |g(θ)|2
(9)
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FIG. 1. Sum rule as a function of the scattering angle for two
test cases: 5 MeV electron beam on a Ag and Au targets.

which gives the degree of spin polarization of the elec-
trons from an initially unpolarized beam that are scat-
tered in the direction θ.
Also important are the spin rotation functions T (θ)

and U(θ),

T (θ) ≡
|f(θ)|2 − |g(θ)|2

|f(θ)|2 + |g(θ)|2
(10)

U(θ) ≡
f(θ)g∗(θ) + f∗(θ)g(θ)

|f(θ)|2 + |g(θ)|2
. (11)

The square of the spin functions should fulfill the sum
rule S(θ)2 + T (θ)2 + U(θ)2 = 1. This sum rule may be
also used as an alternative test to the numerical accuracy
of the employed method. For the calculations shown in
Sec.III, the sum rule departs from 1 within a 10−15 rela-
tive error (cf. Fig.1 were we show two test cases).
For modified Coulomb potentials, the spherical solu-

tions of the Dirac equation are suitably expressed in the
form

ψEκm(r) =
1

r

(

PEκ(r) Ωκ,m(r̂)

iQEκ(r) Ω−κ,m(r̂)

)

. (12)

The functions Ωκ,m(r̂) are the spherical spinors, and the
radial functions PEκ(r) and QEκ(r) satisfy the following
system of coupled differential equations:

dPEκ

dr
= −

κ

r
PEκ +

E − V + 2mec
2

c~
QEκ,

dQEκ

dr
= −

E − V

c~
PEκ +

κ

r
QEκ. (13)

The relativistic quantum number κ is defined as κ =
(ℓ − j)(2j + 1), where j and ℓ are the total and orbital
angular momentum quantum numbers. Note that j and
ℓ are both determined by the value of κ; j = |κ| − 1/2,
ℓ = j+κ/(2|κ|). In the numerical calculations, the spher-
ical waves are normalized so that the upper-component
radial function PEκ(r) oscillates asymptotically with unit
amplitude.
For modified Coulomb potentials and r → ∞, we have

(see, e.g., Ref. [1] and references therein)

PEκ(r) ≃ sin
(

kr − ℓ
π

2
− η ln 2kr + δκ

)

, (14)

where

η = Ze2me/(~
2k) (15)

is the Sommerfeld parameter. It is convenient to express

the phase shifts δκ as ∆κ + δ̂κ, where ∆κ is the phase

shift of the point-nucleus Coulomb potential and δ̂κ is the
“inner” phase shift of the short-range potential induced
by the nuclear charge distribution.

As indicated above, the calculations reported here have
been performed using the computer code elsepa [1]. It
solves the radial Dirac equations using a robust integra-
tion algorithm which effectively minimizes the effect of
truncation errors. The algorithm starts from a table of
values of the function rV (r) at the points ri of a ra-
dial grid, which is provided by the user. This function
is replaced by the natural cubic spline that interpolates
the tabulated values; thus, in the interval between con-
secutive grid points, the potential function rV (r) is rep-
resented as a cubic polynomial. The radial wave equa-
tions (13) are then solved by using the exact power-series
expansions of the radial functions. The integration is
started at r = 0 and extended outwards up to a point
rm that is beyond the starting radius rB of the Coulomb

tail. The phase shift δ̂κ is determined by matching the
outer analytical form to the inner numerical solution at
rm, requiring continuity of the radial function PEκ(r) and
its derivative. The regular and irregular Dirac-Coulomb
functions and their derivatives are accurate to more than
10 decimal figures.

The convergence rate of the series (6) and (7) for the
calculation of dσ/dΩ is known to be slow. The summa-
tions are optimized by performing them in two steps [1].
First, they are evaluated for the pure Coulomb field, for
which the phase shifts ∆κ are known analytically and
the calculation is fast. Second, the point-nucleus re-
sults are subtracted from the expansions (6) and (7); the
remaining series represent the effect of only the short-
range component of the potential and converge more
rapidly than the original series. As a consequence, the

number of inner phase shifts δ̂κ one needs to compute
is normally much smaller than the number of required
Coulomb phase shifts.

A. The nuclear charge distribution

The details of the nuclear charge distribution affect
the calculated scattering observables only for projectiles
with kinetic energies larger than about 50 MeV for which
the de Broglie wavelength is comparable to the nuclear
radius. For lower energies, it is a good approximation to
consider the nuclear distribution using simplified models
such as the two parameter Fermi function or the Helm
model [2, 3]. Of course, for very low impact energies, the
nucleus can be considered as point-like.

We have modelized the nuclear charge density by
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FIG. 2. Nuclear charge density as a function of the distance
to the center for Ag. A Fermi model and a self-consistent
mean-field model are shown.

means of a two parameter Fermi function,

ρF(r) =
ρ0

1 + exp[(r − C)/a]
(16)

where ρ0 is determined by fixing the charge of the nu-
cleus (Z); a describes the diffuseness of the surface of the
density profile; and C describes the mean location of this
surface (i.e., C is indicative of the extension of the bulk
part of the density distribution). We have determined
a and C so that they reproduce the experimental root
mean square charge radius, 〈r2

ch
〉1/2 of 4.5601 ± 0.0035

fm and 5.4371 ± 0.0038 fm, for 109Ag and 197Au, re-
spectively [14]. Specifically, the parameters of the Fermi
function are a = 0.5573 fm and C = 5.250 fm for Ag and
a = 0.58187 fm and C = 6.440 fm for Au. As an exam-
ple, in Fig.2 we show the charge density corresponding
to 109Ag. For comparison we show also the prediction of
a self-consistent mean-field model (SCMF [15]).
The Fermi distribution has a very simple functional

form, which is enough for the study of few MeV incident
electrons. It displays the correct surface fall-off behavior
when compared to experiment and more sophisticated
calculations such as (SCMF). On this regard, we have
checked that an accurate nuclear self-consistent mean-
field model give the same result within 0.1 % error in
the Sherman function (cf. inset of Fig.7) when compared
with the fitted Fermi and Helm distributions at the kine-
matics and target nuclei we are interested in.
As a final remark, the mean-field approach is accurate

for the description of bulk properties of nuclei. It as-
sumes that nucleons move independently in a mean field
generated by the other nucleons of the atomic nucleus.
Different effective interactions solved at the mean-field
exist [8]. These phenomenological models usually depend
on about ten adjustable parameters that are fitted to re-
produce relevant ground-state properties, such as bind-
ing energies and charge radii of a few nuclei. For recent
works that analyze the accuracy of mean field models in
the description of the DCS in elastic electron scattering,
we refer the reader to Ref.[2].
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FIG. 3. Sherman function of 5 MeV electrons on a Ag target
as a function of the scattering angle. Calculations represented
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tential while the ones represented by a dashed red line include
such an effect. In the inset, the relative difference is depicted.

B. Electron density model

We have adopted the most accurate electron densities
available for free atoms obtained from self-consistent rel-
ativistic Dirac-Fock (DF) calculations [9]. The effect in
the Sherman function of neglecting atomic electrons in
scattering processes of few MeV electrons may produce
an error of about a few % (cf. Fig.7).

C. Electron exchange potentials

When the projectile is an electron, we must account
for the occurrence of rearrangement collisions in which
the projectile exchanges places with an atomic electron.
In an elaborate formulation of relativistic-electron elas-
tic scattering, the system of the projectile and the atomic
electrons is described by a wave function with the form
of a single Slater determinant. Then, the scattering
wave function is found to satisfy an equation similar
to the Dirac-Fock equations, with a non-local exchange
term that is difficult to handle. A simpler, and com-
putationally more convenient approach (static-exchange
approximation) is to use local approximations to the
exchange interaction. Specifically, we have used the
Furness-McCarthy exchange potential [16]. It is derived
directly from the formal expression of the non-local ex-
change interaction by using a WKB-like approximation
for the wave functions. The effect in the Sherman func-
tion of neglecting the effect of the exchange potential in
scattering processes of few MeV electrons may produce
an error of about a few h (cf. Fig.3). So negligible for
our purposes.
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D. QED corrections

We evaluate the vacuum polarization correction by fol-
lowing the Uehling approximation [13] but, instead of do-
ing it perturbatively, the Dirac equation is solved in the
combined potential2. That is, we add the potential due
to the vacuum-polarization effects to V (r). Specifically,
the vacuum polarization correction is of 0.5% or below
(increases with energy) for the kinematics and target in
which we are interested in (cf. Fig.4). As previously
mentioned, the leading QED corrections (of order fine
structure constant times Z) consist of the self-energy and
the vacuum polarization corrections. Since both correc-
tions are of the same order and of different sign [12],
then, one may estimate the correction to the Sherman
function due to the leading QED corrections. So, we do
not include in our calculation the vacuum polarization
correction but use it in order to estimate the accuracy of
our theoretical predictions.
We note that it might be misleading to include such

a correction in the calculations and neglect the self-
energy correction: both are leading QED corrections—of
the same order in the fine structure constant—and both
should be included for a fully consistent calculation.

2 We follow exactly the strategy explained in Ref.[4]

0 20 40 60 80 100 120 140 160 180 200
θ (deg)

10
-27

10
-26

10
-25

10
-24

10
-23

10
-22

10
-21

10
-20

10
-19

10
-18

10
-17

10
-16

dσ
 / 

dΩ
 (

cm
2  / 

sr
ad

)

σref
 - F & DF @ 3 MeV

σref
 - F & DF @ 5 MeV

σref
 - F & DF @ 8 MeV

0 20 40 60 80 100120140160180200
θ (deg)

-0.005

0.000

0.005

0.010

0.015

(σ
 −

 σ
re

f )/
 σ

re
f

(F) - No atomic e
−
 @ 3 MeV

(F) - No atomic e
−
 @ 5 MeV

(F) - No atomic e
−
 @ 8 MeV

Ag
 δσ / σ |numerical < 10

−7

0 20 40 60 80 100 120 140 160 180 200
θ (deg)

-0.25

-0.2

-0.15

-0.1

-0.05

0

S
he

rm
an

 F
un

ct
io

n 
(S

) S
ref

 @ 3 MeV (F & DF)

S
ref

 @ 5 MeV (F & DF)

S
ref

 @ 8 MeV (F & DF)

0 20 40 60 80 100 120 140 160 180 200
θ (deg)

-0.005

0

0.005

0.01

0.015

(S
−S

re
f ) 

/ S
re

f

F - No atomic e
−
 @ 3 MeV

F - No atomic e
−
 @ 5 MeV 

F - No atomic e
−
 @ 8 MeV

Ag
S = N/D =>
δS / S ~ [(δN/N)

2
 + (δD/D)

2
]
1/2

         ~ 2
1/2 δσ/σ < 10

−6

(numerical)
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angle for 3, 5 and 8 MeV electrons by Ag. In the insets,
the relative change of the same quantity when the energy
increases are displayed.

E. Final remarks

Breemsstrahlung and recoil effects might be a relevant
issue on these scattering processes. Nevertheless, we have
neglected such effects in the calculations. One of the rea-
sons is that these effects can be corrected in the simula-
tions of the experimental data by using GEANT4 (is this
correct?). The same applies for other issues such as the
real thickness of the target.
On the other side, we have checked with different codes

the numerical accuracy and method discrepancies in our
results finding that it is within the 0.1% accuracy. Taking
into account all the previous considerations, the theoret-
ical results used for calibration of the Mott polarimeter
are accurate within (about) a 0.5% in the region of inter-
est. We note that the main theoretical error is coming
from the effect of QED corrections.

III. RESULTS

In this section we present some of the results obtained
for the DCS and Sherman function in elastic scattering
of few MeV electrons by Ag and Au. First of all we
show some test of the calculations described in Sec.II.
In Fig.5 the elastic DCS (upper panel) and the Sherman
function (lower panel) as a function of the scattering an-
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FIG. 6. Elastic differential cross section as a function of the
scattering angle for 5 MeV electrons by Ag (upper panel) and
Au (lower panel). In the inset, the relative change of the same
quantity adopting different approximations and with respect
the full calculation is displayed.

gle for 3, 5 and 8 MeV electrons by Ag are shown. The
results correspond to calculations where all ingredients
have been included—except for the vacuum polarization
corrections; F means that the Fermi function is used to
modelized the nuclear charge distribution; and DF stands
for the model used for taking into account the effects the
atomic electrons. The DCS decreases with energy. In the
insets, we show the relative change of the same quanti-
ties with respect to the case in which the presence of
atomic electrons is neglected. The insets highlight, thus,
the effect of atomic electrons on the DCS and Sherman
function, which is negligible except for small angles.

In Fig.6 we display the elastic differential cross section
as a function of the scattering angle for 5 MeV electrons
and Ag (upper panel) and Au (lower panel) targets. The
results correspond to calculations where all ingredients
explained in Sec.II have been included. In the inset, the
relative change of the same quantity adopting different
approximations and with respect the full calculation is
displayed: neglecting atomic electrons (red); assuming
a point-like nucleus (blue); and adopting the last two
approximations (green). It is clear from the inset, that
neglecting the finite size of the nucleus may produce a
large error of few tens of % in the DCS. It is also evident
that the effect of atomic electrons is much less relevant.

In Fig.7 we show the Sherman function dependence on
the scattering angle for 5 MeV electrons and Ag (up-
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per panel) and Au (lower panel) targets. In the inset,
the relative change of the same quantity adopting differ-
ent approximations and with respect the full calculation
are displayed: assuming a point-like nucleus with (green)
and without (blue) accounting for the presence of atomic
electrons; and neglecting atomic electrons and assum-
ing different models describing the finite size of the nu-
clear charge distribution: Fermi model (red), Helm model
(black) and SCMF (magenta) named G2. Similar results
to those obtained for the DCS are also found here. While
the effect of accounting or note for the presence of atomic
electrons is almost irrelevant for our purposes, the finite
size of the nucleus may produce a change on the Sherman
function of few %.
In Fig.8, we show the dependence of the Sherman func-

tion on the electron beam energy around 5 MeV and for
a scattering angle of 172.5 deg for Ag and Au targets.

IV. CONCLUSIONS

We believe the calculations are realistic within (about)
a 0.5% in the Sherman function for the kinematics and
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targets of interest. The main source of theoretical un-
certainties comes from the leading QED corrections or
radiative corrections which have been roughly estimated
to produce about a 0.5% discrepancy in the Sherman
function.
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