Fast Feedback – Hall C Test

Quick review of test from December 19, 2023

Ryan Bodenstein

2024/01/03

BSLISt Beam Studies List
Tasks 🔻 SAD Calendar Hazards List Plant Items Help/About 🝷
Task Lists / BSList / Tasks / 110062
 Edit Task Add Attachment Clone Task Hall A Fast Feedback (FFB) Testing - Restoration Runthrough

https://tasklists.jlab.org/bslist/tasks/110062

What was the Test?

- Essentially, go through the restoration procedures and make sure it works.
- https://tasklists.jlab.org/bslist/tasks/110062
 - Note: we had to run in Hall C instead, as it was the only hall available for the tests.
- The procedure is here:
 - <u>https://jeffersonlab.sharepoint.com/sites/OpsDocs/Docs/fast_feedback_restore_proc.pdf</u>

Fast Feedback (FFB) Restoration Procedure

Document Number: MCC-PR-11-013 Revision Number: Rev. 8; September 14, 2017 Technical Custodian: Scott Higgins

Estimated Time to Perform: 30 minutes

- Swimmingly. There were a few parts of the restoration document that needed updating, but because Dennis Turner was present, we could go through the process pretty quickly.
- Beam was set up by OPS as required in the procedure
 - CW beam to Hall C dump, 5 uA

- Swimmingly. There were a few parts of the restoration document that needed updating, but because Dennis Turner was present, we could go through the process pretty quickly.
- Beam was set up by OPS as required in the procedure
 - CW beam to Hall C dump, 5 uA
 - After selecting BPMs (3C07 and 3C16)

- Swimmingly. There were a few parts of the restoration document that needed updating, but because Dennis Turner was present, we could go through the process pretty quickly.
- Beam was set up by OPS as required in the procedure
 - CW beam to Hall C dump, 5 uA
 - After selecting BPMs (3C07 and 3C16)

- Swimmingly. There were a few parts of the restoration document that needed updating, but because Dennis Turner was present, we could go through the process pretty quickly.
- Beam was set up by OPS as required in the procedure
 - CW beam to Hall C dump, 5 uA
 - After selecting BPMs (3C07 and 3C16)
 - After turning on RF Feedback (3C12)

- Swimmingly. There were a few parts of the restoration document that needed updating, but because Dennis Turner was present, we could go through the process pretty quickly.
- Beam was set up by OPS as required in the procedure
 - CW beam to Hall C dump, 5 uA
 - After selecting BPMs (3C07 and 3C16)
 - After turning on RF Feedback (3C12)
 - After ramping to 10 uA

- Swimmingly. There were a few parts of the restoration document that needed updating, but because Dennis Turner was present, we could go through the process pretty quickly.
- Beam was set up by OPS as required in the procedure
 - CW beam to Hall C dump, 5 uA
 - After selecting BPMs (3C07 and 3C16)
 - After turning on RF Feedback (3C12)
 - After ramping to 10 uA
 - Ramping to 15 uA

- Swimmingly. There were a few parts of the restoration document that needed updating, but because Dennis Turner was present, we could go through the process pretty quickly.
- Beam was set up by OPS as required in the procedure
 - CW beam to Hall C dump, 5 uA
 - After selecting BPMs (3C07 and 3C16)
 - After turning on RF Feedback (3C12)
 - After ramping to 10 uA
 - Ramping to 15 uA
 - 20 uA

- Swimmingly. There were a few parts of the restoration document that needed updating, but because Dennis Turner was present, we could go through the process pretty quickly.
- Beam was set up by OPS as required in the procedure
 - CW beam to Hall C dump, 5 uA
 - After selecting BPMs (3C07 and 3C16)
 - After turning on RF Feedback (3C12)
 - After ramping to 10 uA
 - Ramping to 15 uA
 - 20 uA
 - 25 uA

- Swimmingly. There were a few parts of the restoration document that needed updating, but because Dennis Turner was present, we could go through the process pretty quickly.
- Beam was set up by OPS as required in the procedure
 - CW beam to Hall C dump, 5 uA
 - After selecting BPMs (3C07 and 3C16)
 - After turning on RF Feedback (3C12)
 - After ramping to 10 uA
 - Ramping to 15 uA
 - 20 uA
 - 25 uA
 - 30 uA

• Current ramping

• BPM Readings

- Current ramping
- BPM Readings

• Energy Locks

- Energy Locks
- Upon turning on, see small difference with 2A dp/p

- Energy Locks
- Upon turning on, see small difference with 2A dp/p
- As ramping current, energy feedback persists

What's next?

- Need to perform the FFTs and other analysis available through the FFB system.
 - This test only focused on the startup procedure to make sure things worked.
- Should run FFB during regular operations.
 - This will give insights into long-operation performance of the hardware
 - Will allow for analysis of system (FFTs, etc...)
 - Should allow for more stable beam to halls
- Should run with Hall A, and take relevant data to be sure background levels are appropriate.

