Error propagation at the microMott

Greg Blume¹

¹Department of Physics, Old Dominion University, Norfolk VA, 23529 USA

The microMott

- Counting experiment to measure an asymmetry between scattering angles
- Retarding field grids isolate elastic scatterings
- Asymmetry used to extract beam polarization

$$A = P_{b}S(\theta) \Longrightarrow P_{b} = \frac{A}{S(\theta)}$$

The data

• L/R are left and right detector, +/- are for plus and minus helicity (HWP reversal)

	1 1+	1 -	R+	R-	V	
Dark, d_1	2 20.000 3 759853.000	20.000 647536.000	15.000 264401.000	15.000 375516.000	152.806 152.781	Retarding
3x Light, <i>I</i> _i	4 745859.000	626904.000	259332.000	372740.000	152.810	Field
Dark, d_2	5 709136.000 6 31.000	610520.000 31.000	257920.000 19.000	370600.000 19.000	152.828 152.715	at 150 V
	7 33.000	33.000	16.000	16.000	163.041	
	8 657430.000 9	563196.000	220662.000	315151.000	163.030	

 Retarding Field scanned from 150 to 320 V to include threshold voltage (248 V)

4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶

Greg Blume (ODU) Error Propagation April, 2023 3/10

The data reduction

- Work now in cells of one retarding field voltage and only L+
- Remove dark count average from each l_i

$$I_i^* = I_i^* \pm \Delta d = I_i - \bar{d} \pm \Delta d$$

Remaining counts above threshold are x-rays, remove them

Greg Blume (ODU)

The data reduction

- Extrapolate to voltages below threshold
- Define the background $I_{bg}^{(i)}$ for each voltage and subtract to produce adjusted spectra

$$I_{bg}^{(i)} \pm \Delta I_{bg}^{(i)} = (mv_i + b) \pm \sqrt{(v_i \Delta m)^2 + (\Delta b)^2}$$

$$c_i \pm \Delta c_i = I_i^* - I_{bg}^{(i)} \pm \Delta I_{bg}^{(i)}$$

◆ロト ◆母ト ◆差ト ◆差ト 差 めので

Greg Blume (ODU)

The asymmetry

• Calculate asymmetry for each v_i in the cell — our data file now looks like below where $l_{pi} = c_i$ for each column

$$A_i = \frac{1 - \sqrt{r_i}}{1 + \sqrt{r_i}}, \ r = \frac{N_i^-}{N_i^+}, \ N_i^- = I_{mi}r_{pi}, \ N_i^+ = I_{pi}r_{mi}$$

$$\Longrightarrow \Delta N_i^- = (I_{mi}r_{pi})\sqrt{\left(\frac{\Delta I_{mi}}{I_{mi}}\right)^2 + \left(\frac{\Delta r_{pi}}{r_{pi}}\right)^2}$$

$$\Longrightarrow \Delta N_i^+ = (I_{pi}r_{mi})\sqrt{\left(\frac{\Delta I_{pi}}{I_{pi}}\right)^2 + \left(\frac{\Delta r_{mi}}{r_{mi}}\right)^2}$$

$$\Longrightarrow \Delta r_i = \frac{N_i^-}{N_i^+} \sqrt{\left(\frac{\Delta N_i^-}{N_i^-}\right)^2 + \left(\frac{\Delta N_i^+}{N_i^+}\right)^2} \Longrightarrow \Delta A_i = \frac{A_i \Delta r_i}{\sqrt{2}} \sqrt{\frac{r_i + 1}{r_i (r_i - 1)^2}}$$

The asymmetry

Each Voltage cell now has the form

Α	dA	٧
A1	dA1	v1
A2	dA2	v2
A3	dA3	v3
A1	dA1	v1

 Calculate the average Asymmetry (and Voltage) for threshold extrapolation

$$A \pm \Delta A = \bar{A} \pm \frac{\sqrt{\sum_{i}(\Delta A_{i})^{2}}}{3}, \ V = \bar{V}$$

Cells are condensed to one asymmetry per cell, use 6 cells

Weighted fit applied Error grows statistically $y = (s \pm \Delta s)x + (i \pm \Delta i)$

The polarization

• Take value of fit at 248 V and divide by $S(\theta) = 0.201$

$$A_{248} \pm \Delta A_{248} = (s(248) + i) \pm \sqrt{(\Delta s(248))^2 + (\Delta i)^2}$$

 $\Longrightarrow P + \Delta P = \frac{A_{248}}{S(\theta)} \pm \frac{\Delta A_{248}}{S(\theta)}$

- ullet Example polarization result is $oldsymbol{78.04} \pm oldsymbol{6.67} \%$
- Does not include error on the Sherman function
- How does this stack up against old method? What changed?

- ullet Old polarization result is **78.71** \pm **3.37** %
- Error bars are **not** statistical, were calculated by the standard deviation of the asymmetries
- No error propagation from the counting statistics
- \bullet Fit was ${\bf unweighted}$ doesn't account for random errors from σ

The takeaways

- Not accounting for error propagation from the counts discards information — cannot ensure statistical behavior
- Using the standard deviation for the error w/ an unweighted fit can underestimate the error
- Weighted fits are important to capture the statistical behavior of a counting experiment
- Good statistics are IMPORTANT, otherwise error is large
- \bullet On another run, polarization is 83.6772 \pm 19.761 %, and error only gets worse
- NEED to have > 200000 events for acceptable statistics