Error propagation at the microMott

Greg Blume ${ }^{1}$

${ }^{1}$ Department of Physics, Old Dominion University, Norfolk VA, 23529 USA

The microMott

- Counting experiment to measure an asymmetry between scattering angles
- Retarding field grids isolate elastic scatterings
- Asymmetry used to extract beam polarization

$$
A=P_{\mathrm{b}} S(\theta) \Longrightarrow P_{\mathrm{b}}=\frac{A}{S(\theta)}
$$

The data

- L/R are left and right detector, $+/-$ are for plus and minus helicity (HWP reversal)

	L+	L-	R+	R-	V	Retarding Field at 150 V
Dark, d_{1}	${ }_{2}^{220.000}$	20.000	15.000	15.000	152.806	
Dark, ${ }^{\text {a }}$	3759853.000	647536.000	264401.000	375516.000	152.781	
3x Light, l_{i}	4745859.000	626904.000	259332.000	372740.000	152.810	
Dark, d_{2}	5709136.000	610520.000	257920.000	370600.000	152.828	
	631.000	31.000	19.000	19.000	152.715	
	733.000	33.000	16.000	16.000	163.041	
	8657430.000	563196.000	220662.000	315151.000	163.030	

- Retarding Field scanned from 150 to 320 V to include threshold voltage (248 V)

The data reduction

- Work now in cells of one retarding field voltage and only L+
- Remove dark count average from each I_{i}

$$
l_{i}^{*}=l_{i}^{*} \pm \Delta d=l_{i}-\bar{d} \pm \Delta d
$$

- Remaining counts above threshold are x-rays, remove them

The data reduction

- Extrapolate to voltages below threshold
- Define the background $l_{\text {bg }}^{(i)}$ for each voltage and subtract to produce adjusted spectra

$$
\begin{gathered}
l_{b g}^{(i)} \pm \Delta I_{b g}^{(i)}=\left(m v_{i}+b\right) \pm \sqrt{\left(v_{i} \Delta m\right)^{2}+(\Delta b)^{2}} \\
c_{i} \pm \Delta c_{i}=l_{i}^{*}-l_{b g}^{(i)} \pm \Delta I_{b g}^{(i)}
\end{gathered}
$$

The asymmetry

- Calculate asymmetry for each v_{i} in the cell - our data file now looks like below where $I_{p i}=c_{i}$ for each column

$$
A_{i}=\frac{1-\sqrt{r_{i}}}{1+\sqrt{r_{i}}}, r=\frac{N_{i}^{-}}{N_{i}^{+}}, N_{i}^{-}=I_{m i} r_{p i}, \quad N_{i}^{+}=I_{p i} r_{m i}
$$

$$
\Longrightarrow \Delta N_{i}^{-}=\left(I_{m i} r_{p i}\right) \sqrt{\left(\frac{\Delta I_{m i}}{I_{m i}}\right)^{2}+\left(\frac{\Delta r_{p i}}{r_{p i}}\right)^{2}}
$$

$$
\Longrightarrow \Delta N_{i}^{+}=\left(I_{p i} r_{m i}\right) \sqrt{\left(\frac{\Delta I_{p i}}{I_{p i}}\right)^{2}+\left(\frac{\Delta r_{m i}}{r_{m i}}\right)^{2}}
$$

$\Longrightarrow \Delta r_{i}=\frac{N_{i}^{-}}{N_{i}^{+}} \sqrt{\left(\frac{\Delta N_{i}^{-}}{N_{i}^{-}}\right)^{2}+\left(\frac{\Delta N_{i}^{+}}{N_{i}^{+}}\right)^{2}} \Longrightarrow \Delta A_{i}=\frac{A_{i} \Delta r_{i}}{\sqrt{2}} \sqrt{\frac{r_{i}+1}{r_{i}\left(r_{i}-1\right)^{2}}}$

The asymmetry

- Each Voltage cell now has the form

- Calculate the average Asymmetry (and Voltage) for threshold extrapolation

$$
A \pm \Delta A=\bar{A} \pm \frac{\sqrt{\sum_{i}\left(\Delta A_{i}\right)^{2}}}{3}, V=\bar{V}
$$

- Cells are condensed to one asymmetry per cell, use 6 cells

Weighted fit applied Error grows statistically $y=(s \pm \Delta s) x+(i \pm \Delta i)$

The polarization

- Take value of fit at 248 V and divide by $S(\theta)=0.201$

$$
\begin{aligned}
& A_{248} \pm \Delta A_{248}=(s(248)+i) \pm \sqrt{(\Delta s(248))^{2}+(\Delta i)^{2}} \\
& \Longrightarrow P+\Delta P=\frac{A_{248}}{S(\theta)} \pm \frac{\Delta A_{248}}{S(\theta)}
\end{aligned}
$$

- Example polarization result is $\mathbf{7 8 . 0 4} \pm \mathbf{6 . 6 7} \%$
- Does not include error on the Sherman function
- How does this stack up against old method? What changed?

The comparison

Old results

New results

- Old polarization result is $\mathbf{7 8 . 7 1} \pm \mathbf{3 . 3 7} \%$
- Error bars are not statistical, were calculated by the standard deviation of the asymmetries
- No error propagation from the counting statistics
- Fit was unweighted - doesn't account for random errors from σ

The takeaways

- Not accounting for error propagation from the counts discards information - cannot ensure statistical behavior
- Using the standard deviation for the error w/ an unweighted fit can underestimate the error
- Weighted fits are important to capture the statistical behavior of a counting experiment
- Good statistics are IMPORTANT, otherwise error is large
- On another run, polarization is $83.6772 \pm 19.761 \%$, and error only gets worse
- NEED to have > 200000 events for acceptable statistics

