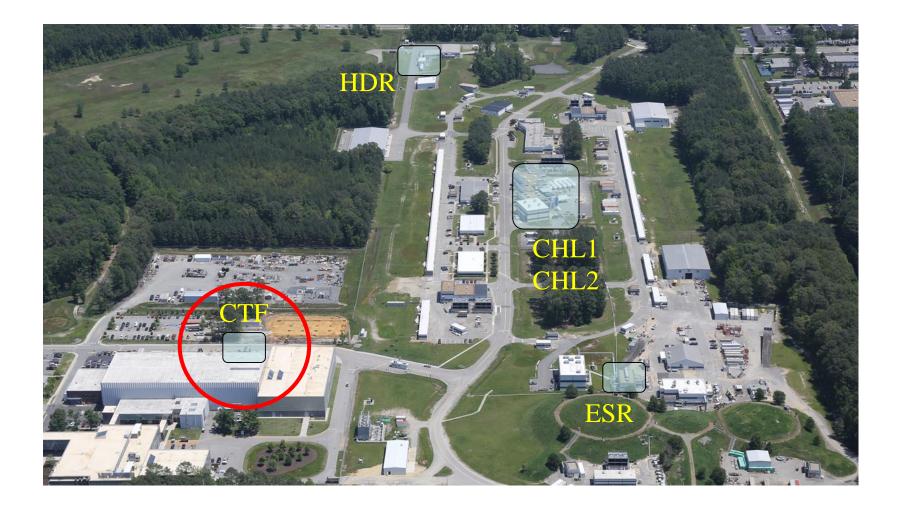


Cryogenic Test Facility (CTF)

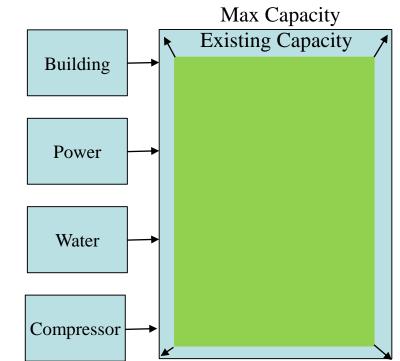
Historical Perspective Completed Improvements and the Future

Jonathan Creel

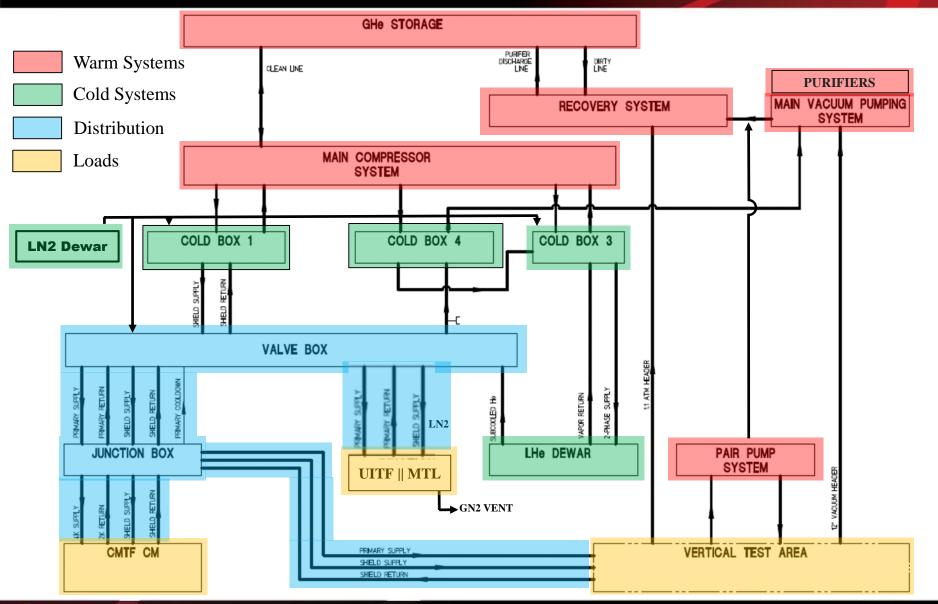

Table of Contents

- History
- Overview
- Planning
- Continuous Improvements
- New Loads
- Future Plans

Cryogenic Test Facility Building 57



Capacity Definition


- Four main parameters define plant capacity envelope
 - Available building area
 - Available electric power
 - Available cooling water
 - Available compressor capacity
- Changing these factors is typically expensive
- Therefore, for now, CTF capacity envelope is capped
- We will increase capacity where possible within this envelope

CTF Cryogenic Systems Overview



Jefferson Lab

CTF Pre-2015 History

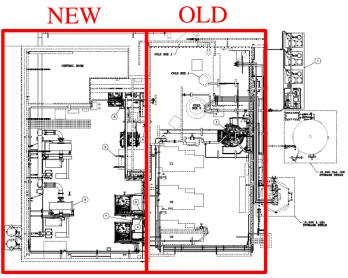
- Built 1989-1990 for CEBAF construction
- Designed to support VTA and CMTF
- Small building for this size plant
- CAMAC controls located inside TestLab instead of inside plant building
- System
 - Three 400HP two-stage compressors
 - Each 55 g/s at 1.08 atm suction pressure
 - One Shield Cold Box (CB1)
 - 800 W at 35 K
 - One 4.5K Cold Box (CB2)
 - 4 g/s Liquefaction or 750W Refrigeration
 - One Sub-Atmospheric Cold Box (CB4)
 - 10 g/s at 2.1 K inlet and 35 K outlet
 - One Kinney Pump (2nd added during SNS)
 - Each 10 g/s flow at 0.02 atm suction
 - Two Recovery Compressors
 - Each 12 g/s at 1.08 atm suction pressure
 - Two Purifiers
 - Each 15 g/s at 13 atm discharge pressure

Planning

- Recognized CTF roll was not diminishing
 - Meetings over 10+ years discussing future of CTF (Cryo, SRF, FM)
 - No specific guidance from lab about future requirements
 - No operations money would typically be available
- FM found potential source of money for maintaining DOE facilities
- Refurbishment money not guaranteed
 - Significant competition every year with other labs
 - Would not be enough to pay for a new complete plant
 - Required a complete new building
 - Required upgrades to power
 - Required upgrades cooling water,
 - Required upgrades to compressor systems
- Decision was made by team to concentrate efforts to improve CTF within the existing utilities and compressor footprint

Planning Continued

- A general improvement plan was formed that would allow incremental improvements as FM received pockets of funding
- As each installment arrived pieces of the plan were executed
 - Improve safety and space
 - Build a new addition to existing building
 - Improve controls
 - Upgrade CAMAC to PLC and move into plant control room
 - Improve liquid storage
 - LHe Dewar and neck can, LN2 Dewar, vaporizers, headers
 - Improve cold box systems
 - 4.5K Cold box and 35K cold box
 - Improve 2.1K and distribution systems
 - Purifiers and recovery compressors
 - Cold box 4, valve box, and junction box
 - Improve cooldown liquid helium usage efficiency
 - LN2 cooled GHe heat exchanger precooler
- Some work would use a mixture of funding sources



Building & Safety Improvements

- Original CTF designed for ~5 year life
 - Small building
 - Poor access and serviceability
 - Safety problems abound
 - Controls remotely located in Test Lab
- Building expansion
 - Added 1,800 square feet
 - Created a control room
 - New control system moved from Test Lab high bay into new control room
 - Final phase waiting for a CMTF down long enough to move remaining channels
 - Allows equipment expansion
 - Allows equipment spread out for safety and serviceability

Control System Improvements

- Old CAMAC system
 - Located far away from plant in Test Lab high bay
 - Parts difficult to find
 - High failure rates
- New Allen Bradley Controllogix
 PLC system
 - Cryo standard
 - High reliability
 - Flexible
 - Redundant power supplies
 - More troubleshooting information available

Main Compressor Improvements

- Purchased new spare MYCOM
 warm compressor bodies
 - Two stage/single shaft
 - **400 HP**
 - 55 g/s each
 - Old body's
 - High operational hours
 - Seals and bearings worn
 - Reduced flow capacity
 - New body's
 - Ops money
 - Restores full flow capacity
 - Restores reliability

Compressor Improvements

- Oil flooded screw compressors
 - Helium and oil separation is critical
- Installed purifier system adsorber
 - Ops money
 - Activated carbon
 - Increased purifier protection
 - Reduces risk of compressor oil from reaching purifiers
- Main compressor oil removal
 - Refurbished and moved three compressor oil removal skids
 - Added main compressor adsorber
 - Increased cold box protection
 - Reduces risk of compressor oil from reaching cold boxes

4.5K Liquid Storage Improvements

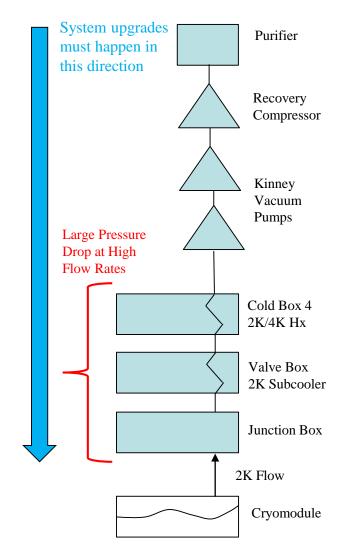
- Old Helium Dewar
 - 3,785 Liters
 - High heat leak
 - Too few connections
 - No subcooler
- New Helium Dewar & Neck Can
 - 10,000 Liters
 - Lower heat leak
 - Neck can with additional connections to support upgrades
 - Larger "flywheel" to smooth out
 VTA and CMTF peak draws
 - Added subcooler

Liquid Nitrogen Storage Improvements

- Old LN2 Dewar 9,000 gallon
 - Bottom rusting out
 - High heat leak
- New LN2 Dewar 13,000 gallon
 - Transferred from Fermi
 - Virtually new
 - Added 44% more capacity
 - Lower static heat leak
 - Designed and installed a better and safer truck fill station

4.5K Cold Box Improvements

- Purchased a Linde L280
 - 4.5K cold box (CB3)
 - Replaced CB2
- Highlights
 - 2.25 times liquefaction capacity of CB2
 - Up to 9 g/s liquefaction
 - 700 W refrigeration
 - Uses turbines not reciprocating expanders
 - Higher reliability
 - Reduced maintenance
 - PLC controls



2.1K Improvement Overview

- Multiple layers in 2K system
 - Various pieces of hardware
 - Flow limited by HXs & piping not by Kinney capacity
 - Each piece adds differential pressure (back pressure)
 - Requires systematic upgrade approach from CTF toward cave
 - Purifiers
 - Recovery compressors
 - Kinney pumps
 - Cold Box 4
 - Valve box,
 - Junction box

Helium Purifier Improvements

- Old dual purifiers
 - 15 g/s max flow
 - Single compressor operation
 - Small storage capacity
 - All manual operation
 - Manpower intensive regeneration
 - One purifier failing
 - Asymmetric holding and regen
 capabilities
- New dual purifiers
 - Increased capacity
 - 60 g/s max flow
 - Larger storage capacity
 - Allows dual recovery compressors operation
 - PLC based controls
 - Reduced manpower regeneration

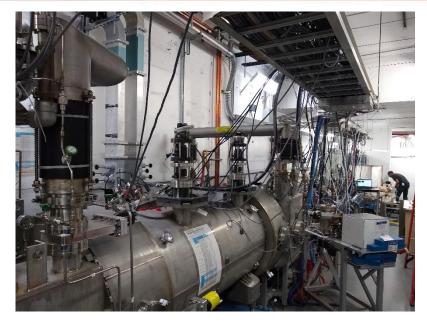
Recovery Compressor Improvements

- Old recovery compressors
 - 12 g/s
 - Very old with reduced capacity
 - High failure rates
 - No remote operation/monitoring capability
- Fabricated two new units
 - Jlab system design
 - Increased flow capacity
 - 18 g/s each
 - PLC based controls
 - Remote operation and monitoring
 - Suite of operational information
 - Improved
 - Oil and gas cooling
 - Oil removal



Kinney Pump Improvements

- Moved Kinney pumps
 - Into new addition
 - Better serviceability
 - Upsized and rerouted piping
 - New protection valves
- Rebuilt pumps
 - Restored full capacity
 - Improved reliability
- Rebuilt motors
 - Improved reliability



New Test Facility

- Upgraded Injector Test Facility (UITF)
- Designed, fabricated and installed transferline system to new injector test cave
- Shield circuit can use 35K
 helium or 77K nitrogen
- 77K LN2 shield circuit uses thermosiphon to reduce LN2 usage
- Allows additional customers to utilize cryogenic facility

Ongoing Effort

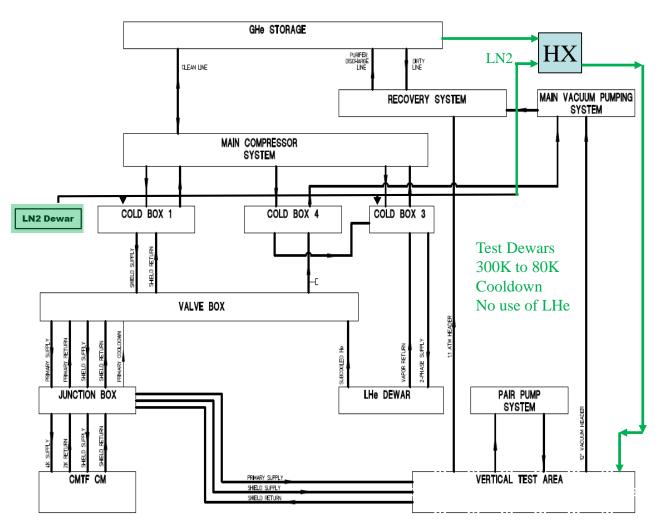
- Refurbish Cold box 1 Shield Refrigerator (35K)
 - Refrigeration of 800 W at 35 K
 - Cold box contains heat exchangers and valves
 - Satellite expander pod produces refrigeration
 - Dual purpose
 - Provides shield temperature to CMTF test cryomodules
 - Increases VTA helium quality
 - Increases 4.5K helium transfer efficiency between plant and VTA

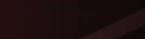
Ongoing Effort Continued

- New Cold box-4 2K/4K refrigeration recovery
 - Recovers refrigeration from CMTF, UITF, or VTA 2.1K vapor and sends it to 4.5K cold box at the 30K level
 - Warms 2.1K flow to 300K before it reaches Kinney vacuum systems
 - Improvements
 - Reduce piping restrictions
 - Reduce Kinney vacuum pump work load
 - Increase 2.1K flow capacity
 - Improve efficiency
 - Potentially lower temperature capability at the module

Ongoing Effort Continued

- New distribution system
 - New valve box
 - Transfer line
 - Junction box
 - 4.5K Improvements
 - Lower heat leak
 - Improved connections
 - 2.1K Improvements
 - Lower back pressure
 - Increased 2.1K flow capacity
 - Higher efficiency
 - Lower heat leak





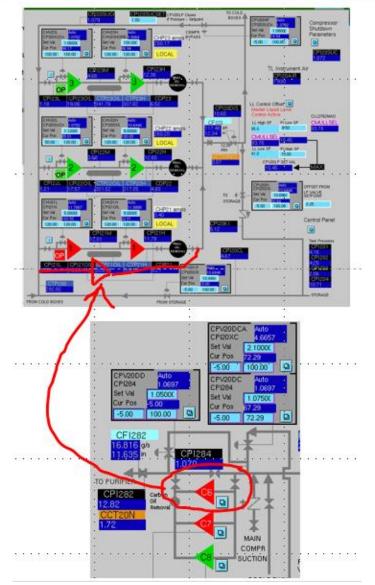
Ongoing Effort Continued

VTA LN2/GHe Precooler System

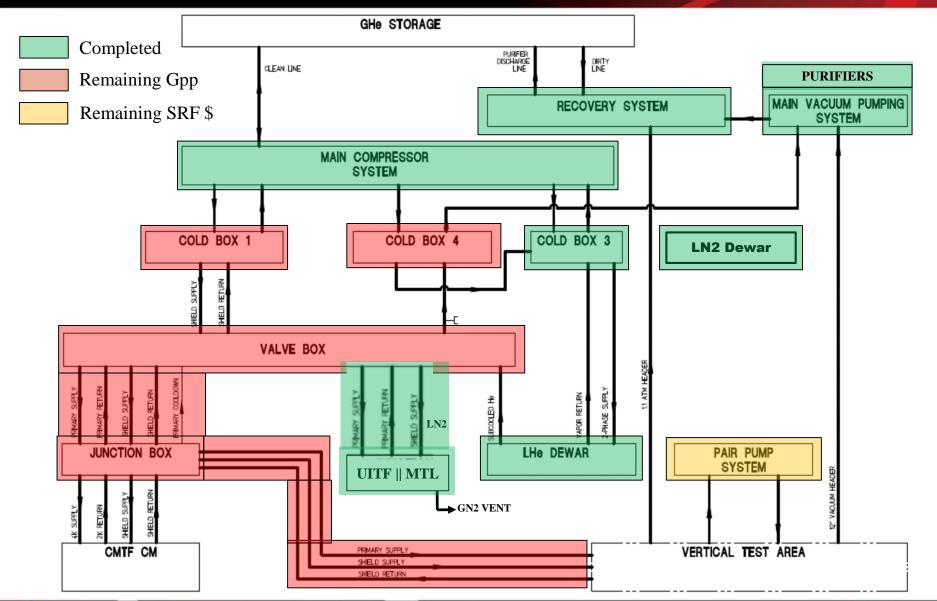
- Proposed
- LN2 cooled helium heat exchanger
- Uses LN2 to cool warm helium
- Allows VTA dewar cooldowns from 300-80K using <u>no</u> liquid helium from dewar
- Substantially reduces usage rate of liquid helium
- Requires design/engineering and fabrication installation
- Requires some VTA modifications

SRF Pair Pump Upgrade

- New Pair Pumps
 - SRF and Cryo working together to design a set of replacement pair pumps
 - Increased capacity
 - SRF Ops money
- Benefit's
 - Increased 2.1K flow capacity
 - Reliability
 - Shift load from Kinney to pair pumps to allow CMTF and UITF to get more flow capacity



Recovery to Main Compressor


- New cold box 3 requires slightly more compressor flow than two main compressors can provide (third is spare)
- We supplement main compressor flow using cross connect to purifier recovery compressors
- Robs purifier compressor and Kinney 2K capacity and places the system at higher risk for contamination issues
- We have one unused recovery compressor (150HP 16g/s) after the purifier upgrades
- We will re-pipe this machine into the main gas system so it can provide the extra 5-7g/s of required flow to the main gas system.
- Reestablishes main gas system and purifier system separation
- Restores full flow capacity to recovery and Kinney systems

Summary of Improvements

Summary

- Cryogenics and Facilities have worked to continue improving the CTF
- Plan incrementally upgraded through a prioritized logical path addressing
 - Space & Safety
 - Single point failures and aged equipment
 - Restore or slight increased capacities
- Funding to date
 - A mixture of Gpp and Operations
- Reminders
 - All pieces of the system are highly integrated
 - No single piece can be upsized too much without causing problems somewhere else in the system
 - New money received is to continue with predefined updates

Questions?

