Generation and Characterization of Magnetized Bunched Electron Beam from DC Photogun for MEIC Cooler

Laboratory Directed Research and Development (LDRD) Proposal

Riad Suleiman and Matt Poelker

April 16, 2015

Outline

- Magnetized Cooling
- Electron Beam Requirements
- Generation of Magnetized Beam
- Proposed Measurements:
 - I. Mechanical angular momentum
 - II. Round-to-Flat Beam (RTFB) transformation
 - III. Magnetized beam transport
 - IV. Magnetized photocathode lifetime
 - V. Beam halo and beam loss
- Work Place: FEL Gun Test Stand
- Budget

Magnetized Cooling

Bunched Magnetized Gun Requirements

Bunch length	100 ps (3 cm)
Repetition rate	476 MHz
Bunch charge	420 pC
Peak current	4.2 A
Average current	200 mA
Emitting radius (a_0)	3 mm
Transverse normalized emittance	10s microns
Solenoid field at cathode	2 kG

Generation of Magnetized Beam

- I. Cathode Solenoid:
 To produce magnetized beam
- II. Injector Focusing Solenoids:
 - For magnetized beam transport
 - To compensate space-charge emittance growth

Proposed Beamline

Proposed Measurements

- Measure mechanical angular momentum (skew quads off)
- σ_1 beam radius measured at Diagnostic Cross 1
- σ_2 beam radius measured at Diagnostic Cross 2
- D drift between two crosses
- p_z beam longitudinal momentum

$$\langle L \rangle = 2p_z \frac{\sigma_1 \sigma_2 \sin \phi}{D} = eB_z a_o^2$$

 \mathbf{r}_1

drift

Angular rotation φ is measured from beam image at Cross 2 when multislit is inserted at Cross 1

Example of mechanical measurement at Fermilab (Piot et al.)

7

r₂

2. Use three skew quads – RTFB Transformer – to generate a flat beam with transverse emittance ratios of:

$$\frac{\varepsilon_x^n}{\varepsilon_y^n} = \frac{\varepsilon_d}{\varepsilon_{th}} >> 1$$

- Measure horizontal and vertical emittances using slit method
- Cross 2 will be equipped with a horizontal and vertical slits
- Measure size of emittance dominated beamlets passed through slits, after drift distance *D*, with YAG viewer in Cross 3
- Assume horizontal beam radius measured at Cross 2 is σ_{2h} and horizontal radius of beamlet at Cross 3 is σ_{3h} when vertical slit is inserted at Cross 2, then horizontal emittance is

$$\varepsilon_x^n = \gamma \sigma_{2h} \sigma_{3h} / D$$

Similarly, measure vertical emittance using horizontal slit

- 3. Generate very high currents magnetized beam and study beam transport and RTFB transformation versus electron bunch charge
- Measure photocathode lifetime versus solenoid field at high currents (up to 30 mA) and high voltages (200 – 350 kV) limited by HV supplies we have
- 5. Study beam halo and beam loss versus magnetization:
 - I. Monitor vacuum using ion pumps with very sensitive current readback
 - II. Measure radiation with x-ray detectors placed around gun and beamline
 - III. Measure beam intercepted at floating anode

FEL Gun Test Stand

Budget

Procurements	
Item	Approximate Cost (\$k)
Solenoid magnet or Helmholtz coil-pair	50
Power supply for gun magnet (500A/150V)	50
Skew quadrupole magnets (x3 sets)	15
Cameras	2.4
PC for cameras	1
Switcher	1
YAG viewer	1
Multislit (1)	4
Single slit (x2)	8
Stepper motor translation stages	10
50% postdoc	75
Total	217.4
Labor	
Magnet design	2 wk
Mechanical design for magnets	2 wk
Mechanical design for slits	2 wk
ASTRA modeling	12 wk