Drive Laser TMG Evaluation Meeting Presentation

Shukui Zhang

April 11, 2024

S. Zhang, CIS, ACC, JLAB, April 11, 2024

Tune Mode Generator (TMG)

Combination of a Fast EO, polarizing optical elements and a slow mechanical shutter

- Provide time structures needed by CEBAF operation
- Protect machine

Time structures needed by CEBAF

Week background due to limited optical switch contrast

CEBAF Beam/Machine Modes

Beam mode	Macropulse duration at 60 Hz	Duty factor	Tune mode generator Pockels cell	Tune mode generator halfwave plate	Shutter
OFF Viewer limited	N/A 4–10 µs	0 0.02–0.06%	ON ON	IN IN	CLOSED OPEN
Tune mode	250 μs ON, 100 μs OFF, 4 μs ON	1.52%	ON	IN	OPEN
CW	N/A	100%	OFF	OUT	OPEN

S. Zhang, CIS, ACC, JLAB, April 11, 2024

- 3/20/2024, Hall C lost beam.
 - Trouble-shooting showed mechanical shutter is good, the C laser TMG malfunctioning, replaced TMG. Machine resumed operation for a day
- 3/21/2024, vacuum problem in cebaf beam spreader, laser beam /power leak in BS mode. shutter did not seem closed.
- 3/22/2024, more extensive trouble-shooting performed, no
- Extensive trouble-shooting by CIS/SSG/AESCIS

CEBAF Beam Power & Pulse Structure

Laser power vs beam mode Atten@1000

	A (mW)	B(mW)	C(mW)	D(mW)
BS	0	0	0	0
VL	0.55	0.13	1.62	0.018
ТМ	0.88	0.16	2.1	0.035
CW	77	18.4	198	5.3

A Laser Pulse traces

S. Zhang, CIS, ACC, JLAB, April 11, 2024

CEBAF Beam Power & Pulse Structure

VL1

TM2

A: 44.0mV B: 10.0mV Ch1 Freq No period Tound Tou

VL2

S. Zhang, CIS, ACC, JLAB, April 11, 2024

TM1

Beam Mode	Pockels cell High Voltage	half wave plate	Shutter
Beam OFF	OFF	Inserted	Closed
Viewer-Limited	Pulsing	Inserted	Open
Tune	Pulsing	Inserted	Open
CW	OFF	Retracted	Open

During transition to Viewer Limited this long (10's msec) would normally be shuttered

Shutter would then • open, allowing Viewer Limited pulses (0.004 msec) to pass

Recent Test: UITF Laser TMG temporal behavior vs beam mode

- Detector 1 (Yellow
 Oscope traces) located
 after shutter
- Detector 2 (Purple Oscope traces) located before shutter
- FSD triggered from UITF EPICS

UITF Laser TMG temporal behavior vs beam mode

Blue: before shutter Yellow: After shutter Purple: FSD Date: 4/5/2024

No FSD

BS-VL

S. Zhang, CIS, ACC, JLAB, April 11, 2024

No FSD

Stop		1 1		-	
		1			
	1		ner sörar		
-					
	Innin			darada	
-					-
					the second second
(2) manufacture and a					
3	in the	5 00mVO	M 100ms	A Ch3 3	1.40 \
Ch3 1.00 V	Ω		Tooms	A GITS	

VL-BS

VL-CW

No FSD

TM-BS

TM-VL

TM-TM

TM-CW

No FSD

CW-VL

FSD from Static mode

TM-BS

FSD from Static mode

TM-BS

What may go wrong?

- Attenuator setting too high (280), laser power 10s x more than routinely set value
- Shutter open?
 - Triggers controls to TMG seem fine
 - Shutter needs DC voltage to keep open
 - Mechanical?
 - Shutter has been on its holder
 - A chance that laser beam may go above the shutter due to loosen screw

Jefferson Lab

Nothing can be 100% safe, Fail Safe May not Be Safe!

- Shutters may get heated up to high temperature
- High Temp may melt the glues
- The cantilever may fall, leave the shutters open

A deeper look into TMG

An even worse scenario, assuming the HWP fails, then what would happen

- BS mode 100% power, shutter closed
- VL/TM mode- >99% laser power going thru, shutter open
- CW mode 100% power going thru, shutter open
 - ✓ <u>It's necessary to monitor HWP</u> position
 - ✓ <u>Control follows if needed</u>

Risk Mitigation

Near terms: this additional shutter could be the simplest and most reliable approach to prevent similar incident to occur.

Only need to be synchronized with the 4 shutters, i.e. open/close with any of them

Risk Mitigation

Enhanced Procedure: multi-point check out

these blocks between an Het Check-Cost (HOC) checklist (Weising A. 1977) (1) Hight - Waveforms Endeated - for shacked, and was fillent not needed Perform that with fried attribution · Appoint France on a scope Staff performing HOD thes 1 - Weard increasing Indicate role if lases and homed - Onion type (19 star/81) - Viewer Landed (4 star/61) militate pass (+'UTail +) for each function. Veryan Lindset 130 autober a. Hall A (Sector in: IMG/THIG., Mexeplate/, Moder/) Date Mitche Of-mightly - Beam Syler bleather phrasel, waveglate in Tune Mode (208 cardin Verser Landed (shuffler spen, waveplate tri) Confidences When (4 she/dry "Tune blocks (deutter spers, waseplate eid Ionithopos Were (shufter open, wereplate out) Half & bettemaster ---- , power - _____ mill 1 made sync (2 mm/Hz) h. Hall & Stend its. 1945/1960. Herergister, Studier /J. itemer Leveland 34 yes, Vite teacht type: (chuffer ideach, similate rol Veryee' Lended (30 aL/0s viewer sanited jobufter spen, waveplate (r) Tune Mode of paylor Tana kilode (shuftar spart, waveplate inj Take block (100 us/dk Continuous New (HopeW) 1. Hall (Scholm: TBR/TMG, Manuplate/, Startury) priver - RW - Basin Saint faith that through waveplate in Octavet syster 14 mar/dec Viewer Linked plauffer upon, waveplate inj Vervier Limited (d. co., Vilu) Veryw Limited (10 apple . Tune bunks (shuffler name, wavenade ind Contributions Were Schuller scores receipted a cut Tune Mircle (4 calu/MV) Tune Mode (208 uards) Continuince Wark 04 cou/dry 8. Hall D [Serial In: TME/THIG - Wereplate/, Shother/) · mean type the dry things, wantplate the Weight' Limited plotter open, weighten't BRUM BYTE 14 (SAL BRU Turna twicele fashuttion opens, wasveplate with Vesser United 14 ma/divi --- Costrausus Www (shutter span, www.plate.col) Tate Marke Monthled Calls Mode (2011 Juli) -Continuing West Draw/WV Tune Mode Generator Hot Check-Out (HCO) checklist (version 2, 4/2/24) Mary 8 - December 1 had a break and street in electronic lands and Allach checklish and scope Yaomi to TLUD, W00,04 array

Staff performing HCO:		
Date:		

Step 1 – Visual inspection (indicate n/a if laser not tested)

- Indicate pass $(\checkmark)/fail(\varkappa)$ for each function.
 - a. Hall A (Serial #s TMG/TMG-, Waveplate/, Shutter/)
 - Beam Sync (shutter closed, waveplate in)
 - ii. Viewer Limited (shutter open, waveplate in)
 - iii. Tune Mode (shutter open, waveplate in)
 - Continuous Wave (shutter open, waveplate out) iv
 - Mataa

Risk mitigation

Immediate/short-term

- Laser power automatically go to minimum Ops setting such as "Atten/100" when switching mode
- Additional shutter

Long-term

- Implement variable rep rate, 1, 15, 30, to 60 Hz (existing, fixed)
- Go to "**B. Sync**" mode and the **lowest rep rate** (1Hz) whenever beam mode/machine status changes. Laser power detector goes in prior to "Beam Permit"
- Increase pulse contrast, new crystal
- Shutter open/close status signal-**position sensors**
- Realtime beam mode monitoring / **Oscope signal** to MCC
- More frequently **check up** on system parameters
- Faster shutters
- Improve procedures

Rename the attenuator? The attenuator reading scaling (0 up to 1000) may cause confusion, max attenuation is x1000, which actually gives the max laser power!

S. Zhang, etc., "A simple gating technique for high-average-current photo-injectors", Nuclear Instruments and Methods in Physics Research A 629 (2011) 11–15

Safer – much faster shutter

S. Zhang, etc., "A simple gating technique for high-average-current photo-injectors", NIMA 629 (2011) 11–15