Polarized positron Injector

Sami Habet

IJCLab.

JLab.

February 2023

Jefferson Lab

Sami Habet

(IJCLAB & JLab)

2 Positron Layout

3 Simulations

4 170 nA at the target

Sami Habet

Image: A matrix and a matrix

2 Positron Layout

3 Simulations

4 170 nA at the target

5 Conclusion

Sami Habet

イロト イヨト イヨト イヨト

Beam line parameters

Params	Value
E _e -	120 MeV
Target thickness	4 mm
$QWT: B_1$	2.5 T
$QWT: L_1$	0.25 m
QWT : <i>B</i> ₂	0.05 T
$QWT: L_2$	5.4 m
Frequency	1497 Mhz
Cavity Gradient	1MV/m
Cavity length	0.2 m
Matching section	4 quadrupoles
Matching section: quad length	0.15 m
Matching section : Q_1	0.0276 kG/cm
Chicane dipole length	0.5 m
Beam pipe radius	0.03 m
collimator radius	= 0.008 m + 12 = 9000

Sami Habet

February 2023

Params	Value
E _e -	120 MeV
C100 gradient	6 MV/m
C100: N cell	8 cells
C100: Cell length	0.7 m
C100: Frequency	1497 Mhz
R56 : Chicane 1	-0.25 m
R56 : chicane 2	-0.13 m
Beam chirp: chicane 2	$4.2 \ m^{-1}$
Dispersion: chicane 1	0.7 m
Dispersion: chicane 2	1 m

Sami Habet

< ∃⇒

・ロト ・日下・ ・ ヨト

Jefferson Lab

2 Positron Layout

3 Simulations

4 170 nA at the target

5 Conclusion

Sami Habet

・ロト ・回ト ・ヨト ・ヨ

Cavities configuration

- $f = 1497 \ Mhz$
- E = 1 MV/m
- $L_{cell} = 0.2 \ cm$
- $r_{cell} = 3 \ cm$

Goal

• Reduce the energy spread of the accepted e^+ @ p = 60 MeV/c

Optimization method

- Track e^+ distribution using the QWT and the accelerating section.
- Set the on-crest mode to the smallest momentum.
- A different Off-crest phase is used.

2 Positron Layout

3 Simulations

4 170 nA at the target

5 Conclusion

Sami Habet

・ロト ・回ト ・ヨト ・ヨ

Central Momentum

Sami Habet

(IJCLAB & JLab)

February 2023

Normalized emittance


```
Sami Habet
```

February 2023 1

Transmission and current

Sami Habet

(IJCLAB & JLab)

February 2023

Momentum collimation

 $B_1 = 2.5 T B_2 = 0.05T$

< 行

2 Positron Layout

3 Simulations

4 170 nA at the target

Sami Habet

・ロト ・回ト ・ヨト ・ヨ

Angular distribution

Sami Habet

(IJCLAB & JLab)

February 2023

• The transmitted positrons are within the acceptance of the QWT

•
$$p_t^{QWT} = \frac{eB_1R}{2} = 10.31^\circ$$

• $r_0^{QWT} = \frac{B_2}{B_1}R = 0.6 mm$

Jefferson Lab

Params	e^- beam	Target Exit one period	Exit ch2
σ _{dp/p} [%]		1.3870	0.68
$\sigma_{z}[m]$		0.0002	0.0016
$\sigma_{x}[m]$	0.0005	0.0028	0.0081
σ_{xp} [rad]	pencil beam	0.0021	0.0007
$N \epsilon_{x}[mrad]$		0.019	0.0014
N ϵ_y [m rad]		0.002	0.0014
p Central [MeV/c]	120	60	123
e ⁺	1 <i>mA</i>	2482 nA	170 nA

Sami Habet

(IJCLAB & JLab)

<ロト <問ト < 目と < 目と

2 Positron Layout

3 Simulations

4 170 nA at the target

Sami Habet

(IJCLAB & JLab)

February 2023

イロト イヨト イヨト イヨト

- Improve the compression.
- To get better compression, the energy spread has to be at least five times smaller at the exit of the C100.
- To improve the current we need more quadrupoles.
- \bullet Expecting higher current for the unpolarized mode P=15 MeV/c

