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Laser beams with phase singularities 
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Phase singularities in an optical field appear as isolated dark spots and can be generated 
in active laser cavities or by computer generated holograms. Detection and categoriz- 
ation of these singularities can easily be achieved either by interferometry or Fourier 
transform pattern recognition using a computer generated hologram. 

1. I n t r o d u c t i o n  
Most laser beams have essentially spherical wavefronts and any deviation from sphericity 
constitutes a degradation of beam quality. However, the TEM*~ 'doughnut'  mode, often 
observed in high-power lasers, can exhibit a helical wavefront structure, associated with a 
phase singularity on the beam axis [1]. This occurs when the frequency-degenerate TEM0~ 
and TEM~0 modes oscillate simultaneously in phase quadrature. 

The electric field will have the form 

E* = E0[(x 4- iy)/~o] e -(x2+y2)/~ e ikr2/2R e i(kz+~) 

= Eo(r/r e -+i~ e -(x2+p2)/~2 e ikr2/2R e i(kz+r (1) 

where (I) is the Guoy phase shift, R is the wavefront radius of  curvature, e) is the spot size 
and r and 0 are polar coordinates in the X-Y plane. Notice that during any complete circuit 
around the axis the phase changes by + 2~, expressing the helical form of the wavefronts, 
and that the field goes to zero on the axis, as it must where the phase is undefined. 

The doughnut mode is a stable cavity mode because it is a linear combination of  
Hermite-Gaussian TEM0x and TEM~0 modes and propagates in a self-similar way in free 
space and through optical systems for the same reason. In fact other more complex 
combinations containing phase singularities can be produced from higher-order modes. 
According to resonator theory [2] Hermite-Gaussian modes TEMm, with the same total 
m + n (or Laguerre-Gaussian modes TEMp~ with the same total 2p + l) are frequency 
degenerate and can form such combinations. The singularities show up as multiple isolated 
irradiance zeros in the modal spot pattern. 

One example is the TEM*2 hybrid or 'optical leopard' [3] which can be constructed from 
the Gaussian-Hermite modes TEM02 and TEM20. The pattern has a central irradiance peak 
surrounded by four smaller peaks and four zeros where there are two positive and two 
negative singularities diagonally opposed. Figure 1 a shows the irradiance distribution and 
Fig. lb the form of the wavefronts with four interconnected helices. 

0306-8919 �9 1992 Chapman & Hall $951 



N. R.  Heckenberg  et al. 

Figure 1 TEMg2 or 'optical leopard'. (a) Irradiance distribution (vertical) wi th spatial position (horizontal). (b) 
Form of wavefronts. In the diagram, phase increases in the vertical direction. Two surfaces of constant phase 
differing by 2~, corresponding to a plane wave at large distances from the beam axis, are connected around 
the singularities. 

Other examples contain higher-order singularities. The simplest cases are the higher- 
order doughnuts which are just Gaussian-Laguerre TEM0. modes) 

E *  = Eo(r/o9)" e (x2+/)/~,2 e+in0 e ikr2/2R e i(kz+o) (2) 

The parameter n is often referred to as the 'charge' of the singularity, with zero charge 
corresponding to a Gaussian TEM00 beam. The irradiance profiles of several higher-order 
doughnuts are shown in Fig, 2. The wavefronts form multistart helices. 

Of course, in a real laser, astigmatism in the cavity often removes the frequency 
degeneracy between such modes, but Brambilla et al. [3] have shown theoretically and 
experimentally that, so long as the astigmatism is not too severe, a cooperative frequency- 
locking process can occur, leading to a range of stable patterns. 

However, it is important to remember that not all dark spots in patterns are necessarily 
phase singularities. If the frequency degeneracy of the contributing modes is broken, a 
rapidly time-varying pattern will result, the time average of which may still contain dark 
spots [1]. In some applications, involving only average irradiances, that will not matter, but 
in others it will be important. We show below how such cases can be distinguished 
experimentally. 

2. Production of beams wi th  singularit ies 
There are several ways in which beams with singularities might be produced. As mentioned 
above, thanks to the process of  cooperative frequency locking [3] such modes can arise 

$952 



Laser  beams  with phase  singularit ies 

d 

LLI 
(D 
Z 

C23 
<f. 
O5_ 

I ' I ' I 

/ J  ' \ ,  

�9 " ." / " ^  " ' (  X " . ' - .  

~ / / / ". X %" . ,  

- 2  0 2 

NORMALIZED RADIUS 

Figure 2 Irradiance profiles for Gaussian and doughnut modes up to charge 4. Each has the same total power. 

spontaneously within a laser and in some cases a considerable degree of control can be 
exercised by the experimenter. Alternatively, a hologram can be used to convert part  of  the 
output of  an existing laser into the desired beam. We consider both approaches below. 

The 525 nm Na2 vapour  laser pumped by the Ar-ion laser [4] is ideal for studies of  
combination-mode formation because its velocity-selective optical pumping mechanism 
leads to very narrow gain linewidths so that only one 'family'  of  transverse modes with a 
certain m 4- n or 2p 4- l sum can oscillate at a time, and the otherwise dominant  TEM00 
Gaussian can be suppressed. We have used a system very similar to that used by Brambilla 
et al. [3] to generate a range of patterns and, as described below, to study methods to detect 
and classify modes with singularities�9 

A less efficient but a more flexible way to produce modes with singularities is through the 
use of  computer-generated holograms. In our first experiments we used on-axis holograms 
which have the form of  spiral Fresnel zone plates [5], but these suffer the same problem as 
Gabor ' s  original holograms, i.e. lack of separation between reconstructed beam and 
incident beam. It  turns out that even crude off-axis binary holograms are quite effective, as 
will now be explained. 

A hologram is really just a recording of the interference pattern between a field of  interest 
and some simple reference field. For the relatively simple fields involved in modes with 
singularities it is possible to calculate the form of such patterns and plot them out. Let us 
take as an example a charge-one doughnut (Equation 1), at a beam-waist (R -* oo) for 
simplicity. Consider the interference pattern on a screen in the X - Y  plane when a plane 
reference beam 

R = R o e ikxx+ikzz (3) 

is incident at an angle q5 = s in -~ (k x / k ) .  The irradiance on a screen at z = 0 will be 

I = ](Roe ikxx 4- Eo(r/o9) e i~ e r2/~212 

= R 2 + E~(r/o~) 2 e -2r2/'~ 4- 2RoEo(r/og)e- '2/ '~ ( k x x  - O) (4) 

It is the last term which expresses the interference pattern. A photographic recording of this 
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Figure 3 Pattern for off-axis binary hologram for charge-one singularity. The origin is at the tip of the fringe 
defect. 

pattern can now act as a hologram capable of 'reconstructing' the original doughnut (and 
its complex conjugate) when illuminated by a wave given by Equation 3. 

In what follows it will be convenient to work with a simplified pattern which ignores the 
amplitude variation of the doughnut beam and retains only the important phase infor- 
mation in the form of a spatially varying transmissivity 

T = 1 ( 1  - -  c o s  (k~x - 0 ) )  ( 5 )  

Now consider the effect of illuminating this pattern with a Gaussian beam propagating 
along the axis. Just after the hologram the field will be 

E r  = T A  o e -r2/~ (6) 

where A0 is the central amplitude and ~0 is the spot size of the beam, assumed plane at this 
point. Substituting for T, we find 

Er  = (A0/2) e r2/a~ _ (Ao/4) e -r2/n2 e i(kxx-~ - (A0/4) e -~2/n~ e i(-k,x+O) (7) 

This field can be recognized as consisting of a zero-order beam propagating along the axis, 
and two (conjugate) first-order diffracted beams, each of them containing a singularity of 
opposite charge. 

In fact it is much easier to print binary holograms than ones incorporating the sinusoidal 
variations in optical density implicit in Equation 5. Thus we actually use a 'square wave' 
transmissivity function which can be expressed in the form 

T = � 8 9  ~ sinc(mz/2) c o s [ n ( k x x -  0)] (8) 
r t = ]  

Its appearance is shown in Fig. 3. It has the appearance of a grating with a defect where 
a stripe branches. 

When this is illuminated, the output field will contain terms of the form 

E, = (A0/4) sinc (nrc/2) e -r2/s e i("k~x ,0) (9) 

Each is of course a diffraction order from the 'grating' and can be recognized as being 
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Figure 4 Comparison of the far-field spatial profile of the TEMgl mode (full line) with a first-order beam from 
a hologram illuminated by a Gaussian beam with the same parameters (dashed line). The TEMpi mode has 
the same power as the zeroth term of the series in Equation 13. 

closely related to an nth-order doughnut propagating at an angle 

4), = s i n - l ( n k J  k) ~- n s in- l (kx/k)  (10) 

to the axis. Actually, Equation 9 has the form of a charge-n singularity embedded in a 
Gaussian beam and as such will not propagate in a self-similar way. To investigate the 
far-field spatial profile of this beam, we can decompose Equation 9 in terms of the 
orthogonal set of Gaussian-Laguerre modes: 

X/( 2p! ) ( ~ 0 ) (  x/2r'~l" LI,, ( 2r2 ) 
fflPl = ~z(p + 1)! -~1 \-~-~l J -P \ f~2 

x e -r2/n2 e il~ e -ikr2/2R e i(2p+l+l)*~ e i(nkxx+kz~) (11) 

where ~ is the spot size, R~ is the radius of  curvature of the beam and qb~ is the Guoy phase 
shift. As the beam propagates, the parameters f~,  R1 and ~l are related to the waist spot 
size f~0 via the standard Gaussian-Laguerre propagation laws [6]. The amplitudes of the 
terms of the series expressing the field at the hologram are given by 

Epl = 0 if l r n 

Epn = - ~ -  sinc (n~/2)f~ 2 2(p + n)! 2 p! 

In the far-field the spatial amplitude distribution is 

E f a  r = s Epnl[lpn 
p=O 

(13) 

where qb I = re/2. Figure 4 shows that the far-field amplitude distribution for the first-order 
beam closely resembles a TEM~'I doughnut of slightly increased spot size. The helical 
structure of the wavefronts is identical. Similar results are obtained for higher orders. Thus, 
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Figure 5 Decomposition of binary hologram pattern into harmonic components: (a-c) first, second and third 
components; (d) synthesis of first 30 components. 

although the beams produced by our holograms are not strictly TEM~*~ doughnuts, in the 
far-field they are, for all practical purposes, equivalent and for simplicity we refer to them 
as such. 

The way in which the binary pattern produces multiply charged singularities can be 
understood by reference to Fig. 5, where the first three harmonic components of the very 
centre of the pattern in Fig. 3 are plotted. Each of Figs 5a to 5c can be recognized as the 
hologram for a successively higher-order singularity. Figure 5d shows the square-wave 
pattern synthesized from 30 components. 

Figure 3 showed an example of a computed binary off-axis hologram pattern. This was 
printed by a laser printer on A4 paper and reduced by photographing onto half of a 35-mm 
slide. Figures 6a and 6b show charge-one and charge-two doughnuts produced as first and 
second orders, using a HeNe laser for illumination. The patterns, like all subsequent 
experimental ones, were recorded by an Electrim EDC-1000 CCD camera. About 5% of 
the incident power was coupled into the first order. This could be improved considerably 
by converting the present hologram into a phase hologram if facilities were available. 
Although the charge-two pattern is somewhat distorted, it shows clearly the larger diameter 
and narrower bright annulus expected. In fact, a symmetric grating like ours would be 
expected to produce a dim second-order term at best as it should effectively be a 'missing 
order'. We have also used holograms with four fringe defects to generate an 'optical 
leopard' pattern and still more complex beam shapes could be produced. It would even be 
possible to generate combinations involving transverse modes of different m + n (or 
2p + l) sum (e.g. TEM00 + TEMpi) which could not be generated at a single frequency in 
a laser oscillator. These would suffer some change of shape during propagation owing to 
differential Guoy phase shift, but perhaps that could be put to some use. 
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(a) (b) 
Figure 6 Doughnut beams produced by hologram using HeNe laser light: (a) charge one; (b) charge two. 

3. Detection of phase singularity modes 
In their studies of doughnut modes, Tamm and Weiss [7] used an astigmatic imaging 
technique to determine the charges of the singularities, but a more versatile approach is to 
measure the phase structure of the beam by interference, as had been done by Vaughan and 
Willetts [1]. Ideally, one should have available a coherent plane wave to act as reference, 
and in the vicinity of each singularity a fringe pattern with a defect, like that in Fig. 3, would 
be observed. Exactly this behaviour is demonstrated in Fig. 7, where interference patterns 

(a) (b) 
Figure 7 Interference of doughnuts of Fig. 6 with plane wave: (a) charge one; (b) charge two. 
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for the two holographically produced doughnuts shown in Fig. 6 are displayed. In the 
charge-one case, a bright fringe (dark in this print) splits into two; in the charge-two case 
a fringe splits into three. 

When the singularity mode pattern is produced in a laser, it is not so easy to obtain a 
coherent plane wave for use as reference, and a simple split-beam technique is useful [1]. The 
beam of interest is split in a Mach-Zehnder interferometer and recombined with sufficient 
misalignment to produce straight fringes and to displace the two patterns so that the 
singularities in one fall in relatively uniform areas of the other where the phase varies only 
slowly. The result is a defect in the combined fringe pattern at each singularity position. 
Opposite charges in the same pattern fork in opposite directions, and corresponding 
singularities behave oppositely at the two points where they appear. Although the inter- 
ference pattern becomes complicated, this works well when the pattern does not contain too 
many singularities [8]. 

In interpreting these patterns it is important to keep in mind that the visibility of the 
fringes will be small near the singularity as the irradiance there is small, and that the exact 
form of the fringe splitting depends on the position of the fringes. 

Figure 8a shows a slightly asymmetric doughnut produced by the Na2 laser and Fig. 8b 
shows the corresponding split-beam interference pattern, indicating the presence of a 
charge-one phase singularity in the beam. For comparison Fig. 8c shows a split-beam 
interference pattern for an 'unlocked' doughnut, i.e. one where cavity astigmatism has 
broken the frequency degeneracy of the constituent modes. This shows the characteristic 
'sideways shift' of the fringes inside a circular region as explained by Vaughan and Willetts 
[1]. The loss of frequency degeneracy leads to mode beating at a frequency of a few 
megahertz which can be detected with a photodiode. 

An alternative means of detecting and classifying phase singularities in a beam is by 
optical Fourier transform recognition techniques where the holograms discussed above can 
be used as matched filters [9]. 

This has been demonstrated using the arrangement shown in Fig. 9. The Fourier 
transform of an input pattern is formed at the focal plane of a lens where the hologram for 
a pattern of interest, say a charge-one singularity, is placed. The transmitted field is Fourier 
transformed again by a second lens. At the output plane three beams can be distinguished 

- a central magnified image of the field at the input plane, and two 'first-order' fields. 
(Owing to the binary nature of our holograms, higher-order fields also appear but are 
generally too weak to be useful.) One first-order field gives the cross-correlation between 
the input field and the field used to make the hologram, and the other the convolution of 
the input field with the hologram field [9]. In this case it is more helpful to realize that this 
is also the cross-correlation between the input field and the conjugate of the hologram field. 
Thus, if a hologram for a charge-one singularity is used as a filter, a bright spot will appear 
in one field at each point where a positive charge-one singularity appears in the input field, 
and in the other field a bright spot will appear at each point where a negative charge-one 
singularity appears in the input. 

This is shown in Fig. 10a where the singularity in a charge-one doughnut produced 
by the Na2 laser is recognized. At the centre of the picture is the image of the input 
doughnut, flanked by the recognition fields (which are slightly magnified as a result of lens 
aberrations). The intense spot on the right indicates a charge-one singularity. Figure 10b 
shows the result when the input field is a 'leopard'. Here the diagonal placement of the four 
charge-one singularities, two of each sign, shows up clearly. An unlocked doughnut gives 
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(a) (b) 

(c) 

Figure 8 Doughnuts produced by Na 2 laser. (a) 
Phase-locked doughnut. (b) Split-beam interference 
pattern for (a). Note two forks in the fringe pattern, 
indicating the presence of a singularity. (c) Split-beam 
interference pattern for unlocked doughnut. 

Input 
Plane 

fl fl f2 

Hologram 

f2 I i 
Output 

Plane 
Figure 9 Arrangement for Fourier transform 
recognition of singularities in beams. 
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(a) 

(b) 

(c) 

(d) 
Figure I0 Fourier transform recognition of singularities. /n each case an image of the input field appears at 
the centre, flanked by recognition fields for :~ 1 charged singularities: (a) Charge-one doughnut from the Na 2 
laser. (b) 'Leopard' from the Na 2 laser. (c) Unlocked m + n = 1 doughnut from Na 2 laser. (d) Seven-spot 
beam from Na 2 laser. 

the result shown in Fig. 10c, as the actual pattern is rapidly changing, spending part of each 
beat period as a doughnut of each sign [1], so that bright spots appear in the recording on 
both sides. A more complex pattern from the Na2 laser, with seven dark spots, is analysed 
in Fig. 10d, which shows that four charge-one singularities of one sign form a square with 
the three others of opposite sign lying along a line. Such a pattern, called a 'seven-hole' by 
Brambilla et al. [3], would be difficult to analyse using split-beam interference. 
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Although there is clearly room for improvement, the optical Fourier recognition tech- 
nique has the advantage of needing only a single beam and providing output in the form 
of readily recognized spots rather than 'forks' in an interference pattern. Indeed, it is 
interesting to note that, presumably owing to the local rotational symmetry and self 
similarity of the regions surrounding singularities, the technique is less affected by varia- 
tions in scale-size or orientation than is, say, recognition of alphanumeric characters. 

4. Applications 
This work arose originally out of an interest in pattern formation and optical turbulence 
but it is clear that a 'technology' now exists for the production, detection, and classification 
of beams with phase singularities associated with isolated irradiance zeros. Many lasers can 
be run on the TEM*1 mode, and well-designed phase holograms could convert the light 
from almost any laser into such a form, or a more complex pattern [10]. 

In some cases the helical phase structure is of importance, as in switching helicities as a 
means of information processing [7], but in many other cases any beam with a central 
minimum in irradiance (thus including unlocked doughnuts) could be of use. Note that the 
structure we have been discussing is entirely independent of polarization. Such a shape 
could be advantageous when it is desired to launch a beam through a reflecting telescope 
with a central obstruction. A higher-order doughnut would be appropriate for this. 

Another area of potential application is in light-particle interactions [11]. The use of 
doughnut beams has been suggested for small-particle levitation [12] and more recently for 
the focusing of atomic beams [13]. 

Finally, it should be pointed out that speckle patterns formed by laser beams passing 
through inhomogeneous media have been shown to contain many phase singularities [14] 
presumably produced by random structures approximating the holograms discussed above. 

5. Conclusions 
We have shown that laser beams with phase singularities can be generated in lasers or can 
be produced from normal Gaussian beams using computer-generated holograms. The 
presence of the singularities can be detected and they can be classified either by reference 
to defects in interference patterns or by optical Fourier transform pattern-recognition 
techniques using computer-generated holograms as matched filters. Possible applications of 
the simplest of such beams, the TEM*I doughnut, include efficient launching of single-mode 
beams through telescopes and atom and particle trapping. 
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