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Abstract. It is explained how the CEBAF 123 MeV injection line can be instru-
mented to serve as one big Stern-Gerlach polarimeter measuring the polarization state
of the injected beam. No physical changes to the line are required but resonant beam
position monitors, much like others already present in the ring, need to be judiciously
located at locations favorable for detecting the Stern-Gerlach signal.

The historical Stern-Gerlach apparatus used a uniform magnetic field (to orient
the spins) with quadrupole magnetic field superimposed (to deflect opposite spins
oppositely) and a neutral, somewhat mono-energetic, unpolarized, atomic beam. For
the highly-monochromatic, already-polarized beam produced by an electron gun, the
uniform magnetic field has become superfluous, and every quadrupole in the injection
line produces polarization-dependent Stern-Gerlach deflection.

Dual CEBAF electron beam guns produce superimposed 0.25 GHz (bunch sepa-
ration 4 ns) electron beams for which the polarization states and the bunch phases
can be adjusted individually. For example, the (linear) polarizations can be opposite
and the bunch phases adjusted so that (once superimposed) the bunch spacings are
2 ns and the bunch polarizations alternate between plus and minus. The effect of this
beam preparation is to produce a bunch repetition frequency of 0.5 GHz different from
the bunch polarization frequency of 0.25 GHz. This difference will make it possible to
distinguish Stern-Gerlach-induced bunch deflections from charge-induced deflections.

Transverse bunch displacements can be measured using resonant beam position
monitors (BPMs). In particular a high-Q, TM210 mode, rectangular cavity, tuned to
a particular frequency fr rings up to a level proportional to the fr Fourier frequency
component of transverse beam displacement. Because linac bunches are short there
can be significant resonator response at any one of the strong low order harmonics of
the 0.25 GHz bunch polarization frequency.

Our proposed BPMs are tuned to fr = 0.75 GHz. This is the 3th harmonic of
the bunch polarization frequency, but not a harmonic of the 0.5 GHz bunch charge
frequency. This greatly enhances the sensitivity to transverse bunch displacement
correlated with bunch polarization relative to bunch displacement correlated with
bunch charge.

This paper estimates the beam quality and the BPM quality required to extract
beam polarizations from multiple BPMs along the CEBAF 123 Mev electron injection
line. This is expected to provide a passive (non-destructive) form of high analyzing
power polarimetry.
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1. Qualitative Discussion of Resonant Stern-Gerlach Detection

It is shown in a later section that Stern-Gerlach (S-G) angular deflections in a few
quadrupoles at the upstream end of the CEBAF 123 MeV injection line cause beta-
tron excursions of order one Å(10−10 m) downstream. This betatron excitation occurs
automatically, with no new active apparatus required. However, to detect these oscilla-
tions, special resonant beam position monitors (BPMs) have to be optimally placed at
locations where the S-G amplitudes are large. If currently available (not terribly high
Q-value) BPMs could be tuned to the required S-G frequency (tentatively taken here
to be 0.75 GHz) they would probably be satisfactory. However, sophisticated, special
purpose, external data processing electronics will need to be developed.

As a proof of principle for S-G polarimetry, this paper discusses the feasibility of
detecting these S-G-induced betatron oscillations using resonant, room temperature
copper, BPMs. (For higher selectivity, superconducting BPMs would be superior.)

Recent development of BPMs for precision beam position determination has been
motivated by International Linear Collider (ILC) requirements[1][2][3]. This is because
the beam positions at the collision points need to be controlled to a precision of roughly
10 Å. Roughly speaking, the ILC BPM prototypes have achieved transverse position
reproducibility of ±15 nm, for bunch to bunch variation of beam bunches containing
Ne = 1010 electrons. This is roughly an order of magnitude greater than (i.e. inferior to)
their theoretical-minimum expected resolution of ±1.8 nm. The authors (persuasively)
ascribe the performance short-fall primarily to error sources other than thermal noise,
such as instrument imperfections or cross-talk from spurious, forbidden-mode response
to bunch charge.

These ILC-motivated BPM performance investigations are quite relevant to our
proposed Stern-Gerlach (S-G) detection experiment. But it is also important to identify
differences that will make it possible to make up the seemingly two order of magnitude
improved precision needed for confident S-G effect detection. To mangle a familiar
simile, comparing the two experiments is like comparing the presence of apples with
the absence of oranges (as will be explained next.)

Resonant beam position detection relies on two TM cavities. One is tuned to a
waveguide mode approriate for bunch charge measurement; the other is tuned to a
mode sensitive to transverse beam position. Typically both cavities have the same
dimensions and shape, either rectangular of cylindrical, but tuned to a symmetric
mode for charge detection and an anti-symmetric mode for position detection. ILC
tests have typically employed cylindrical TM010 mode for charge, TM110 mode for
position, with mode degeneracy broken by output coupling. For simplicity in avoiding
mode degeneracy, the present paper assumes rectangular cavity shape. Figure 1 shows
the TM210 mode position-sensitive cavity. With width a reduced by a factor of two, a
TM110 mode cavity could be used for beam charge normalization. The performance of
circular and rectangular BPMs is expected to be similar.

(By the Heisenberg uncertainty principle) it would not be feasible to locate a single
mono-energy electron with usefully small transverse accuracy. This makes the electron
charge e unnaturally small for present purposes. For comparison we define a “standard
macrocharge” as the charge of Ne = 1010 electrons, which is a typical number of
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d = 7.6 cm

b = 31.05 cm

a  = 52.0 cm

TM210 TRANSVERSE STERN−GERLACH POLARIMETER BPM

Figure 1. Rectangular TM210 mode beam position monitor. The cavity
dimensions have been roughly adjusted to investigate the performance of
the CEBAF 143 MeV injection line as one big Stern-Gerlach polarime-
ter. Low order TM mode frequencies in GHz are: (1,1,0)= 0.56227,
(2,2,0)=1.1245, (1,2,0)=1.0076, (2,1,0)=0.7519. See Figure 5. All modes
have Q = 29338. For TM210 the half-power frequency points (assuming
room temperature copper construction) are 0.7519 GHz± 25.6 kHz.

electrons in each bunch in an ILC prototype test. Classical (rather than quantum)
mechanics is adequate for treating the centroid motion of such a large number of
electrons, even as regards their mean spin orientation.

A CEBAF beam is CW, with beam current of, say, 160µA, which corresponds
to a current of about 105 macrocharges per second. For S-G detection, as introduced
already, the Ångstrom is a natural transverse length unit. For successful ILC operation
the transverse beam positions need to be controlled to about 1 nm; i.e. ±10 Å.

The bunch structures of the CEBAF injector (123 MeV, 160µA, 0.5 GHz) and
the Accelerator Test Facility (ATF) at the KEK laboratory (1.3 Gev, Nee = 1010e
macrocharge at 5 Hz pulse rate) are very different. We ignore the energy difference,
which is thought to be unimportant for the comparison. For a typical cavity resonator
quality factor of Qr = 104 and frequency of 1 GHz, the cavity charging time is about
10µs, which is far shorter than the ATF repetition period. This makes it appropriate to
treat the ATF resonant response on a pulse-by-pulse basis. The previously-introduced
±10 Å r.m.s. transverse position tolerance refers to individual bunch centroids varia-
tion. Essentially different in time structure, the CEBAF resonator response is contin-
uous wave (CW) with the previously-defined macrocharges passing through the cavity
at 100 kHz rate.

For the narrow band signals under discussion the random noise to signal ratio can be
expected to fall proportional to the square root of data collection time. This suggests
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that, to the extent spatial imprecision is dominated by thermal noise, two orders of
magnitude improved precision will already be made up in runs of one second duration.
There are various reasons why this estimate is irrelevant, or at least misleading. First
of all, it was already stated that the ILC R&D test imprecision is dominated by effects
other than random noise in the BPMs. The “good news” to be drawn from this is
that random noise is even less limiting for S-G detection than the previous estimate
suggested. The “bad news” is that there is little reason to suppose that S-G detection
confidence can be improved appreciably by increasing data collection times. (This
comment will need to be retracted later, while discussing synchronous detection.) Re-
expressed in different terms, the problem limiting S-G detection is not likely to be
“too-small amplitude BPM signal”; the problem can be expected to be “too-great
spurious background signals mimicking S-G induced transverse betatron excursions”.

For better understanding of this comment it is important to understand the es-
sential difference between the two experiments being compared. Using a TM210 mode
BPM to control the transverse ATF beam position is a null experiment. (Here, and
from now on, to avoid switching between waveguide mode notations, we pretend all
resonators are rectangular, even when describing experiments that actually used cylin-
drical resonators.) In the absence of error sources, the transverse BPMs would all read
zero for the passage of every macrocharge. Non-zero readings due to spurious back-
ground excitations can only be interpreted as being due to the transverse displacements
of successive bunches from their design positions. From previously-determined calibra-
tions, non-zero signal amplitude standard deviations are translated into transverse
displacement standard deviations.

The statistical issues for S-G-induced betatron detection are very different. Beam
current, beam polarization, and lattice parameters such as quadrupole strengths and
locations are all known in advance to excellent accuracy. From the unambiguous, non-
controversial, Stern-Gerlach theory, this makes it possible to dead-reckon the expected
S-G-induced betatron orbits to amply high accuracy. One knows, therefore, exactly
what one is measuring when one seeks to demonstate the Stern-Gerlach effect in the
proposed experiment. Ideal transverse BPMs would read exactly the predicted betatron
displacements.

Two BPM attributes are not known however. One of these things is whether, in
the absence of all imperfections, the BPM sensitivity is good enough to detect the
theoretically-knowm S-G deflections. Implications of the preceeding discussion of ILC
prototype tests indicate that the BPM sensitivity can be expected to be good enough
for S-G detection. This claim will be justified more quantitatively below.

The difficulting of detecting an S-G-induced betatron oscillation of 10−11 m can
be compared to detecting a gravity-wave-induced positional oscillation of 10−18 m in
the LIGO experiment. Like the LIGO experiment statistically-decisive conclusions
can be drawn by comparing the responses of more than one, otherwise-statistically-
independent detector. The gravitational wave detection has the advantage that the
statistical independence of their detectors is more persuasive. But the S-G detection
can use more detectors, both horizontal and vertical.
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The gravity wave detectibility was enhanced by the availability of templates (unique
for given source mechanism, but typically with more that two parameters for fitting)
for various possible gravitational wave sources. Of these, in their recent results, the
template for a black hole binary collision matched an observed signal coincidence be-
tween the two detectors. There is a zero parameter “template” for S-G detection. It is
derived in a later section of this paper. Furthermore, unlike the black hole template,
which is restricted to less than 100 cycles lasting for as much as a second, the S-G
template applies for billions of cycles, lasting over minutes.

A further advantage for S-G detection is the possibility of phase-locked detection,
since the frequency and phase of the drive signal are under external control. With
the possible modulation of the beam polarizations there is further frequency domain
separation of the foreground polarization signal from spurious beam charge induced
background signals. For all of these reasons the “smallness” of the S-G signal relative
to detection sensitivity is not a fundamental problem.

What can, however, limit the S-G detectibility is the “largeness” of the back-
ground/foreground ratio. The only significant fundamental background signals limit-
ing Stern-Gerlach detection come from mechanisms for which the electron beam charge
passing through the beam position monitors produces spurious signals that mimic the
effect of the beam polarization. Some of the S-G background rejection features men-
tioned so far may not reduce these background signals.

The main rejection of spurious signals caused by beam charge will be the beam
preparation that separates the S-G frequency from the beam charge frequency. Fur-
ther background rejection will come polarization modulation and from the predicted
dependence of S-G signal on BPM location. One expects this dependence to be uncor-
related with the spurious signal background dependence on BPM location.

An eventual purpose for Stern-Gerlach polarimetry will be for the control of frozen
spin beams in storage rings. Unlike the case that has been discussed, in this case each
particle passes through each BPM millions of times. Noise and background issues in
this case will be very different.

2. Stern-Gerlach Detection Enhancement by Background Rejection

Only a single impediment to S-G detection therefore remains. The response to
passing charge of a perfectly constructed and aligned TM210, sufficiently narrow band,
position sensitive cavity can, theoretically, be insensitive to the beam charge. But,
realistically, the cavity response can be dominated by sensitivity to charge, irrespective
of transverse beam displacement.

2.1. Background Rejection by Beam Centering. We have seen already that
the measured ATF transverse position resolution of ±15 AA is dominated by spuri-
ous responses to beam charge, in conjunction with various other imperfections. The
achieved precision represents the huge rejection of direct charge excitation of the cav-
ity that results from arranging for the beam to travel through the cavity on a line
for which, by left-right symmetry, there is no net cavity excitation. With no further
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refinements of the S-G detection apparatus in CEBAF this might seem to leave our es-
timated background-error/foreground-signal ratio at about 15 to 1. This estimate has
come from accepting the actually-measured ATF transverse uncertainty of 15Å as an
irreducible background transverse uncertainty for the S-G detection experiment. Such
a large uncertainty would be expected to make detection of a Stern-Gerlach signal less
than persuasive. We are therefore left with the task of showing how the S-G-induced
betatron r.m.s. amplitude error can be further reduced, preferably by at least two
orders of magnitude.

2.2. Background Rejection by Polarized Beam Preparation. We are finally
in a position to understand two sentences copied from the second paragraph of the
abstract to the present paper: “The effect of this beam preparation is to produce a
bunch repetition frequency of 0.5 GHz different from the bunch polarization frequency
of 0.25 GHz. This difference will make it possible to distinguish Stern-Gerlach-induced
bunch deflections from charge-induced deflections.”

Figure 5 is explained in detail in a later section. For now we only note that the
foreground S-G betatron signal oscillates at (harmonics of) 0.25 GHz, while the back-
ground charge signal oscillates at (harmonics of) 0.5 GHz. (The extent to which this
is not entirely true is discussed later.) Ideally the S-G detector would be tuned to the
0.25 GHz fundamental. But such a cavity would be inconveniently large. Rather the S-
G detector is tuned to the third harmonic at 0.75 GHz. This maximizes its foreground
response and minimizes its background response.

Ordinary beam position measurement is made difficult by the fact that the spuri-
ous background oscillations occur at the same frequency as the foreground transverse
signal. The only rejection of the spurious signal comes from the cavity tuning to the
displacement-sensitive resonator mode frequency. The previously discussed limitation
of ILC detectors to nm-scale precision reflects the difficulty of rejecting spurious signals
when background and forground oscillation frequencies are the same.

With the beam preparation described in Section 4 the S-G detection is much more
favorable. Approximately the same spurious signal rejection ratio as before comes from
beam centering (to reject direct charge signal) and the cavity’s being tuned to the
position-sensitive mode frequency. But, because, the charge sensitive signal amplitude
at the cavity mode frequency has already been eliminated (i.e. greatly reduced) its
spurious background signals are correspondingly reduced.

The inconvenient feature that the charge sensitive mode frequency is lower than the
position sensitive mode frequency remains present, however. The fact that the charge
sensitive TM110 mode frequency is lower than the position sensitive TM210 makes it
impossible to improve the selectivity by low pass filtering. This limitation can manifest
itself by saturation of external detection apparatus on a spurious low frequency signal
of large amplitude. This is mainly just a nuisance to be worked around, perhaps by
notch filtering at the TM110 frequency.

The proposed improvement in S-G detection selectivity by the polarized beam
preparation just described should already produce the two or three orders of magnitude
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in background rejection needed to make a convincing demonstration of S-G detectabil-
ity possible. To use the S-G signal for accurate determination of beam polarization
may need more effective background rejection.

2.3. Stern-Gerlach Signal Extraction by Sideband Detection. There is an-
other way to reduce the spurious background signal. It is operationally possible to
modulate the two CEBAF beam polarizations independently. This modulation has
the effect of shifting the S-G response signals to be sidebands of the bunch repetition
frequency. (Except for the possibility of upstream beam steering correlated with the
modulation) this moves the S-G signal to an externally-controllable frequency acces-
sible to S-G oscillation but not to conventional betatron oscillation. Currently this
polarization modulation capability is available for low frequencies up to several KHz,
which is much higher than needed for the detection scheme to be described here.

We assume the polarization of the superimposed A and B beams are modulated with
frequency ωm. The time domain, i p(t) current-polarization products of the separate A
and B beams are given by

i pA(t) =
∞∑

n=−∞

δ(t− nT0)(A+ a cosωmt)

i pB(t) =
∞∑

n=−∞

δ(t− T0/2− nT0)(A+ a sinωmt). (1)

and are plotted on the left in Figure 2. The modulation amplitude a is necessarily
smaller in magnitude than the un-modulated polarization amplitude A. There are two
essential differences between the A and B beams. The more essential difference is that
the beam pulses are shifted in time by one half cycle. The less essential difference is
that the cosine modulation has been replaced by sine modulation. (Other polarization
modulations are possible.) The modulation frequency ωm, for which the frequency
is expected to be in the range 0 < fm < 1 kHz, is exaggerated by many orders of
magnitude in this figure, since f0 = 1/T0 is about 0.75 GHz. Champeney[9] gives the
A-beam, cosine-modulated current-polarization Fourier tranform IPA(ω) to be

I PA(t) =
∞∑

n=−∞

2π

T0

(
Aδ
(
ω−n2π

T0

)
+
a

2
δ
(
ω−n 2π

T0

+ωm

)
+
a

2
δ
(
ω−n 2π

T0

−ωm

))
. (2)

The Fourier transform of the B-beam is given by

I PB(t)

= e−iT0ω/2

∞∑
n=−∞

2π

T0

(
Aδ
(
ω − n2π

T0

)
+ i

a

2
δ
(
ω − n 2π

T0

+ ωm

)
+ i

a

2
δ
(
ω − n 2π

T0

− ωm

))

=
∞∑

n=−∞

2π

T0

(
A (−1)n δ

(
ω − n2π

T0

)
+ i

a

2
δ
(
ω − n 2π

T0

+ ωm

)
+ i

a

2
δ
(
ω − n 2π

T0

− ωm

))
.

(3)
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where, having moved the time-shift factor, e−iT0ω/2 inside the summation, its ω factor
can be replaced by 2πn/T0, this factor multiplies a delta function with argument ω −
2π/T0. The corresponding time shift of the modulation is being neglected.

2π/ωm

2π/ωm

F(   )ωFOURIER TRANSFORM

T
0

T
0

Aip  (t)

Bip  (t)

0    A/Tπ

2   a/Tπ
0

ω
m

0    A/Tπ

2   a/Tπ
0

ω
m2   /Tπ 0

2   /Tπ 0
a

t

A

a

t

A

(A)

(B)

f(t)TIME DOMAIN

ω

IP(   )ω

ω

IP(   )ω

Figure 2. Time domain and frequency domain beam pulses for the A
and B staggered, modulated-polarization beams. Broken Fourier am-
plitude lines indicate they are “pure imaginary”, proportional to “i”.
In summing the A and B beam polarization signals the odd harmonics
cancel and the even harmonics add, in effect cutting the polarization
frequency in half. As required, all harmonics of the beam current itself
add constructively, thereby conserving the beam current fundamental
frequency.

A clean Stern-Gerlach will be made available by narrow frequency filtering to one
or the other of the modulation sideband frequencies.

2.4. Stern-Gerlach Signal Extraction by Synchronous Detection. So far
the only application of polarization modulation has depended on narrow band filtering
at sideband frequencies. In fact, since these frequencies are externally imposed, there
is the possibility of further noise reduction by synchronous detection that exploits
previously ignored phase information.

3. Stern-Gerlach Deflection of a Relativistic Particle

We are primarily interested in the Stern-Gerlach deflection caused by the passage
of a point particle with velocity vẑ and rest frame, transversely-polarized magnetic
dipole moment vector µ∗xx̂, through a DC quadrupole, of length Lq, that is stationary
in the laboratory frame K. The purpose of this section is to relate the Stern-Gerlach
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and Lorentz force deflections in a quadrupole in a transfer line such as the CEBAF
injection line.

It is convenient to formulate the calculation with an (abundantly valid) impulsive
approximation, in which the integrated momentum imparted to a particle passing
through a quadrupole are small enough to justify neglecting the spatial displacement
occurring during the encounter and keeping track of only the angular deflection. One
also notes the particle speed is conserved because it is only a longitudinal component
of force that can change the particle speed.

This is illustrated in Figure 3. The lower part of the figure illustrates the situation
in a frame K ′ which is a particle rest frame applicable at the instant the center of the
resonator passes the particle. Before and after momentum vectors are shown in the

LAB

FRAME

MEAN

REST

FRAME v’  b

K’

v

V= 0V= 0

−v −v av’  

Lq

Lq

~
y

x
~

z

y
x

BEFORE

K

AFTER

v

γ

Figure 3. Pictorial representations of interaction between relativistic
particle and quadrupole magnet, as viewed both from the laboratory
frame K and from a “mean rest frame K ′” (the electron rest frame at the
instant the electron passes the center of the magnet). Lorentz contraction
makes the moving magnet appear shorter. v′bẑ is the miniscule, non-
relativistic, before-encounter particle velocity of the particle in the K ′

frame. The magnet velocity is unchanged in the encounter. The “erect”
coordinate system is (x, y). The “skew” coordinate system is (x̃, ỹ).

figure. We anticipate the small transverse Stern-Gerlach deflection shown. But there
is also the possibility of longitudinal momentum transfer, from magnet to particle. For
a magnet at rest (in frame K ′) this momentum transfer would vanish but, because
the magnet is moving, there is the (controversial) possiblity of longitudinal momen-
tum transfer. Nevertheless, this would only be an end effect, fractionally small for
our, assumed-to-be-sufficiently-large, Lq. Under these assumptions the Stern-Gerlach
deflection in the instantaneous rest frame can simply be copied from well-established
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non-relativistic formalism[4]; the transverse force is given by

F̃ ′x̃ = µ∗x̃
∂B̃′x̃
∂x̃′

. (4)

All coordinates and components have been assigned overhead tildes for reasons to be
justified shortly. Following notation of Conte[5], the rest frame magnetic moment is
symbolized by µ∗ to stress that it is specific to the rest frame, irrespective of whatever
reference frame is being discussed. The time spent by the particle in the magnetic field
is L′q/v, and the integrated, rest frame transverse momentum impulse is

∆̃p′x = F̃ ′x̃
L′q
v

=
µ∗x̃
v

∂

∂x̃′
(B̃′x̃L

′
q). (5)

As viewed in the K ′ rest frame, the passing magnet is Lorentz-contracted to length
Lq/γV

. To determine B′x the laboratory magnetic field B̃x̃ needs to be Lorentz trans-
formed to the moving frame K ′. This produces both an electric and a magnetic field,
but it is only the magnetic field that produces Stern-Gerlach displacement in the parti-
cle’s rest frame. The Lorentz transformation yields[6] B̃′x̃ = γB̃x̃. We conclude that the
product B̃x̃Lq = B̃′x̃L

′
q is the same in laboratory and rest frames. Since the displace-

ment x̃ = x̃′ and the transverse momentum component ∆̃p
′
x̃ = ∆̃p

′
x̃ are also invariant

for Lorentz transformation along the z axis, Eq. (5) becomes

∆̃p
SG

x̃ = F̃x̃
Lq

v
=
µ∗x̃
v
Lq

∂B̃x̃

∂x̃
. (6)

The equation for ∆̃p
SG

ỹ is obtained by replacing ∂B̃x̃/∂x̃ by ∂B̃ỹ/∂ỹ. The “SG” su-
perscripts have been introduced to distinguish Stern-Gerlach deflections from Lorentz
force deflections.

The conclusion so far is that formula 4, derived initially assuming non-relativistic
kinematics, is valid even for relativistic particle speed. Of course, because v cannot
exceed c, the transverse force saturates as the particle becomes relativistic. Since the
particle momentum continues to increase proportional to γ, the angular deflection falls
as 1/γ.

As indicated in Figure 3, the coordinates with tildes are actually “skew” coordinates
in conventional accelerator terminology. The “erect” coordinates are (x, y) and each
iron pole tip of an erect quadrupole is a hyperbola asymptotic to an x and a y axis.
The magnetic field components of an erect DC quadrupole are given by

Bx = ky, By = kx, where k =
∂Bx

∂y
=
∂By

∂x
, (7)

Treating a quadrupole of length Lq as a thin lens, the Lorentz force on a point particle
of mass m and charge e traveling with velocity vẑ through the quadrupole imparts
momentum

∆p = F(x, y) ∆t = evẑ× (kyx̂ + kxŷ)
Lq

v
= eLqk(yŷ − xx̂). (8)
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The relativistic longitudinal particle momentum of the particle is p = γmv and its
(small) angular deflections are given by

∆θxx̂ + ∆θyŷ =
∆p

p
=
eLqk

p
(−xx̂ + yŷ) ≡ qxxx̂ + qyyŷ. (9)

The final equation defines inverse focal lengths qx = 1/fx and qy = 1/fy of the
quadrupole treated as a (geometric optics) thin lens;

qx = −eLqk

p
= −Lqc∂By/∂x

pc/e
, and qy =

eLqk

p
=
Lqc∂By/∂x

pc/e
. (10)

This confirms the well-known result that a quadrupole focusing in one plane is defocus-
ing in the other. The right-most expressions are arranged for convenience of evaluation
in MKS units, with pc/e expressed in volts. For the line in question pc/e = 123 MV.

The coordinates and magnetic components in the erect and skew frames are related
by

x =
1√
2

(
x̃− ỹ

)
, y =

1√
2

(
x̃+ ỹ

)
, (11)

Bx =
1√
2

(
B̃x̃ − B̃ỹ

)
, By =

1√
2

(
B̃x̃ + B̃ỹ

)
. (12)

Adding and subtracting the pair of Eqs. (11) and the pair Eqs. (12) and substitution
into Eqs (7) produces

B̃x̃ = kx̃, and B̃ỹ = kỹ, (13)

from which it follows that k is also given by

k =
∂B̃x̃

∂x̃
=
∂B̃ỹ

∂ỹ
. (14)

Substituting these formulas into Eq, (6) produces

∆̃p
SG

x̃ =
µ∗x̃
v
Lqk, and ∆̃p

SG

ỹ =
µ∗x̃
v
Lqk, (15)

as the Stern-Gerlach transverse momentum impulses in the quadrupole under discus-
sion. All that remains is to relate the Stern-Gerlach and Lorentz deflections. The
Stern-Gerlach angular deflections are given by

∆̃θ
SG

x̃ =
∆̃p

SG

x̃

p
=
µ∗x̃Lqk

pv
, and ∆̃θ

SG

ỹ =
∆̃p

SG

ỹ

p
=
µ∗ỹLqk

pv
. (16)

Comparing with Eqs. (10), one sees that (except for orientation issues) the Stern-
Gerlach deflection in a quadrupole is strictly proportional to the inverse focal lengths
of the quadrupole;

∆̃θ
SG

x̃ = − µ∗x
ecβ

qx, and ∆̃θ
SG

ỹ =
µ∗y
ecβ

qy, (17)

These formulas are boxed to emphasize their universal applicability to all cases of
polarized beams passing through quadrupoles. For all practical cases β ≈ 1. With µ∗x
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and µ∗y differing from the Bohr magnetron µB only by sin θ and cos θ factors respectively,
a convenient physical constant for the evaluation is

µB

ec
=

0.928× 10−23 J/T

(1.602× 10−19 C)× (2.9979× 108 m/s)
= 1.932× 10−13 m. (18)

Numerically, Eq. (17) yields Stern-Gerlach-induced, Courant-Snyder betatron ampli-
tudes proportional to √

βx ∆̃θ
SG

x̃ = −(1.932× 10−13 m)
√
βx qx,√

βy ∆̃θ
SG

ỹ = (1.932× 10−13 m)
√
βy qy. (19)

The
√
β factors have been included because the transverse displacement ∆xj at down-

stream location “j” caused by angular displacement ∆θi at upstream location “i” is
given (in either plane) by

∆j =
√
βjβi ∆θi sin(ψj − ψi). (20)

where ψj − ψi is the betatron phase advance from “i” to “j”.
Usually the lattice β-functions have either a maximum or minimum at each quadrupole

location. As a result the S-G x-excitation is dominated by the quadrupoles situated
at βx maxima, and similarly for y. Furthermore, the most favorable locations for S-G
x-detection BPMs is also at βx maxima, and similarly for y. In detail, statements like
this need to be qualified by the particular polarization state of the beam, taking into
account that, from the Stern-Gerlach point of view, the quadrupoles are “skew”.

Irrespective of this reservation, these formulas are evaluated numerically for the
CEBAF injection line in a later section. See, for example, Table 1. Superficially, of
the entries in the table, the largest observable S-G y-displacements are those caused
at i=L8 and observed at j=R3 or j=R7. In detail, the correct betatron phase factors
have to be included and phasor sums evaluated.

It is somewhat fortuitous that, because the quadrupoles at the upstream end of the
CEBAF 123 MeV line are “strong”, they produce “strong” S-G angular deflections.
Furthermore, because the downstream quadrupoles are “weak”, the downstream beta
function maxima are large, which “amplifies” the ∆x,S−G and ∆y,S−G displacements,
but without much changing the S-G betatron amplitudes. For maximum sensitivity
the S-G BPMs should be located at β-function maxima.

If the quadrupoles strengths could be adjusted arbitrarily the observability of S-
G-induced betatron oscillations could be greatly enhanced. As it happens, for the
particular quadrupole strengths assumed in Table 1 the horizontal (x) S-G response
is not very strong. Though the S-G deflections at L7 and L9 are individually strong,
because their ∆ψx phase separation is about π, their deflections approximately cancel.
This seems more like bad luck than any kind of fundamental impediment.

There is not much scope for changing the optics without compromising the beam
line performance. By changing the five L-type quadrupoles that preceed the chicane
the relative heights of the first two βx peaks can probably be changed appreciably
without much de-tuning of the dispersion suppression. In this way the horizontal S-G
cancellation would be largely overcome to make the horizontal S-G response comparable
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with the vertical response. Also the few quadrupoles following the chicane can perhaps
be altered to improve the S-G detection. Resonant BPMs in this region can provide
independent confirmation of the S-G betatron amplitudes. None of these things have
been investigated.

Optics far more favorable for Stern-Gerlach polarimetry could surely be developed
if the injection beam line quadrupoles could be altered more-or-less freely and the beam
dumped at the end of the injection line.

Any betatron oscillations launched in the injection line of course continue in the
main ring. The possiblity of measuring there has not been investigated. The most
favorable locations would preceed the injection linac. The S-G induced betatron oscil-
lation amplitude would be adiabatically damped in the North Linac in proportion to
square root of energy, making it harder to measure.

Deflection formulas (6) exhibit no explicit dependence on γ. This is only because
the angular deflections are expressed in terms of quadrupole inverse focal lengths. For
a given quadrupole at fixed quadrupole excitation, the inverse focal length scales as
1/γ. This has the effect of “hiding” the 1/γ Stern-Gerlach dependence, which is due
to the proportionality to γ of the beam stiffness.

4. CEBAF Injection Line Polarized Beam Preparation

The Stern-Gerlach BPM signal is extremely weak compared to direct beam charge
BPM signal. The cleanest way to extract the S-G signal is for its frequency to differ
from the frequency of the charge signal. This makes it essential to shift the S-G
frequency away from the bunch repetition frequency. A resonant cavity can then serve
as a filter to separate the S-G signal from the direct charge signal, based on their
different frequencies. In a storage ring it would be possible to exploit the spin tune
precession during circulation aroung the ring to shift the bunch polarization frequency,
but this option is not available in a linac beam line.

In a linear beam line, the fact that each bunch passes an S-G sensitive BPM only
once, makes it hard to arrange for the polarization of successive bunches to be different.
Different polarization can, however, be imposed at the electron source by superposing
staggered bunch trains having opposite (or otherwise different) polarizations. This can
only be done near the electron source, either by alternating the (circular) polarization
of the laser of the photo-injector, or by swinging the electron polarization at the front
end of the injector line, where the electron energy is still quite low. The latter pos-
sibility has been discussed earlier. The frequency with which the bunch polarization
oscillates is currently thought to be limited to, perhaps, 10 kHz, which corresponds to
a insufficiently long polarization oscillation period of Tpol ≈ 100µ s.

Far higher frequency bunch polarization modulation frequency is made possible by
superposing staggered bunch trains having different polarizations. Figure 4 illustrates
such a superimposed CEBAF bunch train. Bunches are labeled A in one of the two
pre-superimposed bunch trains and labeled B in the other. Figure 5 shows the resulting
beam charge and beam polarization frequency spectra.

In the CEBAF injection line a single bunch can, similarly, pass through the S-
G resonator only once. But now adjacent A and B bunches coming in the sequence
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A,B,A,B,· · · , can be arranged to have arbitrarily different polarizations, for example
both purely transverse, but of opposite sign. Since the bunch repetition rate is of order
1 GHz, the number of S-G resonator cycles during damping time Tdamp ≈ 10−5 s is of
order 104.

This makes possible a huge suppression of direct charge excitation relative to S-G
excitation. There are however, effects that limit the effectiveness of this suppression.
There will be an r.m.s. deviation σAB between the A and B bunches. Furthermore, to
the extent the S-G resonator is tipped vertically by r.m.s. angle σΘv , the benefit that the
S-G cavity resonates in a TM mode (insensitive to passing beam charge) is defeated.

This makes possible a huge suppression of direct charge excitation relative to S-G

t [ns]

t [ns]

T/2
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ΑΒ

A A A A
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1
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A A A AB B B B
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B B B B
P I(t)

4 62 8 10 12 14
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−2
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Figure 4. Beam A, 250 MHz, positive-polarization bunches, alternate
with beam B, 250 MHz, negative-polarization bunches. (Except for σAB

amplitude imbalance) the beam charge frequencies are harmonics of
0.5 GHz. i.e. 0.5, 1.0, 1.5, . . . . The third harmonic beam magnetiza-
tion frequency is 0.75 GHz.

excitation. There are however, effects that limit the effectiveness of this suppression.
There will be an r.m.s. deviation σAB between the A and B bunches. Furthermore,
to the extent the S-G resonator is tipped vertically by r.m.s. angle σΘv , the benefit
that the S-G cavity resonates in a TM mode (insensitive to passing beam charge) is
defeated.
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Figure 5. The top plot shows frequency spectra of the individual (stag-
gered) A and B bunch currents. There is the possibility of beam magne-
tization side bands if the A and/or B polarizations are being modulated
and PAIA or PBIB is plotted. The middle plot shows the frequency
spectrum of the superimposed A and B bunch currents. The dominant
lines are at twice the frequency of the individual currents. Mismatch
of A and B currents produces background lines coinciding with magne-
tization lines. The bottom plot indicates the fS−G frequency to which
the resonator is tuned, the cut-off frequency of the fundamental, S-G
sensitive TE10 mode, and the lowest frequency charge-sensitive TM11

mode.
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5. Sample Determination of Stern-Gerlach Betatron Amplitudes

Table 1 provides numerical values for the main parameters of the CEBAF 123 MeV
electron injection line. They have mainly been extracted by measuring and scaling from
Figure 6 which corresponds to the line layout shown in Figure 7. The values are only
crude and tentative for various reasons. The beamline has probably been superceeded
by now, and the data extraction from the figure has been quite crude. Furthermore,
when I attempt to reconstruct the optical functions from the quadrupole strengths
provided in reference [11] I get only semi-quantitative agreement with Figure 6. As
a result the ∆ψ phase advance factors in the table may be quite wrong. For these
reasons the figures in this section are intended to serve as a numerical example rather
than a realistic first pass design of an actual beam test.

These calculations need to be repeated starting from an up-to-date lattice descrip-
tion file. It will be important also to extend the lattice description at least as far as
the entrance to the north area linac, and preferably around the following arc.

As explained earlier, this beamline, as it stands, is more favorable for detecting
vertical S-G oscillations than horizontal. The bold face entries in the table emphasize
the significant parameters in for deflecting vertical S-G deflection.

Table 1. Lattice optics for the CEBAF 123 MeV electron injection line.
Lq = 0.15 m for all quadrupoles. The bold face entries correspond to
what seems like the most favorable S-G-induced betatron amplitudes for
this particular adjustment of the 123 MeV injection line. The entries in
the column labeled “rate-y” are q

√
βiβj sin(∆ψy).

label s ∂By/∂x q βx ψx/2π βy ψy/2π ∆ψy/(2π) sin∆ψy rate-y
m T/m 1/m m m

L6 1.237 -1.403 -0.513 8.50 0.0 22.5 0.0 -0.453
L7 3.513 3.509 1.284 65.0 0.0154 0.86 0.4135 -0.039
L8 4.633 -3.761 -1.376 1.0 0.4933 14.7 0.4533 0 0
L9 5.717 3.348 1.225 75.8 0.5086 3.0 0.4776 0.024 0.152
L10 6.866 -0.848 -0.310 39.4 0.5112 3.4 0.7315 0.278 0.984
R1 11.08 -0.117 -0.428 20.2 0.9828 3.81 0.9059 0.452 0.294
R2 13.92 0.751 0.274 76.2 0.9907 2.54 0.9351 0.481 0.114
R3 23.63 -0.604 -0.221 1.35 0.9982 62.3 1.2661 0.812 -0.923 38.4
R4 29.38 0.803 0.294 20.5 1.0004 3.90 1.3549 0.901 -0.579
R5 34.97 -0.573 -0.210 3.3 1.4916 7.12 1.4159 0.962 -0.233
R6 40.81 0.803 0.294 11.0 1.4981 10.2 1.4768 1.023 0.147
R7 46.47 -0.604 -0.221 1.9 1.5003 91.6 1.552 1.099 0.583 -29.4
R8 56.05 0.751 0.275 75.0 1.9941 0.34 1.8897 1.436 0.390
R9 58.92 -1.172 -0.429 18.1 1.9952 14.4 1.9227 1.469 0.191
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Figure 6. Optical functions for the 123 MeV injection line copied from
reference[11]. This design has probable been superceded. Entries in
Table 1 have been scaled from this graph.
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Figure 7. Also copied from reference[11], this figure gives the 123 MeV
beamline layout.
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