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Outline   

•  Introduction 
•  Features and parameterization of magnetized 

beams  
•  Formation of magnetized bunches:  

–  methods and limitations,  
–  experiments in rf gun.  

•  Transport and Manipulation: 
–  transverse matching, 
–  longitudinal manipulations, 
–  decoupling into flat beams. 

•  Outlook 
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Required Electron-Beam Parameters 

•  Cooling interaction 
time 

•  magnetized cooling  
less dependent on  
e- beam transverse 
emittance (to what  
extent?) 

•  electron-cooling 
accelerator provides 
beam eventually 
matched to cooling-
solenoid section 
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(magnetized) 

(not magnetized) 

(not magnetized) 

(magnetized) 



Cooler configurations 

•  low-energy coolers: 
–  lattice (bends) embed-

ded in magnetic fields,  
–  based on DC electron 

sources, 
–  no further acceleration 

or bunching, needed. 

•  high-energy coolers: 
–  medium energies 

required (50-100 
MeV),  

–  acceleration in SCRF 
linac   bunching 

–  lumped solenoidal 
fields       matching  
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!
300 keV, 3 A cooler produced  

by Budker INP for IMP,  
Lanzhou (China) 

early concept for RHIC e-cooling 



High-energy coolers 
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magnetized- 
beam injector 

cooling  
section 

dump or  
energy recovery 

matching 

matching 
mode/converter 

bunching 

acceleration 

debuncher 

•  injector: produces bunched beam for 
RF acceleration 

•  debuncher: matched electron bunch 
length to ion-beam’s, 

•  matching + mode/converter sections: 
repartition “physical” emittances, 
match in cooling-solenoid section. 



Beam dynamics regimes (round beams) 
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space charge 
emittance “pressure” 

angular momentum 
contribution 
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: magnetization 
: uncorrelated geometric emittance 
: generalized perveance 

•  Radial envelope (σ ) equation in a drift (Lawson): 
 



Features & Parameterization  

•  possible parameterization of coupled motion 
between 2 degrees of freedom has been 
extensively discussed; see: 
–  D.A. Edwards and L.C. Teng, IEEE Trans. Nucl. Sci. 20, 3, pp. 

885-889 (1973). 
–  I. Borchardt, E. Karantzoulis, H. Mais, G. Ripken, DESY 87-161 

(1987). 
–  V. Lebedev, S. A. Bogacz, ArXiV:1207.5526 (2007). 
–  A. Burov, S. Nagaitsev, A. Shemyakin, Ya. Derbenev, PRSTAB 

3, 094002 (2000). 
–  A. Burov, S. Nagaitsev, Ya. Derbenev, PRE 66, 016503 (2002). 

•  Simpler description that provides the necessary 
insights.. 
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A simple description of coupled motion 

•  Consider the 4x4 beam matrix 

•  Introduce the “correlation” matrix: 
•  Beam matrix takes the form: 

•  The correlation subjects to               transforms 
as  

 
•  C provides information on the coupling only. 
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I. INTRODUCTION

The production of flat beam with high transverse-

emittance ratios has important applications to the field

of advanced particle accelerators and novel light sources.

The production of flat beam in a photo injector entails to

the generation of angular-momentum-dominated beams

that can be subsequently transformed into a flat beam by

the mean of a round-to-flat-beam (RFTB) transforma-

tion. The RFTB beam line applies a net kick that cancel

the angular momentum and redistribute the beam remit-

tances into the eigenemittances. In extend the formalism

of correlation matrix and apply it to explore the mitiga-

tion of deleterious e↵ect in the RFTB. The evolution of

the root-mean-square (rms) transverse size � of a single-

specie axially-symmetric beam is generally described by

the second order di↵erential equation

�00, (1)

II. CORRELATION-MATRIX FORMALISM

A. Definitions

In order to optimize the performance of the flat-beam

generation we make use of and improve the concept of

correlation matrix introduced in [1]. We consider the

four-dimensional (4D) transverse trace space. We take

the particle coordinates in the transverse trace spaces to

be

eX ⌘ (x, x0
) and

eY ⌘ (y, y0) where x (resp. y) and x0

(resp. y0) refer to the horizontal (resp. vertical) position

and divergence coordinates and e is the transposition

operator.

We introduce the correlation matrix C following

Ref. [1] as

Y = Y + CX, (2)

where Y represents the uncorrelated part. We statisti-

cally extend the definition of the correlation matrix to

C ⌘ hY eXihXeXi
�1

, (3)

where hXeXi and hY eXi are 2⇥ 2 blocks of the 4D beam

matrix ⌃ [the brackets h...i represent the statistical aver-
aging of the charge-normalized trace-space density distri-

bution]. We note that the beam matrix ⌃ can be written

as

⌃ ⌘

hXeXi hX eYi
hY eXi hY eYi

�
=

✓
I 0

0 I

�
+


0 C�1

C 0

�◆

⇥

hXeXi 0

0 hY eYi

�
, (4)

for |C| 6= 0.

The form of the correlation matrix is constraints and

can be shown to be C2,1 = �(1 + a2)/b where a ⌘
C1,1 = �C2,2 and b ⌘ C1,2 which insures |C| = 1 [1].

Upon knowledge of the incoming C matrix downstream

of CAV39, the RFTB is tuned to apply the necessary

torque to insure all the elements of C identically van-

ish downstream of the RFTB [1, 3]. Considering the

RFTB configuration implemented at ASTA (three skew

quadrupole with 0.167 m e↵ective length separated by

0.38 m) and limited strengths (typically k1  30 m

�2
),

flat beam generation is only possible for a limited val-

ues of the parameters a and b associated to the incoming

correlation matrix; see Fig. ??.

B. Evolution in an uncoupled beamline

As a first example we consider a beam subjects to a

beamline with the uncoupled 4⇥ 4 transfer matrix

R =


H 0

0 V

�
, (5)

where H and V are 2⇥ 2 transport matrices respectively

associated to the horizontal and vertical degree of free-

doms. Taking the beam to have an initial beam matrix

⌃0, the final matrix is given by ⌃ = R⌃0
˜R. The evolu-

tion of the correlation matrix is then found to be

C = V C0H
�1, (6)

where C0 ⌘ hY0
fX0ihX0

fX0i
�1

is the initial correlation

matrix.

C. Evolution in an arbitrary beamline

As a first example we consider a beam subject to a

beam line with transfer matrix

R =


H G
U V

�
, (7)
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2

The evolution of the correlation matrix is found to be

C = (U + V C0)(H +GC0)
�1. (8)

The special case of a skew beamline made of a

quadrupole-magnet lattice can be written as
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Beam matrix for a round magnetized beam 

•  At a waist, the matrix of a magnetized (round) 
beam is 
 
 
 

•  The eigen-emittances of this beam matrix are: 

•  the eigen-emittances can be mapped into 
“physical” emittances using a skewed  
beamline 
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The evolution of the correlation matrix is found to be

C = (U + V C0)(H +GC0)
�1. (8)

The special case of a skew beamline made of a

quadrupole-magnet lattice can be written as H = V =

A+B
2 ⌘ M+ and G = U ==

A�B
2 ⌘ M� then

C = (M� +M+C0)(M+ +M�C0)
�1, (9)

and the beam can be decor related provided:

M� +M+C0 = 0. (10)
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Formation of magnetized bunches 

•  Cathode immersed  
in an axial B field  

•  Sheet beams at birth (with  
subsequent flat-to-round  
beam converter) 
–  shaped cathode,  
–  line-laser focus 
–  Nonlinear optics  

               (speculative) 
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mode 
 

converter 

G. Florentini, et al.,  
Proc. PAC95, p. 973 (1996) 

Y. Derbenev, University of Michigan  
report UM-HE-98-04 (1998) 



Cathode in a magnetic field 

•  electrons born in an axial B field           CAM       

•  upon exit of solenoid field (             ): CAM 
becomes purely kinetic.  
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 Emittance vs magnetization 

•  “effective emittance” 
•  magnetization 

•  The emittance has a  
lower-bound value : 

•  Practically,      includes other 
contributions.  
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Example of 3.2-nC magnetized bunch 

•  high-charge bunch 
subject to emittance 
degradation 

•  proper optimization  
(emittance compensation) 
      4-D emittance com- 
parable to round beams.  
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Measuring (kinetic) angular momentum 

•  Kinetic angular momentum can be measured 
using a slit technique (similar to emittance) 

 
 
•  The beam’s average angular 

momentum is given by 
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�1,2  : rms beam size at slit (1) and 
observation screen (2),  
: axial momentum 
: drift length between locations 
(1) and (2).  

beam at slits beam at observation point 



Experimental generation in a photoinjector 

•  Fermilab A0 normal-conducting photoinjector 
(decommissioned), 

•  15 MeV, charge up to 2 nC,~3-10 ps bunch 
•  main focus was conversion to flat beams 
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Experimental generation in a photoinjector 
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Experimental generation in a photoinjector 
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CAM from applied B field 

measured kinetic  
angular momentum 

•  weak    dependence,  
•  quadratic scaling  

with laser spot size 
     on photocathode. �c

Q



Decoupling into flat (εx/εy≠1) beam 

•  Transport of magnetized bunches while 
preserving    is challenging,   

•  Use of round-to-flat beam transformer to  
convert into uncoupled (flat) beam 
      eigen-emittances maps into “physical” 
transverse emittances: 
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Decoupling into flat beam: experiments (1) 

•  Same experimental setup as used for generation 
of CAM-dominated beams 
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Decoupling into flat beam: experiments (2) 

•  normal emittances 
map into the flat- 
beam emittance 

•  large experimental 
uncertainties for 
smallest emittance meas. 

20 P. Piot, EIC’14, JLab, Mar. 17-21, 2014 



Outlook + open questions 

•  magnetized beam from a SCRF gun: 
–  flux concentrator around cathode? 
–  flat beam at cathode  

[J. Rosenzweig, PAC93 showed (   ,    )=(95,4.5) µm] 
•  needed      and    ? and limit on 4-D emittance? 
•  planned future experiment at ASTA 
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