带 Fermilab

Generation and Dynamics of Magnetized Beams for High-Energy Electron Cooling*

Philippe Piot,
Department of Physics and Northern Illinois Center for Accelerator \& Detector Development, Northern Illinois University, DeKalb IL 60115
Accelerator Physics Center, Fermi National Accelerator Laboratory, Batavia IL 60510
Yin-e Sun,
Advanced Photon Source, Argonne National Laboratory, Argonne IL 60439
International Workshop on Accelerator Science \& Technologies for future electron-ion colliders (EIC'14), Jefferson Lab, March 17-21, 2014

[^0]
Outline

- Introduction
- Features and parameterization of magnetized beams
- Formation of magnetized bunches:
- methods and limitations,
- experiments in rf gun.
- Transport and Manipulation:
- transverse matching,
- longitudinal manipulations,
- decoupling into flat beams.
- Outlook

Required Electron-Beam Parameters

- Cooling interaction time
$\tau \approx \rho / v_{e \perp}($ not magnetized $)$
$\tau \approx \frac{\rho}{v-v_{e \|}}$ (magnetized)
- magnetized cooling less dependent on e- beam transverse emittance (to what extent?)
$r_{L}=\frac{v_{e \perp}}{e B_{z}} \quad$ (magnetized)

- electron-cooling accelerator provides beam eventually matched to coolingsolenoid section

Cooler configurations

- high-energy coolers:
- medium energies required (50-100 MeV),
- acceleration in SCRF linac \longrightarrow bunching
- lumped solenoidal fields \longrightarrow matching

early concept for RHIC e-cooling

High-energy coolers

- matching + mode/converter sections: repartition "physical" emittances,
dump or
energy recovery match in cooling-solenoid section.

Beam dynamics regimes (round beams)

- Radial envelope (σ) equation in a drift (Lawson):

K : generalized perveance ϵ_{u} : uncorrelated geometric emittance
\mathcal{L} : magnetization

Features \& Parameterization

- possible parameterization of coupled motion between 2 degrees of freedom has been extensively discussed; see:
- D.A. Edwards and L.C. Teng, IEEE Trans. Nucl. Sci. 20, 3, pp. 885-889 (1973).
- I. Borchardt, E. Karantzoulis, H. Mais, G. Ripken, DESY 87-161 (1987).
- V. Lebedev, S. A. Bogacz, ArXiV:1207.5526 (2007).
- A. Burov, S. Nagaitsev, A. Shemyakin, Ya. Derbenev, PRSTAB 3, 094002 (2000).
- A. Burov, S. Nagaitsev, Ya. Derbenev, PRE 66, 016503 (2002).
- Simpler description that provides the necessary insights..

A simple description of coupled motion

- Consider the $4 x 4$ beam matrix

$$
\Sigma \equiv\left[\begin{array}{lll}
\langle\mathbf{X} \widetilde{\mathbf{X}}\rangle & \langle\mathbf{X} \tilde{\mathbf{Y}}\rangle \\
\langle\mathbf{Y} \widetilde{\mathbf{X}}\rangle & \langle\mathbf{Y} \tilde{\mathbf{Y}}\rangle
\end{array}\right] \quad \text { where } \quad \begin{aligned}
& \widetilde{\mathbf{X}} \equiv\left(x, x^{\prime}\right) \\
& \widetilde{\mathbf{Y}} \equiv\left(y, y^{\prime}\right)
\end{aligned}
$$

- Introduce the "correlation" matrix: $C \equiv\langle\mathbf{Y} \widetilde{\mathbf{X}}\rangle\langle\mathbf{X} \widetilde{\mathbf{X}}\rangle^{-1}$
- Beam matrix takes the form:

$$
\Sigma=\left(\left[\begin{array}{ll}
I & 0 \\
0 & I
\end{array}\right]+\left[\begin{array}{cc}
0 & C^{-1} \\
C & 0
\end{array}\right]\right)\left[\begin{array}{cc}
\langle\mathbf{X} \widetilde{\mathbf{X}}\rangle & 0 \\
0 & \langle\mathbf{Y} \tilde{\mathbf{Y}}\rangle
\end{array}\right]
$$

- The correlation subjects to $R=\left[\begin{array}{ll}H & G \\ U & V\end{array}\right]$ transforms as $C_{0} \rightarrow C$

$$
C=\left(U+V C_{0}\right)\left(H+G C_{0}\right)^{-1}
$$

- C provides information on the coupling only.

Beam matrix for a round magnetized beam

- At a waist, the matrix of a magnetized (round) beam is

$$
\Sigma_{0}=\left[\begin{array}{cc}
\varepsilon T_{0} & \mathcal{L} J \\
-\mathcal{L} J & \varepsilon T_{0}
\end{array}\right] . \begin{gathered}
\text { where } T_{0}=\left[\begin{array}{cc}
\beta & -\alpha \\
-\alpha & \frac{1+\alpha^{2}}{\beta}
\end{array}\right] \\
\text { and the magnetization is } \\
\left.\mathcal{L}=\left\langle x y^{\prime}\right\rangle=-\left\langle x^{\prime}\right\rangle\right\rangle=\frac{L}{2 p_{z}}
\end{gathered}
$$

- The eigen-emittances of this beam matrix are:

$$
\varepsilon_{ \pm}=\varepsilon \pm \mathcal{L} . \quad \text { where } \varepsilon^{2}=\mathcal{L}^{2}+\varepsilon_{u}{ }^{2}=|\Sigma|
$$

- the eigen-emittances can be mapped into "physical" emittances using a skewed beamline

$$
\left[\begin{array}{ll}
M_{+} & M_{-} \\
M_{-} & M_{+}
\end{array}\right] \quad \begin{gathered}
\text { decoupling } \\
\text { when }
\end{gathered} \quad \begin{aligned}
& M_{-}+M_{+} C_{0}=0 .
\end{aligned}
$$

Formation of magnetized bunches

- Cathode immersed in an axial B field
- Sheet beams at birth (with subsequent flat-to-round beam converter)
- shaped cathode,
- line-laser focus
- Nonlinear optics
G. Florentini, et al., Proc. PAC95, p. 973 (1996)

Cathode in a magnetic field

- electrons born in an axial B field $B_{z} \rightarrow \mathrm{CAM}$

$$
L(r)=e r A_{\theta} \simeq \frac{e r^{2}}{2} B_{z, 0}+\mathcal{O}\left(r^{4}\right)
$$

- upon exit of solenoid field $\left(A_{\theta}=0\right)$: CAM becomes purely kinetic.

Emittance vs magnetization

- "effective emittance" $\varepsilon^{2}=\mathcal{L}^{2}+\varepsilon_{u}{ }^{2}$
- magnetization

$$
\mathcal{L}=\frac{e B_{0}}{2 m c} \sigma_{c}^{2}
$$

- The emittance has a lower-bound value :

- Practically, ε_{u} includes other contributions.

Example of 3.2 -nC magnetized bunch

- high-charge bunch subject to emittance degradation
- proper optimization (emittance compensation) $\rightarrow 4$-D emittance comparable to round beams.

parameter	flat-beam configuration	round-beam configuration	units
Q	3.2	3.2	nC
E	47.18	48.77	MeV
ε_{x}	105.04	5.43	$\mu \mathrm{m}$
ε_{y}	0.31	5.44	$\mu \mathrm{m}$
$\varepsilon_{4 D}$	5.53	5.44	$\mu \mathrm{m}$
ρ	$\simeq 334$	$\simeq 1$	-

Measuring (kinetic) angular momentum

- Kinetic angular momentum can be measured using a slit technique (similar to emittance)

- The beam's average angular momentum is given by $\quad \sigma_{1,2}$: rms beam size at slit (1) and observation screen (2),

$$
\langle L\rangle=2 P_{z} \frac{\sigma_{1} \sigma_{2} \sin \theta}{D}
$$

P_{z} : axial momentum
D : drift length between locations (1) and (2).

Experimental generation in a photoinjector

- Fermilab A0 normal-conducting photoinjector (decommissioned),
- 15 MeV , charge up to $2 \mathrm{nC}, \sim 3-10 \mathrm{ps}$ bunch

Experimental generation in a photoinjector

- linear scaling with B field on photocathode

Experimental generation in a photoinjector

- weak Q dependence,
- quadratic scaling with laser spot size σ_{c} on photocathode.

Decoupling into flat $\left(\varepsilon_{x} / \varepsilon_{y} \neq 1\right)$ beam

- Transport of magnetized bunches while preserving \mathcal{L} is challenging,
- Use of round-to-flat beam transformer to convert into uncoupled (flat) beam \rightarrow eigen-emittances maps into "physical" transverse emittances:

$$
\begin{aligned}
\varepsilon_{n}^{ \pm}= & \sqrt{\left(\varepsilon_{n}^{u}\right)^{2}+(\beta \gamma \mathcal{L})^{2}} \\
& \pm(\beta \gamma \mathcal{L})^{\beta \gamma \stackrel{ }{\rightarrow} \varepsilon_{n}^{u}}\left\{\begin{array}{l}
\varepsilon_{n}^{+} \simeq 2 \beta \gamma \mathcal{L}, \\
\varepsilon_{n}^{-} \simeq \frac{\left(\varepsilon_{n}^{u}\right)^{2}}{2 \beta \gamma \mathcal{L}},
\end{array}\right.
\end{aligned}
$$

Decoupling into flat beam: experiments (1)

- Same experimental setup as used for generation of CAM-dominated beams

experiments
simulations

Decoupling into flat beam: experiments (2)

- normal emittances map into the flatbeam emittance
- large experimental uncertainties for

Parameter	Experiment	Simulation	Unit
$\sigma_{x}^{X 7}$	$0.088 \pm 0.01(\pm 0.01)$	0.058	mm
$\sigma_{x}^{X 7}$	$0.63 \pm 0.01(\pm 0.01)$	0.77	mm
$\sigma_{x}^{X 8, v}$	$0.12 \pm 0.01(\pm 0.01)$	0.11	mm
$\sigma_{y}^{X 8, h}$	$1.68 \pm 0.09(\pm 0.01)$	1.50	mm
ε_{n}^{x}	$0.41 \pm 0.06(\pm 0.02)$	0.27	$\mu \mathrm{~m}$
ε_{n}^{y}	$41.1 \pm 2.5(\pm 0.54)$	53	$\mu \mathrm{~m}$

P. Piot, EIC'14, JLab, Mar. 17-21, 2014

Outlook + open questions

- magnetized beam from a SCRF gun:
- flux concentrator around cathode?
- flat beam at cathode
[J. Rosenzweig, PAC93 showed $\left.\left(\varepsilon_{+}, \varepsilon_{-}\right)=(95,4.5) \mu \mathrm{m}\right]$
- needed ϵ_{u} and \mathcal{L} ? and limit on 4 -D emittance?
- planned future experiment at ASTA

[^0]: *sponsored by the DOE awards DE-FG02-08ER41532 to Northern Illinois University and DE-AC02-07CH11359 to the Fermi Research Alliance LLC.

