Helicity Decoder Board

Prevents mis-identification of real helicity of some of events in counting mode – needed with 2 kHz MOLLER Helicity Reversal

Paul King and Riad Suleiman

Tuesday, December 1, 2020

CEBAF Helicity Controls

Helicity Generator Signals to DAQ – What user gets

Example: Quarter Pattern

○ +--+ or

O **-++-**

Helicity Generator Signals – Real time signals

Helicity Decoder Board

- MOLLER fast helicity reversal (1920 Hz, 10 µsec settle time, 64-window pattern, 128-window delay) could cause mis-identification of real helicity of some of events in counting mode (these are random events), diluting measured asymmetry
- Board to be developed by: MOLLER collaboration (Ohio University), Jefferson Lab Fast Electronics Group and Accelerator Division
- Will be used by data acquisition systems running in counting mode: Hall B, Hall C, Møller Polarimeters and Mott Polarimeter in CEBAF Injector
- Board will not reconstruct real helicity or real 30-Bit Shift Register
- Board has four input signals: T_Settle, Delayed Helicity, Helicity Pattern, and Pair Sync
- For each counting event:
 - Now: Delayed Helicity and Pattern are recorded in Rings of helicity-gated SIS3801 Scaler. Offline analysis then attempts to construct real helicity, a complicated process due to delay and randomness of events.
 - New Board: board will keep records of helicities spanning last 30 patterns to be able to construct 30-bit shift register seed of pseudo-random helicity generator and position within pattern. And for each event, these records are read along with event. Offline analysis (anytime>n-patterns) will calculate real helicity using helicity predictor. Will be able to correctly identify helicity of every event.

Jefferson Lab

Electron Beam Travel Time

- With 10 µs T_Settle time, travel time from photocathode (Pockels Cell) to Hall target becomes relevant. Also, time it takes for helicity board signals to propagate to Laser Hut and to Halls.
- It takes beam about 4.3 µs per pass to reach Hall.
- Fiber length from Injector Service Building (ISB) IN01B05 to Hall C was measured to be 1705 ft using "20 MHz Clock" fiber. With n=1.45, it takes 2.5 µs for helicity signals to travel in fibers to Hall.
 - ➤ All these travel times will be accounted for in this new Helicity Decoder Board such that recorded events have correct helicity at Physics Interaction Time

Pseudo-Radom Helicity Generator

- Determines helicity at start of pattern
- Use 30-bit Shift Register
- It is Pseudorandom, not "Random" because it is deterministic, once a sequence of 30 helicity states is known, next states can be predicted, and it repeats its cycle.
- For any initial seed, there are 2³⁰ 1 = 1,073,741,823 (maximal length) random bits before sequence repeats, 50 days for 1000 Hz helicity reversal rate and a Quartet.

Decoder Board I/O and Features

• Input:

- 1. T_Settle
- 2. Delayed Helicity
- 3. Helicity Pattern
- 4. Pair Sync

- NIM or Fiber, programmable
- 5. External 250 MHz FADC Clock (ECL) Board has 250 MHz internal clock
- 6. Trigger and Sync Signals

Output:

- Four NIM helicity outputs (T_Settle, Delayed, Pattern and Pair) after common delay for timing check
- 2. 20 Data words for each trigger event
- Add programable common delay (0-30 μs) for input helicity signals:
 - To fix time delays due to beam travel time and helicity signal distribution to Hall
 - Will be measured for each board in a specific DAQ
 - Will sync helicity of beam at Physics Interaction Time in Hall

Scheme Outline

- ➤ New scheme to readout delayed helicity for Physics Event Trigger:
- Running in background in Helicity Decoder Board:
 - On Pattern Start:
 - 1. Increment pattern counter
 - 2. Grab delayed (or reported) helicity
 - 3. Push onto running Helicity Seed (32 bits)
 - 4. Clear pattern phase counter
 - On T_Settle Transition:
 - 1. Increment pattern phase counter
 - 2. Increment T_Settle counter
- Then, when a physics event triggers DAQ, report Data Word of:
 - 1. Current seed value to find true helicity for first window in pattern
 - 2. Counter of pattern phase
 - 3. Counters of pattern and T_Settle
 - 4. Status of T_Settle at time of trigger to be used to veto event
 - 5. Event Polarity: XOR of delayed helicity and delayed helicity on Pattern Start

Analysis will use last two delayed helicity windows to check 30-bit Shift Register

Analysis – Realtime on Crate, Online, Offline

• Use seed value to construct 30-Bit Shift Register – use first 30 bits

- Note: No 1,0 vs 0,1 symmetry, *i.e.*, these two registers generate different helicity sequence:
 - a. 110100011110010101010100011001
 - b. 001011100001101010101011100110
- Predict last 30 bits to confirm valid data generate delayed helicity shift register
- Predict n-patterns (e.g., two patterns for 8-window delay with Quartet Pattern)
- No realtime prediction on crate level, prediction can happen in analysis after event buffering and/or event transfer from crate
- Use Pattern Phase Counter to find real helicity
- Use status of T_Settle at time of trigger to accept or veto event

Cross-Check

- For cross-check, Decoder Board will report data words that have same info as Rings of helicitygated SIS3801 Scaler:
 - 1. Latched delayed helicity for this event
 - 2. Latched pattern sync for this event
 - 3. Latched T_Settle for this event
 - 4. Time of trigger since start of T_Settle
 - 5. Time of trigger since end of T_Settle
 - 6. Duration of previous complete T_Settle interval
 - 7. Duration of previous complete inverse T_Settle interval
 - 8. Last 32 windows of Pattern Sync (Delayed Helicity at start of Pattern)
 - 9. Last 32 windows of Pair Sync
 - 10. Last 32 windows of Delayed Helicity
 - 11. Time of trigger since last trigger
- Board will continuously check:
 - 1. Delayed helicity at start of Pattern is as expected from 30-bit Shift Register
 - 2. No three consecutive delayed helicity signals are same
 - 3. No two Pair Sync signals are same

Board Programmable Common Delay

- How to set input common time delay:
 - Helicity Board: 60 Hz Line Sync
 - Electron Beam: VL, 60 Hz Line Sync, 50 ns pulses
 - First, check relative timing of electron VL Generator and Helicity signal on laser table
 - Adjust board common delay to match relative timing at laser table

60 Hz Line

Required No. of Boards – 20 Boards

- Number of boards (20):
 - Accelerator: CEBAF Mott, UITF Mott, Spare
 - Hall A: Moller Pol, Compton Pol, HRS1, HRS2, 2-Spares
 - Hall B: Moller Pol, CLAS, Spare
 - Hall C: Moller Pol, Compton Pol, HMS, SHMS, 2-Spares
 - Hall D: HD, Spare

