Cooler e-source

Magnetized Beam LDRD Progress Report

June 1, 2017

Magnetized Electron Source at GTS

Measuring Beam Magnetization

Use slit and viewscreens to measure mechanical angular momentum:

$$\langle L \rangle = 2p_z \frac{\sigma_1 \sigma_2 \sin \phi}{D} = eB_z a_o^2$$

 B_z : solenoid field at photocathode a_0 : laser rms size Φ : rotation (sheering) angle

0 G at photocathode

1088 G at photocathode

Magnetized Beam Sizes

Solenoid Current (A)	Field (G)	σ ₁ (mm)	σ ₂ (mm)	σ ₃ (mm)
0	0	1.66	2.18	4.84
25	91	0.35	0.44	0.71
50	181	1.39	2.10	4.09
75	272	1.82	0.67	1.46
100	363	4.36	1.43	2.40
150	544	0.35	0.49	1.02
200	725	0.46	0.95	4.22
250	907	1.08	2.02	6.54
300	1088	1.88	3.28	7.11

All beamline solenoids are off. Laser rms = 0.25 mm

Magnetized Beam Rotation Angles

Solenoid Current (A)	Field (G)	φ ₂ (deg)	φ ₃ (deg)	φ ₂ - φ ₃ (deg)
0	0	0	0	0
25	91	3.6	18.9	15.3
50	181	-1.7	-5.7	-4.0
75	272	5.8	11.7	5.9
100	363	-3.6	-7.5	-3.9
150	544	-78.1	-54.1	24.0
200	725	5.7	8.8	3.1
250	907	-4.1	-8.5	-4.4
300	1088	-7.6	-18.8	-11.2

High Current Magnetized Beam

Delivered 0.5 mA

Plan for 5 mA by end of summer

Summary of Progress

- Submitted LDRD proposal for 3rd year funding
- Delivered 0.5 mA magnetized beam with 1450 G on photocathode
- Measured beam sizes and rotations with magnetic fields up to 1088 G on photocathode
- Filed patent disclosure entitled "Non-invasive RF Cavity to Measure Beam Magnetization"

Outlook: June – September

- Measure beam sizes and rotations with magnetic fields up to 1450 G on photocathode
- Simulation of magnetized beam sizes and rotation angles
- Run 5 mA magnetized beam
- Build and install a TE₀₁₁ cavity at GTS to measure beam magnetization in collaboration with Brock and SRF Institute