Pade order investigation

Asym vs. FESEM thickness or Rate -0.5σ to +2 σ, bkg subtract Run 1 data x-error bars turned into y-errors

Pade approximates

In <u>mathematics</u> a **Padé approximant** is the "best" approximation of a function by a <u>rational function</u> of given order.

Given a function f and two <u>integers</u> $m \ge 0$ and $n \ge 1$, the *Padé* approximant of order [m/n] is the rational function

$$R(x) = \frac{\sum_{j=0}^{m} a_j x^j}{1 + \sum_{k=1}^{n} b_k x^k} = \frac{a_0 + a_1 x + a_2 x^2 + \dots + a_m x^m}{1 + b_1 x + b_2 x^2 + \dots + b_n x^n}$$

Taylor series expansions are one example of Pade' (Pade (1,0), Pade (2,0), Pade (3,0)...

The typical fitting function $A = \frac{Ao}{1+\gamma T}$ is also Pade' (0,1)

F testing

- The goodness of a fit is typically found by looking at reduced χ^2 or reduced R², which show how far the fit is from the data
- It is possible to overfit functions looking only at these "goodness of fit" tests
- An "F-test" can be used to see, to a given degree of confidence, if adding the next order term in an expansion is justified. If the F-test fails, there is a n% chance that the term isn't needed

s not justified. From the tabulated	i valu	e of the	E F dis	atrib					
	carer	our un					11		
cription in Table 10.2	10-		un	serib	ution (one ca	in ther	give	the
cription in Table 10.2									
TT 11 10 0 11									
Table 10.2. M	aximun	n degree	needed	in p	olynom	ial app	roximat	ion.	
N-j-1	2	3	4	6	8	12	20	60	120
	2	3	4	6	8	12	20	60	120

Comparison of fitting functions for asymmetry zero thickness extrapolation

- Two ways to look at data
 - Asymmetry vs. Thickness
 - Asymmetry using Daniel's best data: -0.5σ +2.0 σ, background subtracted
 - FESEM thickness, 500 nm point fixed to best average
 - Asymmetry vs. Rate

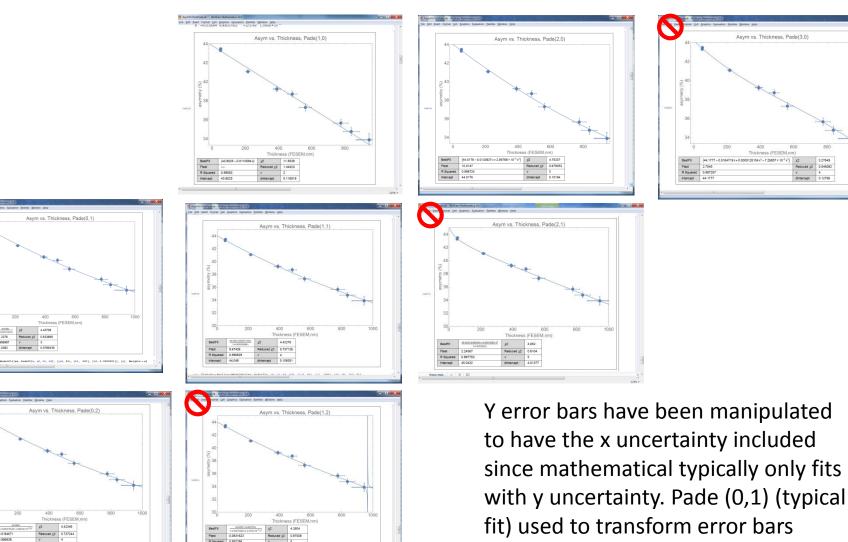
Typical fitting functions

- $A = \frac{Ao}{1+\gamma T}$ is nonlinear, but can be linearized by inverting to $\frac{1}{A} = a+bT$, where T is thickness and A is asymmetry
- Thickness vs. rate ~ quadratic (needs second order for thicker foils to fit reasonably well)

- $R = c \cdot T + d \cdot T^2$, leading to $T = c' + d' \cdot R^{1/2}$ or $\frac{1}{A} = a + bR^n$

- Plot two different things to varying Pade orders
 - A vs. T
 - 1/A vs. Rate

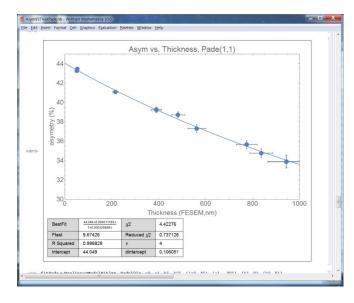
Asymmetry vs. Thickness

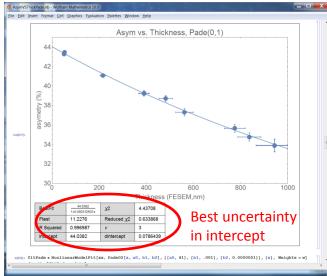


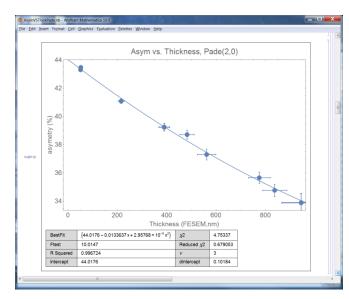
Pade(n,m) orders: Asy vs. Thick

Pade(n,m)	intercept	dA	R ²	red. χ²	Ftest
(1,0)	43.8025	0.1169	0.991	1.44	worst red. χ^2
(2,0)	44.0176	0.1018	0.997	0.679	10.01
(3,0)	44.1777	0.128	0.997	0.546	2.70 (rej F test)
(0,1)	44.0382	0.0786	0.997	0.634	11.23
(0,2)	44.0484	0.1057	0.997	0.737	0.0185 (rej ftest)
(1,1)	44.049	0.1061	0.997	0.737	9.67
(1,2)	44.0295	0.0986	0.997	0.870	0.083 (rej. Ftest)
(2,1)	44.043	4.014	0.998	0.6104	2.24 (rej. Ftest)

Potential fits: not statistically rejected

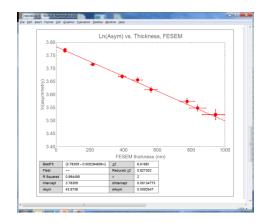


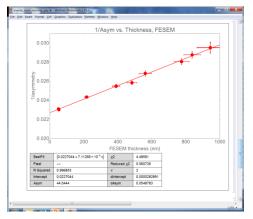


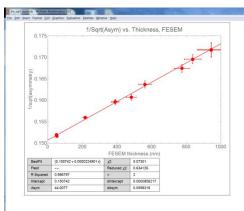


Pade(n,m)	Asym(%)	dA	
(2,0)	44.0176	0.1018	
(0,1)	44.0382	0.0786	Normal fit
(1,1)	44.049	0.1061	
averaged	44.0352	0.0537	Additional uncertainty due to model

Zero thickness extrapolation largely independent of fit function used, assuming statistically reasonable fits







Other functional forms for

fit?

Other functional forms have been used historically to fit asym. vs. thickness

- $\ln(A) vs T$
- $\frac{1}{A} vs T$ (similar to inverting standard) • $\frac{1}{\sqrt{A}} vs T$

Pade(n,	m) Asym(%)	dA	
ln(A)	43.914	0.059	
1/A	44.044	0.0549	Normal fit
1/√A	44.008	0.0558	
1/VA	44.008	0.05	58

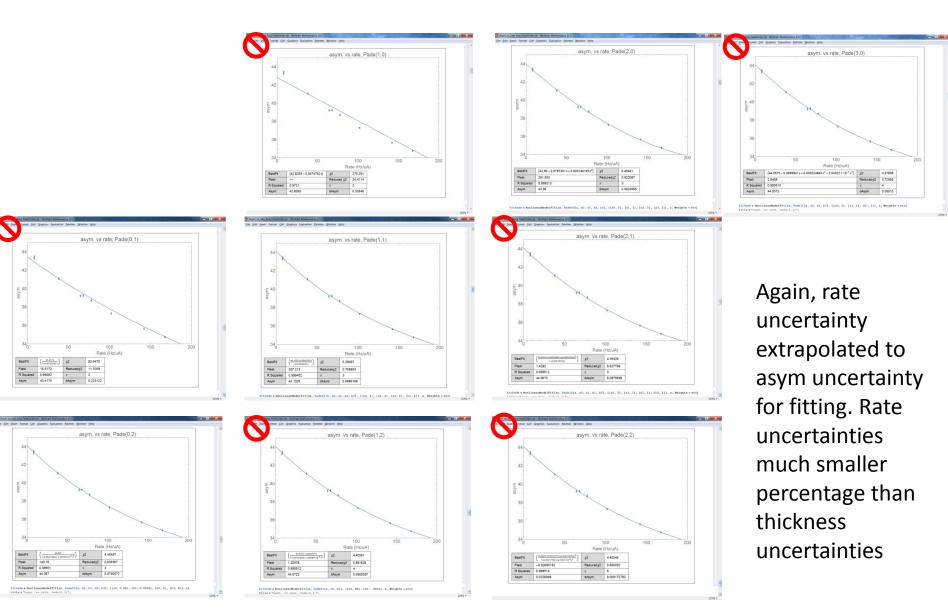
Consider Asym vs. Rate instead?

- Plot Asymmetry vs. average detector rate
- Run one data only thus far, "gold" cuts

 -0.5σ to +2 σ , bkg subtract

- x-error bars turned into y-errors (using Pade (1,1))
- Fitted Pade(n,m) orders until F test started failing

Pade orders: Asym vs. Rate

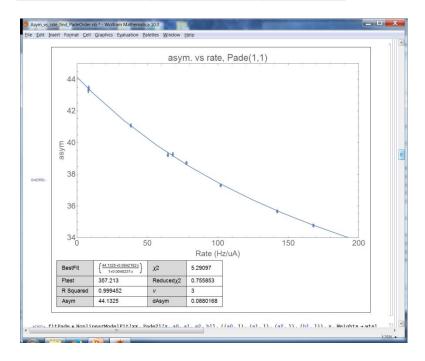


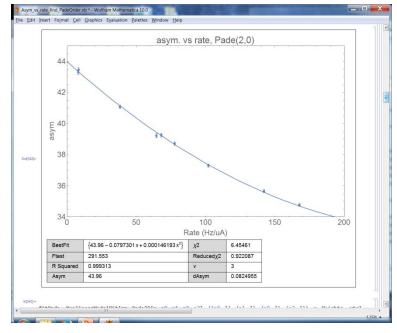
Pade(n,m) orders: 1/A vs rate

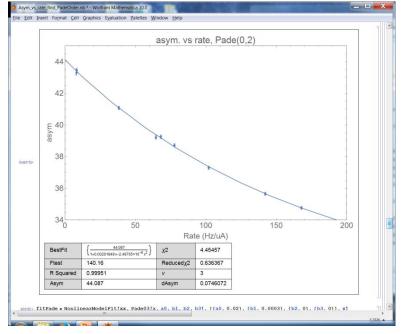
Pade(n,m)	intercept	dA	R ²	red. χ²	Ftest	
(1,0)	4 2.8	.33	.97	35		Reject chi
(2,0)	43.96	.082	.999	0.922	291	
(3,0)	44.06	.090	.999	0.930	2.84	Reject F
(1,1)	44.133	.088	.999	0.756	357	
(2,1)	44.067	.098	.999	0.628	1.42	Reject F
(1,2)	44.072	.095	.999	0.882	1.20	Reject F
(0,1)	43.42	.0223	.991	11.7	15.51	Reject chi
(0,2)	44.087	0.075	.999	0.636	140.2	
(0,3)					Not converge	
(2,2)	44.057	.156	.999	0.73	0.013	Reject F

Viable fits: A vs. R

Pade(n,m)	intercept	dA
(2,0)	43.96	.082
(1,1)	44.133	.088
(0,2)	44.087	0.075
average	44.058	0.047

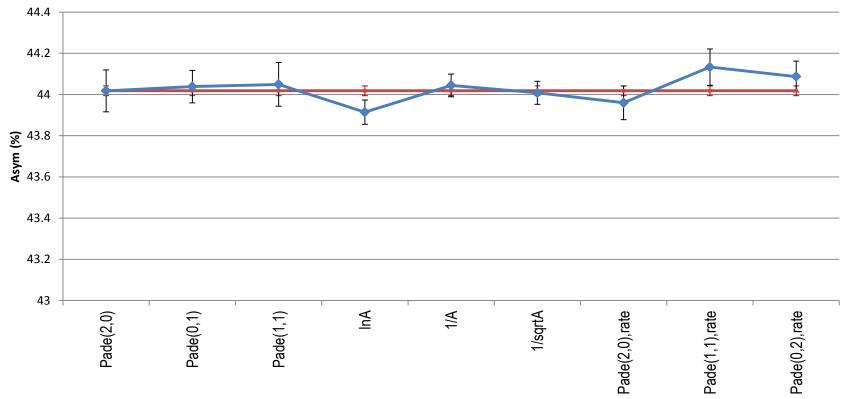






All potential good fits(blue) and average with uncertainty (red)

A(0) for Asym. vs. Thickness



Fit function

Conclusions

- Fitting A vs. T: std. fit form gives lowest uncertainties
- Use Pade analysis, F-testing to determine other viable functional forms
- Fitting A vs. Rate: 3 forms have viable fits, uncertainties all comparable to best in A vs. T
- Translating x uncertainties to y axis (done by root, this mathematica analysis) requires model dependence, likely not a large error factor.