Development of a Polarized Positron Source for CEBAF Beam dynamics: Design and optimization

Sami Habet

IJCLab & JLab

February 13, 2023

Sami Habet

Development of a Polarized Positron Source for CEBAF

IJCLab & JLab 1 on 23

Target optimization	Collection system	Momentum collimation	Longitudinal optimization	Conclusion 000000000
Plan				

1 Target optimization

- Ollection system
- 6 Momentum collimation
- 4 Longitudinal optimization

G Conclusion

Target optimization	Collection system	Momentum collimation	Longitudinal optimization	Conclusion 000000000
Plan				

1 Target optimization

- 2 Collection system
- 8 Momentum collimation
- 4 Longitudinal optimization

G Conclusion

Target optimization	Collection system	Momentum collimation	Longitudinal optimization	Conclusion 000000000
Plan				

- 1 Target optimization
- 2 Collection system
- **3** Momentum collimation
- 4 Longitudinal optimization

Conclusion

2 on 23

Target optimization	Collection system	Momentum collimation	Longitudinal optimization	Conclusion 000000000
Plan				

- 1 Target optimization
- 2 Collection system
- **3** Momentum collimation
- 4 Longitudinal optimization

Conclusion

2 on 23

Target optimization	Collection system	Momentum collimation	Longitudinal optimization	Conclusion 000000000
Plan				

- 1 Target optimization
- 2 Collection system
- **3** Momentum collimation
- 4 Longitudinal optimization

5 Conclusion

Target optimization ●00	Collection system	Momentum collimation	Longitudinal optimization	Conclusion 000000000
Outline				

1 Target optimization

- Ollection system
- Omentum collimation
- 4 Longitudinal optimization
- 5 Conclusion Backup slides

Target optimization ○●○	Collection system	Momentum collimation	Longitudinal optimization	Conclusion 000000000
Positron char	acterization			

Unpolarized mode

• Efficiency :
$$\epsilon = \frac{N_{e^+}}{N_{e^-}}$$

Polarized mode

• Figure-of-Merit FoM=
$$\epsilon P_{e^+}^2$$

Target optimization ○●○	Collection system	Momentum collimation	Longitudinal optimization	Conclusion 000000000
Positron char	acterization			

Unpolarized mode

• Efficiency :
$$\epsilon = \frac{N_{e^+}}{N_{e^-}}$$

Polarized mode

• Figure-of-Merit FoM=
$$\epsilon P_{e^+}^2$$

Target optimization

Target thickness optimization

Sami Habet

IJCLab & JLab 5 on 23

Target optimization	Collection system ●00	Momentum collimation	Longitudinal optimization	Conclusion 000000000
Outline				

- 1 Target optimization
- 2 Collection system
- Omentum collimation
- 4 Longitudinal optimization
- 5 Conclusion Backup slides

6 on 23

- Reduce the angular transverse spread $x_p = \frac{p_x}{p_z}$ and $y_p = \frac{p_y}{p_z}$.
- Rotate the transverse phase space (x, x_p) and (y, y_p) at the exit of the QWT.
- Use a QWT as an energy filter.

7 on 23

- Reduce the angular transverse spread $x_p = \frac{p_x}{p_2}$ and $y_p = \frac{p_y}{p_2}$.
- Rotate the transverse phase space (x, x_p) and (y, y_p) at the exit of the QWT.
- Use a QWT as an energy filter.

- Reduce the angular transverse spread $x_p = \frac{p_x}{p_z}$ and $y_p = \frac{p_y}{p_z}$.
- Rotate the transverse phase space (x, x_p) and (y, y_p) at the exit of the QWT.
- Use a QWT as an energy filter.

- Reduce the angular transverse spread $x_p = \frac{p_x}{p_z}$ and $y_p = \frac{p_y}{p_z}$.
- Rotate the transverse phase space (x, x_p) and (y, y_p) at the exit of the QWT.

• Use a QWT as an energy filter.

Quarter Waves Transformer

- Reduce the angular transverse spread $x_p = \frac{p_x}{p_z}$ and $y_p = \frac{p_y}{p_z}$.
- Rotate the transverse phase space (x, x_p) and (y, y_p) at the exit of the QWT.
- Use a QWT as an energy filter.

Quarter Waves Transformer

- Reduce the angular transverse spread $x_p = \frac{p_x}{p_z}$ and $y_p = \frac{p_y}{p_z}$.
- Rotate the transverse phase space (x, x_p) and (y, y_p) at the exit of the QWT.
- Use a QWT as an energy filter.

Goal

- Reduce the energy spread of the accepted e⁺ @ p = 60 MeV/c
- f = 1497 Mhz
- E = 1 MV/m
- L_{cell} = 0.2 cm
- $r_{cell} = 3 cm$

Goal

- Reduce the energy spread of the accepted e⁺ @ p = 60 MeV/c
- $f = 1497 \ Mhz$
- E = 1 MV/m
- $L_{cell} = 0.2 \ cm$
- $r_{cell} = 3 \ cm$

8 on 23

Target optimization	Collection system 00●	Momentum collimation	Longitudinal optimization	Conclusion 000000000
Accelerating	warm section			

Goal

- Reduce the energy spread of the accepted e⁺ @ p = 60 MeV/c
- f = 1497 Mhz
- E = 1 MV/m
- $L_{cell} = 0.2 \ cm$
- $r_{cell} = 3 cm$

Target optimization	Collection system	Momentum collimation ●0	Longitudinal optimization	Conclusion 000000000
Outline				

- 1 Target optimization
- Ollection system
- **3** Momentum collimation
- 4 Longitudinal optimization
- G Conclusion Backup slides

Target optimization	Collection system	Momentum collimation ○●	Longitudinal optimization	Conclusion

Beam size optimization

Sami Habet Development of a Polarized Positron Source for CEBAF

IJCLab & JLab

10 on 23

Momentum collimation

Longitudinal optimization

Conclusion 000000000

Beam size optimization

Sami Habet

Development of a Polarized Positron Source for CEBAF

IJCLab & JLab

10 on 23

Target optimizationCollection systemMoment00000000	um collimation
--	----------------

Longitudinal optimization

Beam size optimization

Sami Habet

Target optimization	Collection system	Momentum collimation	Longitudinal optimization •000	Conclusion 000000000
Outline				

- 1 Target optimization
- 2 Collection system
- Omentum collimation
- 4 Longitudinal optimization
- G Conclusion Backup slides

• Compression factor = Bunch length Entrance Bunch length Exit

• $C = \frac{1}{1 + [R_{56} \times \kappa]}$

- $\kappa = \frac{d\delta_p}{dz} = \frac{-keV_0}{E0 + eV0\cos\phi}\sin\phi$
- Where:
 - R₅₆ : Longitudinal chicane element.
 - $k = 2\pi \frac{f}{c} [m^{-1}]$
 - f is the cavity frequency
 - eV₀ Cavity acceleration [MeV]
 - *E*₀ Central energy [MeV
 - ϕ Cavity phase advance.

Target optimization
ocoCollection system
ocoMomentum collimation
ocoLongitudinal optimization
ocoConclusion
ocoLongitudinal optimization:Energy spread and bunch length

• Compression factor = Bunch length Entrance Bunch length Fuit

- $C = \frac{1}{1 + [R_{56} \times \kappa]}$
- $\kappa = \frac{d\delta_p}{dz} = \frac{-keV_0}{E0 + eV0\cos\phi}\sin\phi$
- Where:
 - R₅₆ : Longitudinal chicane element.
 - $k = 2\pi \frac{f}{c} [m^{-1}]$
 - f is the cavity frequency
 - eV₀ Cavity acceleration [MeV]
 - *E*₀ Central energy [MeV
 - ϕ Cavity phase advance.

Longitudinal optimization 0000 Longitudinal optimization: Energy spread and bunch length

 Compression factor = Bunch length Entrance

Bunch length Fxit

• $C = \frac{1}{1 + [R_{56} \times \kappa]}$

•
$$\kappa = \frac{d\delta_p}{dz} = \frac{-keV_0}{E0 + eV0\cos\phi}\sin\phi$$

Longitudinal optimization 0000

Longitudinal optimization: Energy spread and bunch length

- Compression factor = Bunch length Entrance Bunch length Fxit
- $C = \frac{1}{1 + [R_{56} \times \kappa]}$

•
$$\kappa = \frac{d\delta_p}{dz} = \frac{-keV_0}{E0 + eV0\cos\phi}\sin\phi$$

- Where
 - R₅₆ : Longitudinal chicane element.
 - $k = 2\pi \frac{f}{c} [m^{-1}]$
 - f is the cavity frequency
 - eV₀ Cavity acceleration [MeV]
 - E₀ Central energy [MeV]
 - ϕ Cavity phase advance.

- Compression factor = <u>Bunch length Entrance</u> <u>Bunch length Exit</u>
- $C = \frac{1}{1 + [R_{56} \times \kappa]}$

•
$$\kappa = \frac{d\delta_p}{dz} = \frac{-keV_0}{E0 + eV0\cos\phi}\sin\phi$$

- Where:
 - R₅₆ : Longitudinal chicane element.
 - $k = 2\pi \frac{f}{c} [m^{-1}]$
 - f is the cavity frequency
 - eV₀ Cavity acceleration [MeV]
 - E₀ Central energy [MeV]
 - φ Cavity phase advance.

Longitudinal optimization <u>___</u>

Longitudinal optimization: Energy spread and bunch length

- Compression factor = Bunch length Entrance Bunch length Fxit
- $C = \frac{1}{1 + [R_{56} \times \kappa]}$

•
$$\kappa = \frac{d\delta_p}{dz} = \frac{-keV_0}{E0 + eV0\cos\phi}\sin\phi$$

- Where:
 - R₅₆ : Longitudinal chicane element.
 - $k = 2\pi \frac{f}{c} [m^{-1}]$
 - f is the cavity frequency
 - eV₀ Cavity acceleration [MeV]
 - E₀ Central energy [MeV]
 - ϕ Cavity phase advance.

 Target optimization
 Collection system
 Momentum collimation
 Longitudinal optimization
 Conclusion

 Constructional optimization:
 Energy spread and bunch length

- Compression factor = <u>Bunch length Entrance</u> <u>Bunch length Exit</u>
- $C = \frac{1}{1 + [R_{56} \times \kappa]}$

•
$$\kappa = \frac{d\delta_p}{dz} = \frac{-keV_0}{E0 + eV0\cos\phi}\sin\phi$$

- Where:
 - R₅₆ : Longitudinal chicane element.
 - $k = 2\pi \frac{f}{c} [m^{-1}]$
 - f is the cavity frequency
 - eV₀ Cavity acceleration [MeV]
 - E₀ Central energy [MeV]
 - φ Cavity phase advance.

Before compression

-0.03

IJCLab & JLab

Target optimization	Collection system	Momentum collimation	Longitudinal optimization	Conclusion 000000000
Summury				

Params	e^- beam	Target Exit one period	Exit
σ _{dp/p} [%]		1.3870	0.68
$\sigma_{z}[m]$		0.0002	0.0016
$\sigma_{x}[m]$	0.0005	0.0028	0.0081
σ_{xp} [rad]	pencil beam	0.0021	0.0007
$N \epsilon_x[mrad]$		0.019	0.0014
N ϵ_y [m rad]		0.02	0.0014
p Central [MeV/c]	120	60	123
e ⁺	1 <i>mA</i>	2482 nA	170 nA

~	 		
5 nm		ь.	<u>-</u> +
ланн	161	•1	-

Target optimization	Collection system	Momentum collimation	Longitudinal optimization	Conclusion ●OOOOOOOO
Outline				

- Target optimization
- 2 Collection system
- Omentum collimation
- 4 Longitudinal optimization
- Conclusion
 Backup slides

Target optimization	Collection system	Momentum collimation	Longitudinal optimization	Conclusion 000000000
Conclusion				

- The performance of the positron system is heavily influenced by the central momentum. For a high yield of positrons, the central momentum should be set to 15 MeV/c, while a high polarization requires a central momentum of 60 MeV/c.
- The QWT helps the selection of the desired momentum and reduces the spread of transverse angles.
- The accelerating section exerts significant influence on the longitudinal plane, thereby reducing the energy spread to meet the CEBAF requirement of $\sigma_{dp/p} = \pm 1\%$.
- For improved compression, the energy spread at the exit of the C100 must be at least five times smaller.
- Expecting higher current for the unpolarized mode P=15 MeV/c.

Target optimization	Collection system	Momentum collimation	Longitudinal optimization	Conclusion 000000000
Conclusion				

- The performance of the positron system is heavily influenced by the central momentum. For a high yield of positrons, the central momentum should be set to 15 MeV/c, while a high polarization requires a central momentum of 60 MeV/c.
- The QWT helps the selection of the desired momentum and reduces the spread of transverse angles.
- The accelerating section exerts significant influence on the longitudinal plane, thereby reducing the energy spread to meet the CEBAF requirement of $\sigma_{dp/p} = \pm 1\%$.
- For improved compression, the energy spread at the exit of the C100 must be at least five times smaller.
- Expecting higher current for the unpolarized mode P=15 MeV/c.

Target optimization	Collection system	Momentum collimation	Longitudinal optimization	Conclusion 000000000
Conclusion				

- The performance of the positron system is heavily influenced by the central momentum. For a high yield of positrons, the central momentum should be set to 15 MeV/c, while a high polarization requires a central momentum of 60 MeV/c.
- The QWT helps the selection of the desired momentum and reduces the spread of transverse angles.
- The accelerating section exerts significant influence on the longitudinal plane, thereby reducing the energy spread to meet the CEBAF requirement of $\sigma_{dp/p} = \pm 1\%$.
- For improved compression, the energy spread at the exit of the C100 must be at least five times smaller.
- Expecting higher current for the unpolarized mode P=15 MeV/c.

Target optimization	Collection system	Momentum collimation	Longitudinal optimization	Conclusion 000000000
Conclusion				

- The performance of the positron system is heavily influenced by the central momentum. For a high yield of positrons, the central momentum should be set to 15 MeV/c, while a high polarization requires a central momentum of 60 MeV/c.
- The QWT helps the selection of the desired momentum and reduces the spread of transverse angles.
- The accelerating section exerts significant influence on the longitudinal plane, thereby reducing the energy spread to meet the CEBAF requirement of $\sigma_{dp/p} = \pm 1\%$.
- For improved compression, the energy spread at the exit of the C100 must be at least five times smaller.

• Expecting higher current for the unpolarized mode P=15 MeV/c.

Target optimization	Collection system	Momentum collimation	Longitudinal optimization	Conclusion 000000000
Conclusion				

- The performance of the positron system is heavily influenced by the central momentum. For a high yield of positrons, the central momentum should be set to 15 MeV/c, while a high polarization requires a central momentum of 60 MeV/c.
- The QWT helps the selection of the desired momentum and reduces the spread of transverse angles.
- The accelerating section exerts significant influence on the longitudinal plane, thereby reducing the energy spread to meet the CEBAF requirement of $\sigma_{dp/p} = \pm 1\%$.
- For improved compression, the energy spread at the exit of the C100 must be at least five times smaller.
- Expecting higher current for the unpolarized mode P=15 MeV/c.

Target optimization	Collection system	Momentum collimation	Longitudinal optimization	Conclusion
Twiss function	s			

IJCLab & JLab

Target optimization	Collection system	Momentum collimation	Longitudinal optimization	Conclusion
Beam size				

IJCLab & JLab

IJCLab & JLab

IJCLab & JLab

Target optimization	Collection system	Momentum collimation	Longitudinal optimization	Conclusion ○○○○○○●○○
Momentum co	ollimation			

 $B_1 = 2.5 T B_2 = 0.05T$

Sami Habet

Target optimization 000	Collection system	Momentum collimation	Longitudinal optimization	Conclusion ○○○○○○○●○
Angular distr	ibution			
0.0035		40 9 33 30 25	/T Polarized 2023 30Million e ⁻ θ ₂ = 0.057	

IJCLab & JLab 22 on 23

Development of a Polarized Positron Source for CEBAF

0.0025

0.0015

0.0010 0.0005

^{لي} 0.0020

Target optimization	Collection system	Momentum collimation	Longitudinal optimization	Conclusion 00000000
Transverse sp	ace			

• The transmitted positrons are within the acceptance of the QWT

•
$$p_t^{QWT} = \frac{eB_1R}{2}$$
. = 10.31°

•
$$r_0^{QWT} = \frac{B_2}{B_1}R = 0.6 mm$$

Sami Habet