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Run 2 (Oct 27 – Nov 9/2020) :
- Measure the energy loss in the target from the heat rise in the IBC
- Set the raster size to cover the target
- Tune the NMR
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•   energy deposition from heat increase in the IBC  (Run 2):
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•   Eloss (10 MeV)    = 0.74 MeV/e– =  0.74 mW/nA ó agrees with NIST ESTAR

ó Eloss (10 GeV) = 0.98 MeV/e– =    1     mW/nA
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•   Sombrero Raster: 18 – 39 KHz fundamental x 3 KHz AM (Bill Gunning)

HARP scan with raster set to fill HD target

•   quasi-flat top, but with a fuzzy edge
ó for the present Run 3 discussion, we consider only data with P(H) > 4% 

so that partial polarization of the outer target edge does not skew results
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• from Run 2 with a short T1 target:

66 mK 72 mK 81 mK 96 mK

Ie = 1/8                           1/4                                                           1/2 

NMR
with beam ó

no-beam NMR
at beam-on   ó
temperatures
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Run 2 (Oct 27 – Nov 9/2020):

- Measure the energy loss in the target from the heat rise in the IBC
- Set the raster size to cover the target
- Tune the NMR

Run 3 (Nov 23 – Dec 17/2020):
- 2 frozen-spin HD targets, eHD60 & eHD66, both starting with P(H) ~ 30 %
- H-spins flipped with AFP to eliminate hyperfine dilution
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•   Adiabatic Fast Passage (AFP) carried out on each target to invert spin populations

→ aligns H spin with polarized atomic electrons → eliminates hyperfine mixing
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athough small, HD is a quantum crystal, and spin-hopping is a known phenomenon

→ one e– could dilute the polarization of multiple H-spins

ó eliminated by aligning H-spins with atomic electron polarization 
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Run 2 (Oct 27 – Nov 9/2020):

- Measure the energy loss in the target from the heat rise in the IBC
- Set the raster size to cover the target
- Tune the NMR

Run 3 (Nov 23 – Dec 17/2020):
- 2 frozen-spin HD targets, eHD60 & eHD66, both starting with P(H) ~ 30 %
- H-spins flipped with AFP to eliminate hyperfine dilution

Expectations going into Run 3 (from brief 2012 tests):

• Moller electrons would create a partial screening of the NMR response
- Run 2 reduction  in NMR is either due to screening, or to higher HD temperatures

• chemical changes following ionization might break the frozen-spin state

• provided the beam was rastered at > 10 KHz, heat should not be the dominant issue 
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ó No evidence for screening of the NMR response
ó No evidence for permanent loss of the frozen-spin state following irradiation
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ó reduced NMR signals in run 2
must reflect higher HD temperatures

- using Thermal equilibrium NMR signals

to deduce HD temperatures

ó T(IBC) <   80 mK, but
T(HD) > 200 mK

heat is certainly an issue !
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Calculated HD temperature vs IBC mixing     
chamber temperature at different Ie
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ó the consequence of higher temperatures:

Run 3, target eHD66:

• dP/dt under different holding fields:
- same current  ó same temperature 

ó different atomic electron polarization

• High HD temperatures (> 200 mK)
result in only partial atomic electron
polarization
ó flipping electron spins have Fourier

components at the H-Larmor frequencies

ó significant dP/dt

ref – intended goal:
at 100 mK & 1.1 T, (1 - Pe) = 5 e-7
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•      initial dP/dt slope is flat, but develops with dose
•      but, there is no long-term effect on the frozen-spin state (PH is steady with no beam)
ó charge build-up ? 
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Run 3 – measurements with beam blocked for windows on the several ms time scale
– d.f. = 2/3  ó beam-on for 10 raster cycles + off for   5 raster cycles
– d.f. = 1/3  ó beam-on for   5 raster cycles + off for 10 raster cycles
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•   the present state of HDice is not able to support the required RG-H luminosity

ó if there is another viable target technology that can provide most of the Physics
reach, it should be pursued

– if alternative options are limited, there are avenues worth investigating that
may extend the viability of HDice targets, although these are R&D projects
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Why is Eloss heat not getting out of the HD ?
•   Tc (AL) = 1.2 K  

•   but Bc ~ 100 gauss

ó there is no data below 4 K

ó measure conductivity k in the mK region

possible outcomes:

(a) k(AL) deviates from extrapolated curves
ó the AL wires are the bottle-neck

(b) k(AL) follows the extrapolated curves
ó the HD itself is the bottle-neck
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high 6N (99.9999%) Al wire could 
significantly improve cooling

UITF 
eHD cells

(a) If AL conductivity is the limitation:
→ acquire ultra-high-purity AL

eg. Isotopic 27Al, 
purified by magnetic separation,

→ extruded into wire (by Alpha-Aesar)

Possible HDice R&D – Jan 06/21
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(b) If HD is the bottle-neck
→ decrease wire OD & increase number

to decrease HD –to- Al distance

Possible HDice R&D – Jan 06/21
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•   investigate relevant time scales for charge build-up in HD:

→  with a short-T1 HD,  measure NMR with d.f. = 1/3 and 2/3 

→  deduce equilibrium HD temperature; what dominates <Ie> or peak-current ?

→  investigate faster beam-blanking

→  possible Run 4, ~ 1 week  (UITF has LHe until mid-March)

Possible HDice R&D – Jan 06/21


