JLab seminar 8/17/2016



## X-ray vortices from nonlinear inverse Thomson scattering

### Yoshitaka Taira

National Institute of Advanced Industrial Science and Technology (AIST) Visiting scientist: Mississippi State University and Jefferson Lab.

### **Optical vortex**



B. J. McMorran et al., Science 331 (2011) 192.

#### **Characteristics**

- Forming a helical wave front.
- Carrying an orbital angular momentum (OAM).
- Total angular momentum
  = OAM mħ + spin angular momentum ħ on the paraxial approximation.

#### Beams

Laser, 300 keV electron, 10 keV X-ray, Terahertz radiation, Cold neutron.

#### Application

Optical tweezer, quantum entanglement, etc.

### **Optical vortex**



B. J. McMorran et al., Science 331 (2011) 192.

#### Generation

- Cylidrical lens,
- Spiral phase plate,
- Fork grating,
- Electromagnetic radiation from an electron.

#### Laguerre Gaussian beam

$$E = \frac{C}{\sqrt{1 + (z/z_R)^2}} \left(\frac{r\sqrt{2}}{\omega(z)}\right)^{|m|} L_p^m \left(\frac{2r^2}{\omega^2(z)}\right) \exp\left(-\frac{r^2}{\omega^2(z)}\right)$$
$$\times \exp\left\{-i\frac{kr^2z}{2(z^2 + z_R^2)}\right\} \exp\left(-im\phi\right) \exp\left\{i(2p + m + 1)\tan^{-1}\frac{z}{z_R}\right\}$$

This term represents the helical wave front.

**OAM operator:**  $L_z = i\hbar \frac{\partial}{\partial \phi} = m\hbar$ 

### Interferometer

**Reference light** 







### **Interference** pattern

# OAM Plane wave + vortex value

1

2

#### Spherical wave + vortex

#### **Vortex + vortex**







4







#### Purpose

# Generate high energy X-ray vortex (more than MeV) and develop its application.

#### Application possibility

X-ray dichroism, Nuclear physics, Solid state physics, Generation of positron vortex via pair production.



### How to generate X-ray/gamma-ray vortex

#### Helical undulator

High energy electron, more than 100 GeV, is required if MeV gamma ray vortex generats.

Inverse Thomson/Compton scattering between plane wave electron and optical vortex laser

Already proposed by U. D. Jentchura and V. G. Serbo. PRL 106 013001 (2011).

Nonlinear inverse Thomson/Compton scattering between plane wave electron and intense circularly polarized laser (not vortex) Newly proposed by Y. Taira and M.Katoh.

### What is important to generate X-ray vortex?

#### Helical motion of the relativistic electron.

X-ray vortex generation by a helical undulator was proposed in 2008.





Higher harmonic carry ±(n-1)ħ OAM.

> B. M. Kincaid, J Appl. Phys. 48 2684 (1977). S. Sasaki et al., PRL. 100 124801 (2008).

### **POP experiment at BESSY-II**





Interference pattern between second harmonics from helical undulator (vortex beam) and fundamental from planar undulator (non vortex beam). Photon energy was 99 eV.

8

### **Helical motion of electron**

#### Also it is induced by the intense circularly polarized laser field.

#### Electron orbits r = (x, y, z)

 $x(\eta) = x_0 + (r_1/\sqrt{2}) \sin k_0 \eta$   $y(\eta) = y_0 + (r_1/\sqrt{2}) \cos k_0 \eta$  $z(\eta) = z_0 + \beta_1 \eta$ 

sigh - : positive helicity sigh +: negative helicity

 $\eta = z + ct$   $k_0 = 2\pi / \lambda_0$   $\lambda_0$ : Wavelength of circularly polarized laser  $r_1 = a_0 / h_0 k_0$   $a_0$ : Laser strength parameter  $a_0 = 0.85 \times 10^{-9} \lambda_0 (\mu m) \sqrt{I_0 (W/cm^2)}$   $I_0$ : Intensity of the laser

# High energy X-ray vortex will be produced by nonlinear inverse Thomson scattering !

### **Electric field**

#### Emitted by a single electron in an arbitrary orbit

$$\vec{E}(\omega) = -i_{\sqrt{\frac{e^2k^2}{32\pi^3\varepsilon_0^2R^2}}} \exp(ikR) \int_{-\infty}^{\infty} dt \left\{ \vec{n} \times \left(\vec{n} \times \vec{\beta}\right) \right\} \exp\left\{ i\omega \left(t - \frac{\vec{n} \cdot \vec{r}(t)}{c}\right) \right\}$$

 $\omega$ : Angular freq. of emitted radiation

R: Distance from origin of r to the observation point

$$\begin{split} E_{\theta}(\omega) &= \sum_{n=1}^{\infty} i \sqrt{\frac{e^2 k^2 \lambda_0^2 N_0^2}{32\pi^3 \varepsilon_0^2 c^2 R^2}} \exp i(\psi_0 + kR \pm n\phi) \left(\frac{\sin \overline{k} \eta_0}{\overline{k} \eta_0}\right) \left(\frac{nk_0 \cos \theta}{k \sin \theta} - \beta_1 \sin \theta\right) J_n(p) \\ &= \sum_{n=1}^{\infty} i C_{\theta} \exp i(\psi_0 + kR \pm n\phi) \\ E_{\phi}(\omega) &= \sum_{n=1}^{\infty} \mp \sqrt{\frac{e^2 k^2 \lambda_0^2 N_0^2}{32\pi^3 \varepsilon_0^2 c^2 R^2}} \exp i(\psi_0 + kR \pm n\phi) \left(\frac{\sin \overline{k} \eta_0}{\overline{k} \eta_0}\right) \frac{a_0}{\sqrt{2}h_0} J_n'(p) \\ &= \sum_{n=1}^{\infty} \mp C_{\phi} \exp i(\psi_0 + kR \pm n\phi) \\ \eta_0 &= N_0 \lambda_0 / 2 \end{split}$$

 $N_0$ : Number of the period interacting with the elecctrons

#### **Polarization and OAM characteristics**

#### **Electric field in the x-y plane**

$$E = \frac{i}{\sqrt{2}} \left( C_{\theta} \cos \theta + C_{\phi} \right) \exp i \left\{ \psi_0 + kR + (n-1)\phi \right\} e_+$$

$$+\frac{i}{\sqrt{2}}\left(C_{\theta}\cos\theta-C_{\phi}\right)\exp i\left\{\psi_{0}+kR+(n+1)\phi\right\}e_{-}$$

$$e_{\pm} = \frac{e_x \pm ie_y}{\sqrt{2}}$$

n: Harmonic number Positive helicity carry (n-1)ħ OAM Negative helicity carry (n+1)ħ OAM.

#### **Stokes parameter**

$$\frac{S_3}{S_0} = \frac{\left(C_\theta \cos\theta + C_\phi\right)^2 - \left(C_\theta \cos\theta - C_\phi\right)^2}{\left(C_\theta \cos\theta + C_\phi\right)^2 + \left(C_\theta \cos\theta - C_\phi\right)^2} = \frac{2C_\theta C_\phi \cos\theta}{C_\theta^2 \cos^2\theta + C_\phi^2}$$



### **Spatial distribution**





## Annular profile of higher harmonic is due to the phase singularlity.

### **Characteristics of X-rays**

| Angle                           | θ <b>&lt; 0.6</b> /γ <sub>0</sub>                  | <b>2.4</b> / $\gamma_0$ < $\theta$ < <b>2.47</b> / $\gamma_0$ |
|---------------------------------|----------------------------------------------------|---------------------------------------------------------------|
| Helicity                        | Positive helicity                                  | Negative helicity                                             |
| Fundamental (n = 1)             |                                                    |                                                               |
| Ν                               | 6 x 10 <sup>11</sup> photons/sec                   | <b>2 x 10</b> <sup>10</sup> photons/sec                       |
| E                               | 11-13 MeV                                          | 2.6-2.7 MeV                                                   |
|                                 |                                                    |                                                               |
| OAM                             | 0                                                  | 2ħ                                                            |
| OAM<br>Second (n = 2)           | 0                                                  | 2ћ                                                            |
| OAM<br>Second (n = 2)<br>N      | 0<br>2 x 10 <sup>11</sup> photons/sec              | 2市<br>2 x 10 <sup>10</sup> photons/sec                        |
| OAM<br>Second (n = 2)<br>N<br>E | 0<br>2 x 10 <sup>11</sup> photons/sec<br>21-26 MeV | 2 <b>ћ</b><br>2 x 10 <sup>10</sup> photons/sec<br>5.2-5.5 MeV |

 $a_0 = 1.0$   $\gamma_0 = 2000$   $\lambda_0 = 1.0 \,\mu m$   $N_e = 10^9$  electrons/sec  $N_0 = 500$  Pulse width of the laser = 1.7 ps

### Where can we do experiment?

#### JLab?

BNL?

Second harmonic from nonlinear inverse Thomson scattering was observed. But, they probably don't realize it is X-ray vortex.



### **Nonlinear inverse Thomson X-rays at BNL**





**E** = 13 keV ( $\lambda$  = 0.095 nm)

# Annular shape of the second harmonics was measured. This will be X-ray vortex.

**Electron beam** 

γ **= 128** 

Laser

$$\label{eq:lagrange} \begin{split} \lambda_{_0} &= \mbox{10.6} \ \mu\mbox{m, pulse energy} = \mbox{2 J,} \\ \mbox{2} \omega_{_0} &= \mbox{100} \ \mu\mbox{m, pulse width} = \mbox{5 ps (FWHM),} \\ \mbox{I} &= \mbox{0.4 x 10}^{16} \ \mbox{W/cm}^2, \ \mbox{a}_{_0} &= \mbox{0.6} \end{split}$$

M. Babzien et al., PRL 96 054802 (2006). Y. Sakai et al., PRSTAB 18 060702 (2015).

### **Experimental demonstration**

Interference pattern measurement between the incident X-ray vortex and diffracted X-ray from the wire.



### Are X-ray vortices generated at universe?



X-ray vortex can be generated if relativistic electron and intense circularly plarized electromagnetic wave coexist. For example, neutron star, quasar, and supernova.

Crab Nebula, Wikipedia

### Conclusion

- X-ray vortex can be generated by nonlinear inverse Thomson scattering of the intense circularly polarized laser.
- Second harmonics of the nonlinear inverse Thomson scattering was observed at BNL.
- A candidate of the experimental demonstration is an interference measurement of the X-ray vortex using a metal wire.