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Preface     . 
Particle tracing is a very powerful tool in the design of charged-particle accelerators and beam lines. 

However, the computers used to be too slow to trace the number of particles needed to obtain reliable 

statistics in a reasonable amount of computing time. Therefore the particle tracing method was often 

abandoned and especially matrix/optical methods became popular. These alternative methods however are 

limited because they fail to simulate an actual beam. Most of these methods yield inaccurate results or cannot 

be applied at all when space-charge effects are dominant and/or paraxial approximations can not be used. 

 

Currently it is possible to trace millions of particles through complex electromagnetic fields. Because of the 

enormous advances in computer technology all 3D effects and space-charge forces can be taken into account. 

This offers much more accurate results compared to matrix and paraxial codes. The General Particle Tracer 

(GPT) code offers all of these capabilities in a user-friendly and easy-to-customize package. 

 

In order to be able to read this manual, basic knowledge of electromagnetism theory and the special theory 

of relativity is required. Experience with accelerator or beam-line design is useful, but is not necessary. For 

information about how to write custom GPT code, we refer to the GPT Custom Elements documentation. 
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Introduction 
The General Particle Tracer (GPT) code is a well-established simulation platform for the study of charged 

particle dynamics in electromagnetic fields. The code is completely 3D, including the space-charge model. 

GPT can be conveniently customized without compromising its ease of use, accuracy or simulation speed, 

because of its modern implementation. 

 

The first chapter of this manual describes the GPT kernel in detail. The second chapter is a tutorial 

introduction to GPT where simplified but practical examples are discussed. Although we recommend reading 

the first chapter first, some may prefer to start directly with the tutorial. Chapter three gives an overview of 

all pre- and postprocessing commands, many of which are also covered in the tutorial. Chapter four describes 

all the built-in GPT elements and keywords that can be used in the inputfile. 

 

Customizing GPT is the subject of a separate manual, the GPT Programmer’s Reference. 



2 Introduction 

Overview 

The General Particle Tracer (GPT) is a software package developed to study 3D charged-particle dynamics 

in electromagnetic fields. Its purpose is to aid in the design of accelerators and beam lines by using modern, 

particle tracking techniques. 

 

Over the past decade the GPT code has become a well-established simulation tool for the design of 

accelerators and beam lines. The General Particle Tracer (GPT) is based on 3D particle-tracking techniques, 

providing a solid basis for the study of all 3D and non-linear effects of charged-particles dynamics in 

electromagnetic fields. An embedded fifth order Runge-Kutta driver with adaptive stepsize control ensures 

accuracy while computation time is kept to a minimum. GPT provides various space-charge models, ranging 

from 1D interaction to fully 3D point-to-point calculations. Most standard beam-line components are 

represented in GPT. Users of GPT can easily extend the code to perform highly specialized calculations for 

specific applications. Hierarchical data analysis, automatic parameter scans and graphical output allow for 

fast and detailed interpretation of simulation results. 

 

The GPT package consists of the GPT executable, which performs the actual calculations, and an extensive 

set of pre- and post-processing tools including data analysis tools and a graphical user interface. 
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The GPT executable 

A schematic of the GPT executable is shown in the figure below. The following subsections describe the 

individual components in detail. 

 
Figure 1: Schematic of the GPT executable. 

The GPT executable starts by reading one or more ASCII inputfile(s) describing the simulation to perform. 

The inputfile specifies the initial particle distribution, the 3D electromagnetic field configuration (set-up), 

the required accuracy of the calculations and the output method. Standard expressions, functions and user-

defined variables can be used for convenience. Optionally, a MR file (Multiple Run) can be used to 

automatically scan any number of parameters. 

 

The initial particle distribution consists of a number of macro-particles, each typically representing a large 

number of elementary particles. Hammersley sequences are employed to minimize statistical errors due to 

the finite number of particles. Each projection of the initial distribution can be specified using the built-in 

particle generators or can be read from an external file. Complicated particle distributions can consist of any 

number of separate particle distributions, e.g. a beam with a halo or a mixture of different ion species each 

having their own distribution in position-momentum space. 

 

The set-up defines the 3D electromagnetic field configuration as generated by the beam-line components. It 

can be composed of any number of built-in elements, external 2D or 3D field maps and user-defined 

expressions in custom elements. There is no limit to the number, location and orientation of the elements. 

The field-map elements can read electromagnetic field configurations calculated by external programs like 

TOSCA and the SUPERFISH set of codes. Measured field information can be used in the calculations as 

well. Furthermore, GPT users can easily write their own elements for specific configurations. The interface 

for writing custom elements is very broad and covers the development of user-defined electromagnetic field 

configurations, custom initial particle distributions, interfaces to other codes and additional differential 

equations. All GPT elements are developed in their own coordinate system and written in separate source 

files. These files are platform independent and allow users to freely exchange elements with each other 

without having to modify the GPT kernel. When an element is positioned in 3D space, the GPT kernel takes 

care of all required coordinate transformations. 

 

The self-fields of the particles often form a crucial part of the electromagnetic fields through which these 

particles are tracked. Space-charge effects can be calculated using various depending on the type of 

simulation. The 3D space-charge routines include a fully 3D relativistic point-to-point interaction model, a 

fast hierarchical model and a very fast mesh-based PIC routine based on solving Poisson’s equation in the 

rest frame of the bunch. For the simulation of (semi)continuous beams a 2D space-charge model can be used 

calculating relativistic point-to-ray interactions. Space-charge effects in cylindrical symmetric beams can be 

modeled using a relativistic 2D point-to-circle routine. 
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The equations of motion for the macro-particles are solved relativisticly in the time domain using a 5th order 

embedded Runge-Kutta integrator with adaptive stepsize control. When required, the individual particle 

coordinates can be obtained with an accuracy of 10–10. The adaptive timestep mechanism modifies the 

stepsizes according to the gradients of the electromagnetic fields to ensure that all output satisfies the user-

specified accuracy. Optionally, the equations of motion are combined with additional differential equations. 

This mechanism can be used to calculate beam-loading or FEL interaction completely self-consistently. 

 

GPT has two available output modes: time and position output. Time output writes all particle coordinates 

at user specified time(s). Position output writes all particle coordinates passing any plane in 3D space. This 

output mode is also known as ‘nondestructive screen’ output. Time and position output can be freely mixed 

and any number of time and position outputs can be specified. Optionally, the electric and magnetic fields at 

the particle coordinates are also output, which greatly helps in understanding particle dynamics. 
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Pre- and post-processing 

Being able to simulate charged-particle dynamics in time-dependent 3D electromagnetic field configurations 

is usually far from sufficient for serious accelerator and beam-line design. The simulation data must be 

analyzed, parameters must be scanned and typically a comparison must be made between different scenarios. 

GPT is accompanied by a number of pre- and postprocessing programs as well as interfaces to other software 

packages to ease this step in the design process. These tools are combined with GPT and integrated into the 

MS-Windows graphical user interface, GPTwin. GPT on Linux machines uses command-line versions of 

these programs. The typical data flow within GPTwin is shown in Figure 2. The following subsections 

describe the individual components in detail. 

 

 
Figure 2: Typical data flow within GPTwin. 

GPTwin is the all-integrated MS-Windows user interface for GPT. It provides a standard editor with on-line 

help capabilities for editing the inputfile. Inputfiles can be run and combined with any number of pre- and 

post-processing tools. GPTwin is able to directly plot the output of GPT as well as the results of data analysis 

tools like GDFA. Any number of plots can be shown in separate windows within the GPTwin user interface. 

When more windows show different views of the same outputfile, the hierarchy between the different views 

always remains synchronized. 

 

The GPT results are written to a binary file for off-line analysis and interpretation. This file is written in the 

General Datafile Format (GDF), a multi-purpose, hierarchical file format specifically designed for efficiently 

storing large quantities of numerical data. It allows the post-processing components to easily extract 

information. The GDF format is used throughout the GPT kernel, the analysis tools and the GPT elements 

to keep the code compact and efficient. As shown in figure 2, various conversion utilities are available to 

convert to and from the GDF format. 

 

The main analysis program for GPT output is GDFA. It calculates macroscopic beam parameters as function 

of simulation time, position or any scanned parameter. Typical macroscopic quantities like emittance, bunch 

length, average energy and beam radius can be obtained. GDFA is capable of calculating many other useful 

quantities as well. When needed, the list of GDFA programs can be extended with custom code to calculate 

the beam parameter of interest. GDFA maintains the original hierarchy in the GDF file when more parameters 

are simultaneously scanned simultaneously. 

 

The MR and GDFSOLVE utilities can be used to instruct GPT to run a sequence of simulations with one or 

more parameters varying. The MR program scans over a pre-defined multi-dimensional parameter range 

while GDFSOLVE automatically optimizes a design until user-defined criteria are met. 





 

1 The GPT code 

1.1 The GPT inputfile 

The crucial part of every GPT simulation consists of an ASCII inputfile describing the simulation to be 

performed. Apart from describing the set-up, this file also specifies the initial particle distribution, the 

calculation accuracy and when/where to write output. If desired, the inputfile can be split separated into a 

number of individual files. The extension of a GPT inputfile is .in by convention. A typical inputfile is 

shown in Listing 1-1 sending a very basic 6 nC, 2 MeV bunch of electrons through a single solenoid. The 

formal specification of the GPT inputfile syntax is given in section 4.1. 

Listing 1-1: Experi.in: A simple GPT experiment. 

1. # Basic beam parameters 

2. Eo   = 2e6 ;   # Energy [eV] 

3. G    = 1+|qe|*Eo/(me*c^2) ; # Corresponding Lorentz factor G 

4. Beta = sqrt(1-G^-2) ;  # Corrsponding normalized velocity 

5. rxy  = 5e-3 ;   # Bunch radius [m] 

6. zlen = 1e-3 ;    # Bunch length [m] 

7. Qtot = -6e-9 ;   # Total charge in tlen [C] 

8.  

9. # Simulation parameters 

10. nps  = 50 ;    # Number of particles 

11.   

12. # Start bunch 

13. setparticles("beam",nps,me,qe,Qtot) ; 

14. setrxydist("beam","u", rxy/2,rxy) ; 

15. setphidist("beam","u", 0, 2*pi) ; 

16. setzdist("beam","u", 0, zlen ) ; 

17. setGdist("beam","u", G, 0 ) ; 

18.  

19. # Space-charge 

20. if( Qtot!=0 ) spacecharge3D() ; 

21.  

22. # Set-up 

23. solenoid("wcs","z",0.2, 0.1, 40000) ; 

24.  

25. # Output 

26. tout(0,1.3e-9,0.02e-9) ; 

 

The first section of this file defines the basic beam parameters. In this example, the bunch is cylindrically 

symmetric with an energy of 2 MeV. The bunch length is 1 mm, the beam radius is 5 mm and the total bunch 

charge is 6 nC. All parameters are in SI units, except when specified otherwise. None of the user variables 

have a special meaning; They are just for convenience to make the inputfile more readable. 

 

The simulation parameters typically define the number of particles and the simulation accuracy. As the 

accuracy keyword, see section 4.3.2, is not specified in this case, the default timestep mechanism is used. 

 

The electron bunch is started using the start elements as explained in section 1.6. The setparticles 

element fills the particle set "beam" with nps particles carrying a total charge Qtot. The predefined 

variables me and qe are the mass and charge of an electron respectively. After the particles are created, the 

following keywords each modify part of the real- or velocity-space of the set, allowing full control over the 

initial particle distribution. In this example, the real-space is defined as a uniform cylinder with a 5 mm 

radius and 1 mm longitudinal length. Transverse velocity is not defined here which means that this 

component is zero. Longitudinal velocity is introduced by setting the Lorentz factor 𝛾 without spread. 

 

After the initial particle distribution is specified, the space-charge model must be chosen. In this case, a fully 

3D treatment is requested with the spacecharge3D element as described in section 4.8.3. Because the beam 
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is cylindrically symmetric, the spacecharge2Dcircle element, see section 4.8.6, could be used as an 

alternative. The if statement removes the space-charge calculation altogether if the total charge is set to 

zero. 

 
This set-up consists of only one solenoid, see section 4.6.15, positioned at longitudinal position z=0.2 m. As 

explained in section 1.4.2 it is possible to position any element anywhere in 3D space in any orientation. A 

realistic set-up typically consists of more beam-line components, modeled as built-in elements, field maps 

or custom elements. 

 

GPT is a time-domain particle tracer, as explained in section 1.7. Therefore, the most natural form of output 

is a list of all particle coordinates at specific times. This can be specified with a tout statement. 

Alternatively, interpolated particle coordinates can be calculated at specific positions using the screen 

element. Both forms of output are described in section 1.9. 
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1.2 Running GPT 

 

The formal syntax of GPT is: 

gpt [-hHv] [-o outfile] [-a outfile] infile [var=value] [GPTLICENSE=N] 

 

-h Print a short usage line. 

-H Print a usage line and a brief explanation of all options. 

-v Verbose mode: Various information about the progress of the simulation is written to 

stderr. Furthermore, the following numbers are printed at each timestep: 

• The number of particles simulated in the current timestep. 

• The simulation time t [s]. 

• The timestep h [s]. 

-j nCPU Run simultaneously over nCPU processors in a multi-processor system. When not 

specified, all cores in the system are used. 

-o outfile Write the result of the calculations to outfile. If not specified output is written to 

stdout. We refer to sections 1.9 and 1.10 for more information about GPT outputfiles. 

-a outfile Append to outfile. This option is for internal use only. 

infile The name of the file that describes the experiment to be simulated. A dash - can be 

specified to force GPT to read from stdin. It is possible to list more than one inputfile. 

var=value Assign a value to a variable used but not defined in the inputfile. 

GPTLICENSE=N Sets the GPT license number to N. Linux and standalone MS-Windows only. 

 

GPTwin, the MS-Windows-based user interface for GPT, allows users to run a batch file containing the 

instructions to run GPT. Error messages and diagnostic output are shown in the message window. Linux 

users are advised to create a shell script. 

 

The GPT executable reads the ASCII inputfile(s) describing the initial particle distribution, the calculation 

accuracy, the locations and parameters of all beam-line components and when/where output is required. 

Inputfiles typically have extension .in. The output of GPT is in the General Data Format (GDF), an 

hierarchical binary database specifically developed for the GPT project. Outputfiles typically have 

extension .gdf. 

 

For an experiment named experi, the GPT inputfile is typically named experi.in. The correct instruction 

to run GPT is: 

gpt [-v] –o experi.gdf experi.in [GPTLICENSE=N] 

where the bracket notation indicates that these parameters are optional. 

 

The [-v] notation means that –v can be optionally specified. When specified, verbose output is written in 

the message window in GPTwin and written to the terminal on Linux machines. 

 

On Linux machines it is recommended to specify your GPT license number in the GPTLICENSE 

environment variable. Alternatively, it can be listed on the GPT command-line. On MS-Windows machines 

the license number is automatically set by the graphical user interface. 

 

The command to run GPT is typically placed in a batch file named experi.bat. GPTwin users can open 

the batch file and click the Run button on the toolbar. GPTwin does not allow GPT inputfiles to be run 

directly. Linux users specify sh experi.bat, or any other instruction to run a sequence of commands. 

Especially when pre- or post-processing tools are required, such a batch file or shell script is very convenient. 

For example, the above GPT command is typically followed by an instruction to calculate particle trajectories 

and average beam parameters as shown in Figure 1-1: 

gpt –o experi.gdf experi.in 

gdftrans –o traj.gdf experi.gdf time x y z G 

gdfa –o avgs.gdf experi.gdf time avgr avgz avgG 
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Figure 1-1: Particle trajectories and average beam parameters for the experi.in file as plotted by GPTwin. The 

experiment is a very strong solenoid lens at z=200 mm. Strong aberrations are present. 

It is possible to omit variables in the inputfile, and specify them on the command line instead. For example, 

if rxy would not have been definded in the inputfile, the following line would produce correct results: 

gpt [-v] –o experi.gdf experi.in [GPTLICENSE=N] rxy=5e-3 

 

It is also possible to pass string variables, for example to specify system dependent pathnames. For this to 

work, the string must be surrounded by double quotes escaped by a backslash: mystring=\"pathname\".  

 

stderr is Synonym for Standard error. This output is shown in the messages window of GPTwin. On Linux 

machines, it can be redirected using the operator >&. For example: 

gpt -o test.gdf test.in >& logfile 

 

stdout is Synonym for Standard output. This output is shown in the messages window of GPTwin, but can 

also serve as input to other applications using the operator |. For example: 

gpt test.in | gdf2a 

 

stdin is Synonym for Standard input. It can be the output of some other program using the operator | as 

shown in the example above. 
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1.3 Error messages 

A message is displayed when something in the inputfile or in a datafile is incorrect. Such a message typically 

looks like one of the following lines: 

filename(linenumber): Warning: warningmessage. 

filename(linenumber): Error: errormessage. 

 

GPT continues execution after a warning but terminates after an error (with exit code 1). The difference 

between warnings and errors is sometimes vague and we prefer to give an error during initialization and a 

warning during simulation. When the program displays nothing, there are no errors or warnings. No news is 

good news! Continuous information can be specified with the -v option as described before. 

 

Linux users can stop GPT during the simulation by pressing the interrupt key, usually Ctrl-C. The current 

timestep is completed and the program terminates with exit code 2. Results up to that point are saved in the 

outputfile. If you don't have enough patience to wait for a timestep to be completed you can press the interrupt 

key again. The timestep is not completed and the outputfile may be corrupted. 

 

MS-Windows users can stop GPT by clicking the Stop button in GPTwin, or by ending the process with the 

Task Manager. You can activate the Task Manager by pressing the Delete key while holding down Ctrl and 

Alt. The current timestep is not saved and the simulation results may be lost. 
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1.4 Coordinate Systems 

1.4.1 Element Coordinate System (ECS) 

Elements in the set-up need to be positioned. The parameters of a single-turn solenoid for example are 

obvious: the radius, the current and the location. The code for a solenoid however is location independent; It 

is centered around the origin with the z-axis as its normal. The GPT kernel handles all necessary coordinate 

transforms needed to interface between the code for a solenoid and the actual solenoid positioned in the set-

up. 

 

The base coordinate system of GPT, the World Coordinate System or WCS, is a standard orthonormal right-

handed Cartesian coordinate system. The GPT kernel assigns a private coordinate system to all elements of 

the inputfile. This coordinate system, the Element Coordinate System or ECS, is also right-handed 

orthonormal Cartesian. The various methods to specify such a coordinate system are described in later 

sections. Because both WCS and ECS are Cartesian, their relation can be defined by an orthonormal matrix 

M and an offset o as follows: 

𝐫𝑊𝐶𝑆 = 𝐌 𝐫𝐸𝐶𝑆 + 𝐨 [1. 1] 

or 

𝐫𝐸𝐶𝑆 = 𝐌−1(𝐫𝑊𝐶𝑆 − 𝐨) [1. 2] 

where r is a coordinate measured in either WCS or ECS. 

 

Because the base GPT coordinate system is WCS, all particle positions are stored relative to this coordinate 

system. To obtain the electromagnetic fields generated by an element, the following actions are needed: 

• Convert the particle coordinates to the ECS using [1.2]. 
• Calculate the electromagnetic fields using the code of the element. 

• Transform these fields back to WCS. 

 

To transform the fields to WCS, the following transformations are used: 

𝐄WCS = 𝐌𝐄ECS 
𝐁WCS = 𝐌𝐁ECS [1. 3] 

Because of the superposition principle, the electromagnetic fields of all the elements in the set-up can be 

added to obtain the total field at the position of a particle. This can be a time-consuming process when 

hundreds of elements are present. Therefore the kernel differentiates between two kinds of elements: global 

elements and local elements. 

 

Global elements have a relatively long working range. The typical example is a large solenoid, possibly even 

around an eccelerator section. The fields of all the global elements are added to obtain the total field generated 

by the global elements. 

 

Local elements however have a relatively short working range. Their ranges are required to not extend past 

the centers of neighbouring local elements, and this is used internally to speed up the tracking. The 

overlaptest element can be used to check if any local elements are violating the rules. 

1.4.2 Specifying an Element Coordinate System (ECS) 

The first parameter of almost all GPT elements is the Element Coordinate System. For example, the syntax 

of a solenoid is: 

solenoid(ECS,R,I) ; 

 

The specification of an ECS consists of the following two parts: 

• The name of the coordinate system relative to which the element is located. This usually is "wcs", but 

can also be the name of a previously defined Custom Coordinate System, CCS, see section 1.4.3. 

• The offset o and matrix M as defined in [1.1]. 
 

Various methods are available for specifying an ECS. They all specify o and M, but the simple methods have 

restrictions. The transformation most commonly used is the "z" transformation. It moves an element in the 

z-direction without performing any rotations. Another useful coordinate system is the "I" transformation, 

the identity transformation. All methods available to specify an ECS are listed in Table 1-A. 
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Table 1-A: Element coordinate system specifications 

ECS specification o M 

"name","I"  (0,0,0) Identity 

"name","z",oz (0,0,oz) Identity 

"name",ox,oy,oz,xx,xy,xz,yx,yy,yz (ox,oy,oz) See below 

 

The columns of the matrix M are the unit vectors of the coordinate system to be specified. Those unit vectors, 

named x, y and z, are calculated from the specified parameters by: 

𝐱′ = (xx,xy,xz) 
𝐲′ = (yx,yy,yz) 

𝐱 =
𝐱′

|𝐱′|
 

𝐲 =
𝐲′ − 𝐱 ∙ 𝐲′

|𝐲′ − 𝐱 ∙ 𝐲′|
[1. 4] 

By normalizing the 𝐱′ to obtain the unit x-vector and by subtracting the x part from 𝐲′ while normalizing, the 

specified vectors need not to be of unit length nor orthogonal. The z-direction is calculated by the cross 

product: 

𝐳 = 𝐱 × 𝐲 [1. 5] 

1.4.3 Custom Coordinate System (CCS) 

When a large set-up needs to be modeled, additional coordinate systems can be defined. Consider for 

example a number of beam-line components downstream a bending magnet. Determining the position and 

orientation of the elements after the first bending magnet is difficult in the WCS system. Especially in the 

design phase of a project when elements are relocated on a regular basis, specifying the element positions 

relative to a custom coordinate system can be convenient. In our example, the needed coordinate system 

would have a z-axis in the direction of the beam after the bend and an origin at the intersection of the axes. 

 

For performance reasons, particles hold a reference to a Coordinate System, and only beamline components 

defined relative the particle’s coordinate system are visible. The initial Coordinate system for all particles is 

"wcs". Defining a new CCS and positioning beamline components relative to this CCS will result in invisible 

beamline components: Particles need to be transferred to this new CCS, and only the sectormagnet, and 

last-resort ccsflip , elements can do this. 

 

Any number of additional coordinate systems can be defined provided they are orthonormal and Cartesian. 

The coordinate transformations relating the particle coordinates between WCS and a Custom Coordinate 

System, CCS, are similar to [1.1] and [1.2]. See section 4.11.1 for the reference of CCS. 

 

The ECS to WCS transforms are calculated by the GPT kernel by multiplying the transform from WCS to 

CCS and the transform from CCS to ECS: 

𝐌 = 𝐌CCS𝐌ECS 
𝐨 = 𝐌CCS𝐨ECS + 𝐨CCS [1. 6] 

They are used as in [1.1] and [1.2]. 
 

Because matrix-vector multiplications are costly in terms of CPU time, they are not performed for identity 

transformations. The code checks for these identity transformations during the initialization, thus eliminating 

the coordinate transformation overhead for straight beam-line sections completely. 
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1.5 Space charge 

The GPT code has a number of built-in elements to calculate Coulomb interactions, each optimized for a 

different application. All routines have certain characteristics that make them suitable for a subset of 

parameter space, but they can be very inefficient or even wrong if used incorrectly. To obtain correct 

simulation results, it is important to understand the assumptions made in every routine before selecting one. 

A summary of all built-in space-charge models in GPT is listed in Table 1-B. 

 

Reference section 4.8 of this manual describes the inputfile syntax and the equations of each routine 

individually. This section focuses on the differences between the various models and gives guidelines for 

selecting one. Independent on the model selected, we strongly advise to regularly scan the number of particles 

using the MR/GDFA program combinations and to test convergence by plotting the parameters of interest as 

function of the logarithm of the number of particles. 

Table 1-B: Summary of all GPT space charge elements. Complexity is in terms of the number of particles N. 

Name Complexity Granularity 

effects 

Dim Description 

spacecharge3Dmesh 𝒪(𝑁~1.1) No 3D PIC in rest frame 
spacecharge3Dtree 𝒪(𝑁 log𝑁) Yes 3D Barnes-Hut in rest frame 
spacecharge3D 𝒪(𝑁2) Yes 3D All pair-wise relativistic interactions 
spacecharge3Dclassic 𝒪(𝑁2) Yes 3D All pair-wise interactions 
spacecharge2Dcircle 𝒪(𝑁2) No 2D Cylindrically symmetric 
spacecharge2Dline 𝒪(𝑁2) No 2D Continuous beam 

 

All routines in GPT dealing with Coulomb interactions are derived from the electric field at the position of 

particle i due to Coulomb interaction with all particles j: 

E𝑖 =∑
𝑞𝑗

4𝜋휀0
𝑗≠𝑖

∙
𝐫𝑗 − 𝐫𝑖

|𝐫𝑗 − 𝐫𝑖|
3

[1. 7] 

Space charge is usually defined as the collective effect only, governed by long-range interactions with charge 

density. The summation hereby changes into an integration. This implies a smooth, fluidlike charge 

distribution, where the point-like nature of charge can be ignored. In that case, assuming the electrostatic 

case only, Coulomb interactions can be rewritten in terms of Poisson’s equation: 

−∇2𝑉 =
𝜌

𝜀0
[1. 8] 

where 𝜌 is the charge density and V the electrostatic potential. This equation is numerically much easier to 

solve compared to the previous point-to-point calculation. However, it is plainly wrong in the case where 

granularity/stochastic effects play a dominant role. For example, random emission processes start bunches 

with excess electrostatic potential energy, which is subsequently converted via Coulomb interactions into 

additional momentum spread (heat). This process is not included in Poisson’s equation. To determine if 

stochastic effects are important, one can use the following argument: A particle bunch with number density 

n [m–3] and no initial momentum will heat up to a temperature Tf given by: 

𝑘 𝑇𝑓 =
𝑞2

4𝜋휀0 𝑎
[1. 9] 

where a = (4𝜋 𝑛 3⁄ )−1 3⁄  is the Wigner-Seitz radius. This final temperature is reached on a timescale of the 

order of the inverse plasma frequency ωp
−1 = √𝑚휀0 𝑛𝑞2⁄ . Consequently, stochastic effects are important if 

the initial temperature of the bunch is below Tf, and if the total simulation time is larger than ωp
−1. For typical 

thermionic and photo-emission processes this is typically not at all a concern. 

 

We realize that the title of this section is confusing because the term space charge is used to denote all 

Coulomb interactions, including stochastic effects. For historical reasons the confusion is also present in the 

names of the GPT elements, all having spacecharge in their names. Some of them include granularity 

effects, some don't. 

 

The spacecharge3Dmesh routine, see section 4.8.1, is GPT's workhorse space-charge routine. It is based 

on solving Poisson’s equation in 3D in the rest frame of the bunch. It is by far the fastest space-charge model 

in the GPT code, but unsuitable for the calculation of granularity/stochastic effects. The method scales 𝒪(𝑁)  
in terms of CPU time and allows millions of particles to be tracked on a normal PC due to a tailor-made non-

isotropic multi-grid solver 
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A single Lorentz transformation is used to convert the calculated electrostatic fields in the co-moving frame 

into both electric and magnetic fields for the tracking engine. Consequently, the model cannot be used if 

there is so much energy spread that velocities in the zero-momentum frame approach the speed of light. This 

is very unusual. 

 

The spacecharge3Dtree routine, see section 4.8.2, calculates all Coulomb interactions from first 

principles, thus including space charge and granularity effects. It employs a Barnes-Hut method to 

hierarchically group particles together. This reduces the computational effort from 𝒪(𝑁2) to 𝒪(𝑁 log 𝑁), 
but the prefactor is considerably larger compared to the mesh version described above. Use this routing if 

granularity effects are expected to be significant. 

Analogous to the PIC spacecharge3Dmesh method, a single Lorentz transformation is used to calculate 

the magnetic field in the laboratory frame. 

 

The spacecharge3D element also calculates all Coulomb interactions from first principles. However, 

spacecharge3D uses Lorentz transforms for each pair-wise interaction, where spacecharge3Dtree 

transforms the bunch as a whole (analogous to the PIC spacecharge3Dmesh method). This approach makes 

this routine the 'best' with respect to physics included, but the drawback is significant: The computational 

cost is 𝒪(𝑁2), compared to 𝒪(𝑁 log𝑁) for spacecharge3Dtree, limiting the amount of particles that can 

be tracked in practice to the order of a few thousand. Use this routine for cases with several ten percent 

relative energy spread, where particles are relativistic in the co-moving frame. Because of its 'from-first-

principles' approach, this routine provides a great benchmarking opportunity for both spacecharge3Dmesh 

and spacecharge3Dtree for people with patience. 

 

The spacecharge3Dclassic routine, see section 4.8.4, models non-relativistic point-to-point interaction. 

Because this routine scales 𝒪(𝑁2) in terms of CPU time its use is restricted to simulations with just a few 

particles. In all other cases, spacecharge3Dtree is the best choice. 

 

The spacecharge2Dcircle routine, see section 4.8.6, is a cylindrically-symmetric version of 

spacecharge3D. It also scales 𝒪(𝑁2) in terms of CPU time, but because it uses one dimension less, the 

number of particles required before convergence is reached is reduced significantly. Longitudinal Lorentz 

transformations are applied to every binary interaction, allowing bunches with very large longitudinal energy 

spread to be simulated correctly. Bunches with extremely high azimuthal velocity, or relativistic transverse 

velocities cannot be modeled. 

 

The spacecharge2Dline routine, see section 4.8.8, is a version of spacecharge3D written for continuous 

beams. It also scales 𝒪(𝑁2) in terms of CPU time, but far less particles are required compared to full 3D 

modeling with any of the other space-charge models. Although no Lorentz transformations are applied, the 

model is relativistically correct. Bunches with large longitudinal velocity spread and extreme divergence 

cannot be modeled. 

 

The GPT Custom Elements documentation describes how to extend GPT with a custom space-charge model 

in case none of the built-in routines are suitable for your application. 
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1.6 Initial particle distribution 

Before GPT can start tracking the particle trajectories, the initial particle distribution must be specified. The 

initial particle distribution contains the initial position, momentum, mass, charge and release time of all 

particles. The start elements provide a very flexible method to start all kinds of initial particle distributions, 

ranging from GeV positron beams to less than eV electrons leaving a photo-cathode surface. Different ion 

species with different phase-space distributions can be specified using the same elements. All space-charge 

calculations are compatible with multiple particle species. 

 

The GPT code uses particle-sets to store any number of initial particle distributions. Each set contains a 

number of initial particles and each set can be freely manipulated by the start elements before the simulation 

starts. For example, particles can be added to a set and the initial positions of the particles in a set can be 

modified according to a specified distribution. Different sets can contain different particle species, providing 

precise control over the initial distribution per particle species. 

 

The philosophy behind the start elements is to use a number of keywords to specify the initial particle 

distribution, where each keyword only sets a certain projection of the distribution. For example, setzdist 

modifies the z-distribution of the particles, withot affecting the xy-position coordinates and the velocity 

distribution. 

 

It is possible to specify a uniform, Gaussian, linear, quadratic or cosine distribution for all one-dimensional 

projections of the initial phase-space distribution. Alternatively, if none of these distributions is applicable, 

it is possible to read the distribution from a separate file. 

 

In two dimensions, a Gaussian distibution in the xy-plane can be obtained by specifying a Gaussian 

distribution in x with setxdist, followed by a Gaussian distribution in y with setydist. The result is 

shown in the left plot of Figure 1-2. However, in general a transverse distribution can not be set by setting 

the x- and y-projections independently. For example a uniform hard-edged cylinder in the xy-plane can not 

be produced by any combination of x and y-projections. Such transverse distributions require setrxydist 

to specify the distribution of particle radius and setphidist to set the angular distribution. To obtain a 

uniform distribution in the xy-plane, the radial distribution must be uniform between 0 and the beam radius, 

whereas the angular distribution must be uniform between 0 and 2𝜋. The result is shown in the right plot of 

Figure 1-2. 

 

It is important to note that a uniform transverse (Cyl) distribution differs from a uniform one-dimensional 

(1D) distribution. To obtain a uniform distribution in the xy-plane, a linearly increasing number of particles 

must be launched as function of radius. In both cases, the user must specify a Uniform distribution, and GPT 

takes care of the difference. 

 

 
Figure 1-2: Gaussian distribution in the xy-plane (left) and uniform distribution in the xy-plane (right) with 

Hammersley sequences. 

It is apparent that the points in Figure 1-2 are not drawn randomly from the underlying distribution. The 

reason for this is the following: Typically, GPT is uses less particles in the simulations than are present in 

the actual experiment. Statistical fluctuations of a random creation process, also known as shot noise, scale 

as N-1/2 with N being the number of particles. Consequently, if both the actual and the simulated particles are 

created randomly, then the statistical noise of the small number of simulated particles is much larger than the 

actual shot noise. This is not desirable and GPT uses Hammersley sequences [1] to artificially reduce the 
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shot noise to 1/N. This results in ordered patterns that provide a good tradeoff between ‘smooth’ distributions 

in both real and Fourier space. These low-discrepancy sequences reduce CPU time because less particles are 

needed compared to a random distribution for the same final accuracy. 

 

It is important to realize that these Hammersley sequences should not be used when the number of macro-

particles in the simulation matches the number of actual particles in the experiment. The combination of 

random starting conditions and one of the point-to-point space-charge models is essential for example for 

the investigation of disorder-induced heating, trajectory displacement and Boersch effect. To illustrate the 

difference, Figure 1-3 shows the same distributions as shown in Figure 1-2 but now without making use of 

Hammersley sequences. 

 

  
Figure 1-3: Gaussian distribution in the xy-plane (left) and uniform distribution in the xy-plane (right) drawn from a 

random distribution. 

The Hammersley sequence samples N points with an r-dimensional uniform distribution quasi-randomly as: 

𝑥𝑖 = {(𝑖 −
1

2
 ) 𝑁⁄ ,Φ2(𝑖),Φ3(𝑖),… ,Φ𝑟(𝑖)} [1. 10] 

where 𝑖 = 1…𝑁. The function Φ𝑟(𝑖) is the radical inversion function in the base of prime number r. It is 

obtained by first inverting the base r representation of an integer i, given as 

𝑖 = 𝑎0 + 𝑎1𝑟 + 𝑎2𝑟
2 + … [1. 11] 

and then computing 

Φ𝑟(𝑖) = 𝑎0𝑟
−1 + 𝑎1𝑟

−2 + 𝑎2𝑟
−3 + … [1. 12] 

Each coordinate of a Hammersley sequence is uniformly distributed between 0 and 1. To prevent 

correlations, every GPT element modifying a particle distribution uses the next prime number for the 

generation of the Hammersley sequence. To further illustrate the Hammersley sequences, the top row of 

Figure 1-4 shows the particle histograms for a Gaussian distribution centered around 0 with a sigma of 1 

sampled with 1000 particles. The first plot shows a distribution based on the first equidistant Hammersley 

sequence, resulting in a perfect histogram. The next plots show the next Hammersley sequences, calculated 

from the prime bases 3, 5 and 7. The bottom row of Figure 1-4 shows the corresponding correlation between 

particle position and particle ID. The first plot shows the ascending equidistant case. The next plots show the 

typical ‘interference’ pattern between position and particle ID, getting slowly more profound for each next 

sequence. For a particle tracking application with typically 6 or 7 dimensions, this poses no problem. 
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Figure 1-4: Histograms (top) and position versus particle ID correlation (bottom) for a Gaussian distribution based on 

the first four Hammersley sequences. The first equidistant and the next sequences based on prime numbers 3,5 and 7 

are shown. 

1.6.1 Syntax 

Before a specific particle distribution can be defined, first the number and type of particles must be specified 

using the setparticles keyword: 

setparticles(set,N,m,q,Qtot) ; 

 

The keyword setparticles defines a particle set name, for example "beam", and generates N particles 

with all initial coordinates at zero. The total charge Qtot is uniformly distributed among all particles. To 

start 1000 electron macro-particles at the origin without velocity having a total charge of 100 pC one could 

use the line: 

setparticles("beam",1000,me,qe,-100e-12) ; 

me and qe are built-in constants having the mass and charge of an electron in [kg] and [C] respectively. 

 

After all these 1000 particles are initialized, the initial distributions can be specified. This is done using a 

number of keywords, each setting only a particular aspect of the distribution. For example the longitudinal 

particle distribution, the z-coordinates of the particles, can be specified using the setzdist keyword. 

setzdist(set,distribution) ; 

 

The particle set must be "beam" again to match the set parameter of setparticles. The distribution is 

specified as a character indicating the distribution type, followed by its specific parameters. Examples are: 

setzdist("beam","u",1,2) ; Uniform centered on z=1 m having width 2 m. 

setzdist("beam","g",1,1,2,2) ; Gaussian centered on z=1 m, sigma=1 m and cut-off left and right 

at 2 sigma. 

 

To switch off the Hammersley sequences, the distribution specifier must be prepended by a tilde ~ character. 

This results in a set of pseudo-random points, where it should be noted that each GPT run uses the same 

random number sequence. The randomize keyword must be used explicitly to instruct GPT to use a new 

random number sequence at each run. 

 

The plots in Figure 1-2 are created using: The plots in Figure 1-3 are created using: 

sigma=1 ; sigma=1 ; 

setxdist("beam","g",0,sigma,3,3) ; setxdist("beam","~g",0,sigma,3,3) ; 

setydist("beam","g",0,sigma,3,3) ; setydist("beam","~g",0,sigma,3,3) ; 

and and 

R=2 ; R=2 ; 

setrxydist("beam","u",R/2,R) ; setrxydist("beam","~u",R/2,R) ; 

setphidist("beam","u",0,2*pi) ; setphidist("beam","~u",0,2*pi) ; 

 

Table 1-C lists the possible distribution types and their parameters. The columns 1D, Cyl and Sphere 

correspond to Cartesian, Cylindrical and Spherical coordinates used in some of the start elements. 
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Table 1-C: Distributions, availability and parameters 

Specifier Type 1D Cyl Sphere Parameters Shape 
"u" Uniform    center, L 1 
"g" Gaussian    center, sigma, left, right 𝑒−𝑥

2
 

"l" Linear    center, L, hstart, hend 𝑥 
"q" Quadratic    center, L 1 − 𝑥2 
"c" Cosine    center, L, alpha cos (𝑥) 
"s" Sphere    center, R √1− 𝑥2 
"f" File    "filename", "x", "P(x)", scale, offset Tabulated 

 

1.6.2 Uniform distribution: "u", center, L 

The uniform distribution is independent on its variable in the interval: [center− 1
2
 L, center+ 1

2
 L] 

 
"u" Uniform distribution. 

center Center of the distribution. 

L Width of the distribution. 

 

The probability 𝑃 is given by: 

𝑃 =

{
 
 

 
 1/L 1D distribution in 𝑥

𝑟/(center L) Cylindrical distribution in 𝑟

sin(𝜃)

2 sin(center) sin(12 L)
Spherical distribution in 𝜃

[1. 13] 

in range [center− 1
2
 L, center+ 1

2
 L] and 0 otherwise. 

1.6.3 Gaussian distribution: "g", center, sigma, left, right 

The Gaussian distribution models a truncated normal distribution in the interval: 
[center− 𝜎 ∙ left, center+ 𝜎 ∙ right]  

 
"g" Gaussian distribution. 

center Center of the distribution. 

sigma RMS width 𝜎 of the distribution. 

left Left span of distribution relative to 𝜎. A value of 10 effectively makes this parameter ∞. 

For cylindrical distributions this parameter must be set such that all radii are nonnegative, 

i.e. left< center/𝜎. 

right Right span of distribution relative to 𝜎. A value of 10 effectively makes this parameter ∞. 

 

The probability 𝑃 in the range [center− 𝜎 ∙ left, center+𝜎 ∙ right] is given by 

𝑃(𝑥) =
√2
𝜋  exp (−

(𝑥 − center)2

2𝜎2
)

𝜎 (erf (
left

√2
) + erf (

right

√2
))

[1. 14] 

for 1D distributions in x. For cylindrical distributions in r it is given by 

L

center
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𝑃(𝑟) =
𝑟 exp(−

(𝑟 − center)2

2𝜎2
)

𝜎2 (exp(−
left2

2 ) − exp (−
right2

2 )) +
√2𝜋 center σ

2 (erf (
left

√2
) + erf (

right

√2
))

[1. 15] 

where P is zero outside the given range. 

1.6.4 Linear distribution: "l", center, L, hstart, hend 

The linear distribution models a linearly increasing probability in the interval: [center− 1

2
 L, center+ 1

2
 L] 

 
"l" Linear distribution. 

center Center of the distribution. 

L Width of the distribution. 

hstart Start value of the distribution at 𝑥 = center − 1

2
 L. 

hend End value of the distribution at 𝑥 = center + 1

2
 L. 

 

The probability 𝑃 is given by: 

𝑃 =

{
 
 

 
 

(2𝑥 − 2center+ L)hend− (2𝑥 − 2center− L)hstart

L2 (hend+ hstart)
1D distribution in 𝑥

6𝑟 ((2𝑟 − 2center+ L)hend− (2𝑟 − 2center− L)hstart)

6 L2 center (hend+ hstart) + L3(hend− hstart)
Cylindrical distribution in 𝑟

[1. 16] 

in range [center − 1

2
 L, center + 1

2
 L] and 0 otherwise. 

1.6.5 Quadratic distribution: "q", center, L 

The quadratic distribution models a parabolic probability in the interval: [center− 1

2
 L, center+ 1

2
 L] 

 
"q" Quadratic (parabolic) distribution. 

center Center of the distribution. 

L Width of the distribution. 

 

The probability 𝑃(𝑥) for 1D distributions is given by: 

𝑃(𝑥) =
3

2L3
(L2 − 4(𝑥 − center)2) [1. 17] 

in range [center − 1

2
 L, center + 1

2
 L] and 0 otherwise. 

L

hstart

hend

center

L

center
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1.6.6 Cosine distribution: "c", center, L, alpha 

The cosine distribution models a cosine-shaped probability in the interval: [center− 1

2
 L, center+ 1

2
 L] 

 
"c" Cosine distribution. 

center Center of the distribution. 

L Width of the distribution. 

alpha Opening angle 𝛼 [rad] between 0 and 2𝜋 selecting which part of the cosine to use. 

 

The probability 𝑃(𝑥) for 1D distributions is given by: 

𝑃(𝑥) =
cos (

𝛼
2) − cos (

(𝑥 − center)𝛼
L

)

L cos (
𝛼
2) −

2L
𝛼 sin (

𝛼
2)

[1. 18] 

in range [center − 1

2
 L, center + 1

2
 L] and 0 otherwise. 

1.6.7 Sphere distribution: "s", center, R 

The sphere distribution models a half-circle in the interval: [center− R, center + R]. 

 
"s" Sphere (half circle) distribution. 

center Center of the distribution, must be 0 in the current implementation. 

R Radius of the distribution. 

 

The probability 𝑃(𝑟) for cylindrical distributions is given by: 

𝑃(𝑟) =
3 𝑟

R2
√1−

𝑟2

R2
[1. 19] 

in the range 0 < r < R and 0 otherwise. 

1.6.8 File distribution: "f","filename","x","P(x) ", scale, offset 

The file distribution reads a probability curve from a user-specified GDF file. This is particularly useful if 

the distribution can not be set by one of the built-in functions listed above. 

 
"f" File distribution. 

"filename" Name of the GDF file containing the tabulated probability curve. 

"x" Name of the array containing the x variables. 

"P(x)" Name of the array containing the probability for each x value. 

scale Scale for the x values. Typically 1. 

offset Offset for the x values. Typically 0. 

 

L

center

center

R

P(x)

x
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The probability distribution is interpolated linearly between the specified (x, Px) points on the probability 

curve. The x-coordinates are scaled by x·scale+offset to accommodate a parametric linear coordinate 

transform. If this is not desired, set scale to 1 and offset to 0. 

 
The x array can be of arbitrary length, where all x values must be in ascending order. The probability P(x) 

array must be of equal length and negative probabilities are not allowed. It is the responsibility of the user to 

specify sufficient points to model the desired curve with sufficient accuracy. 

 

The distribution is implemented for 1D distributions and cylindrical distributions. 

 

Example: Triangular z-distribution. 

To set a triangular distribution between 4 and 8 for the initial z-coordinates, first a GDF file containing such 

a distribution must be created. The easiest way to do so is to first create an ASCII file containing the desired 

distribution dist.txt and subsequently convert this file to the GDF format. The latter can easily be done 

with the ASCI2GDF utility program in a batch file: 

asci2gdf –o dist.gdf dist.txt 

 
1. z Pz 

2. 4 0 

3. 5 1 

4. 6 2 

5. 7 1 

6. 8 0 

Listing 1-2: File dist.txt specifies a triangular distribution between 4 and 8. 

The produced dist.gdf can subsequently be used to set the desired distribution in a GPT inputfile: 

setzdist("f","dist.gdf","z","Pz",1,0) ; 

1.6.9 Advanced syntax 

To distribute a number of points along a given distribution f(x), first the cumulative distribution F(x) is 

defined by: 

F(𝑥) ∝ ∫ f(𝑥′) 𝑑𝑥′
𝑥

𝑥′=−∞

For 1D distributions

F(𝑟) ∝ ∫ f(𝑟′) 2𝜋𝑟 𝑑𝑟′
𝑟

𝑟′=0

For cylindrical distributions

F(𝜃) ∝ ∫ f(𝜃′) sin(𝜃′)𝑑𝜃′
𝜃

𝜃′=0

For spherical distributions

[1. 20] 

In all cases, F is normalized by imposing F(∞) = 1. Statistically it can be shown that F–1 maps a 

homogeneous distribution in the interval between 0 and 1 to a distribution following f. 

 

The default GPT approach is to apply F–1 to a Hammersley sequence between 0 and 1. This results in a quasi-

random set of low discrepancy points, following the distribution f. Alternatively, F–1 can be applied to a 

number of points randomly distributed in the interval between 0 and 1. This results in a pseudo-random set 

of points, as can be obtained by prepending the distribution specifier with a tilde ~ in the GPT inputfile. 

These two options are shown in the top rows of Table 1-D, where a guassian distribution is approximated by 

1000 points. Despite the low number of sample points, the Hammersley sequence results in a smooth 

histogram. The random distribution shows the actual fluctuations of 1000 randomly positioned particles. 

 

Also shown in Table 1-D are three other methods to create a distribution. When a star * is prepended to the 

distribution type, the distribution is created by applying F–1 to a randomized set of equidistant points. When 

a plus + respectively minus – sign is prepended to the distribution type, the same distribution is added in 

ascending respectively descending order. The latter two options result in either a monotonically rising or 

falling correspondence between the coordinate of interest and the particle number. The + order is identical 

to the first Hammersley sequence. 
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Table 1-D: Example of distribution modifiers. 

 

Specifier: h or none 

Example: 
setzdist("beam","g",1,.5,3,3) ; 

 

Description: Hammersley order following a 

specified distribution. 

 

The 3rd sequence with prime base 5 is shown. 

 

Specifier: ~ 

Example: 
setzdist("beam","~g",1,.5,3,3) ; 

 

Description: Fully random set of points following 

a specific distribution. 

 

Specifier: * 

Example: 
setzdist("beam","*g",1,.5,3,3) ; 

 

Description: Random order of an optimized 

sequence of points following a specified 

distribution. 

 

Specifier: + 

Example: 
setzdist("beam","+g",1,.5,3,3) ; 

 

Description: Ascending order of an optimized 

sequence of points following a specified 

distribution. 

 

Specifier: - 

Example: 
setzdist("beam","-g",1,.5,3,3) ; 

 

Description: Descending order of an optimized 

sequence of points following a specified 

distribution. 
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1.7 Equations of motion 

The relativistic equations of motion of the individual macro-particles are solved by GPT. The position x and 

the momentum p = 𝛾𝑚v are used as the coordinates of a particle. The equations of motion for particle i are 

given by: 

𝑑p𝑖
𝑑𝑡

= F𝑖

𝑑x𝑖
𝑑𝑡

= v𝑖 =
p𝑖𝑐

√p𝑖
2 +𝑚𝑖

2𝑐2

[1. 21] 

The force on particle i is calculated using: 

F𝑖 = 𝑞(E𝑖 + v𝑖 × B𝑖) [1. 22] 

 

These equations of motion can not be solved for each particle individually because, due to the spacecharge, 

the force on each particle depends on the position of all other particles. Therefore we introduce the vector 

y(t) containing the six coordinates of all the particles as a function of time t. The equations of motion [1.21] 
can then be rewritten as: 

𝑑y(𝑡)

𝑑𝑡
= f(𝑡,y(𝑡)) [1. 23] 

where f(t,y(t)) is a combination of the equations [1.21] and [1.22] for every particle. The only boundary 

conditions are the initial particle coordinates at a specified time. 

 

When additional differential equations are added, the variables are added to y(t) and the differential equations 

are added to f. The extra differential equations can be a function of all the particle coordinates, time and the 

variables of other differential equations. The boundary condition, the initial value of the variables, must be 

supplied for each value individually. Because GPT solves particles coordinates and extra variables 

simultaneously, the results are always self-consistent. The method used to solve [1.23] is described in the 

following section. 
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1.8 Runge-Kutta 

In this section we describe the method GPT uses to solve equation [1.23]. This method is known as fifth-

order embedded Runge-Kutta with adaptive stepsize control. The algorithm is efficient and has the capability 

to specify the accuracy of the calculations. For a detailed description we refer to Numerical Recipes [2] but 

we will briefly explain the algorithm here. 

 

Basically the algorithm consists of a fifth-order Runge-Kutta step. It advances y(𝑡) to y(𝑡 + ℎ) by 

performing the following steps: 

k1 = ℎf(𝑡, y) 
k2 = ℎf(𝑡 + 𝑎2ℎ, y + 𝑏21k1) 
⋮ 

k6 = ℎf(𝑡 + 𝑎6ℎ, y + 𝑏61k1 +⋯+ 𝑏65k5) 
y(𝑡 + ℎ) = y(𝑡) + 𝑐1k1 + 𝑐2k2 + 𝑐3k3 + 𝑐4k4 + 𝑐5k5 + 𝑐6k6 +𝒪(ℎ

6) [1. 24] 
The values of the constants a, b and c can be found in Table 1-E. To be able to monitor the accuracy of 

y(𝑡 + ℎ) each step is calculated again using an embedded fourth-order formula: 

𝒚∗(𝑡 + ℎ) = y(𝑡) + c1
∗k1 + c2

∗k2 + c3
∗k3 + c4

∗k4 + c5
∗k5 + c6

∗k6 + 𝒪(ℎ
5) [1. 25] 

The error estimate ∆ is given by: 

∆ ≡ y(𝑡 + ℎ) − y∗(𝑡 + ℎ) =∑(𝑐𝑖 − 𝑐𝑖
∗)

6

𝑖=1

k 𝑖 [1. 26] 

It is an indicator of the error made in the timestep. It is this difference that is kept to a specified degree of 

accuracy. Not too large, because this indicates an insufficient precision of the result. Not too small either, 

because a higher accuracy than needed is a waste of CPU time. Keeping the difference to the specified 

accuracy is done by adjusting the stepsize h. 

 

∆ is a vector of all the coordinates of all the particles. The maximum absolute values for the position and 

momentum coordinates are defined as xmax and 𝑚𝑐𝛾𝛽max respectively. They are compared with xerr and 𝛾𝛽err, 
set in the in the inputfile to define the desired accuracy. The error indicator Λ is defined as the largest of the 

two following ratios: 

Λ = max (
𝛾𝛽max
𝛾𝛽err

,
𝑥max
𝑥err

) [1. 27] 

If Λ > 1, thus 𝛾𝛽max > 𝛾𝛽err or 𝑥max > 𝑥err, the step is not accepted and will be retried with: 

ℎnew = {𝑆 Λ
1
4  ℎold if 𝑆 Λ

1
4 > 0.10

0.10 ℎold otherwise
[1. 28] 

where hnew is chosen in such a way that for the next timestep Λ will approximately equal the safety parameter 

S. S is default set to 0.85. The timestep can decrease by no more than a factor of 10. 

 

If Λ ≤ 1 the step is accepted with y(t+h). The next timestep is performed with: 

ℎnew = {
𝑆 Λ

1
5  ℎold if 𝑆 Λ

1
5 < 5.0

5 ℎold otherwise
[1. 29] 

This ensures that no more than a factor of 5 increase in the stepsize is possible. 

 

Table 1-E: Cash-Karp constants for embedded Runge-Kutta method. 

i ai   bij   ci c*
i 

1       
378
37

 27648
2825

 

2 
5
1  5

1      0 0 

3 
10
3

 40
3

 40
9

    
621
250

 48384
18575

 

4 
5
3
 10

3
 10

9−  5
6
   

594
125

 55296
13525

 

5 1 
54
11−  2

5
 27

70−  27
35

  0 
14336

277
 

6 
8
7

 55296
1631

 512
175

 13824
575

 110592
44275

 4096
253

 1771
512

 4
1

 

j =  1 2 3 4 5   



26 The GPT code 

 

1.9 Output 

The output of GPT mainly consists of the position and normalized velocity coordinates of all the macro-

particles and optionally the electromagnetic fields at the positions of the particles. The output is written in 

GPT Datafile Format, GDF, explained in detail in section 1.10. Three output mechanisms are currently 

implemented: Snapshot, Position and Field output. 

 

The GPT code solves the differential equations of motion in time-domain. Consequently, the most efficient 

output mechanism is output at specific simulation times. This can be done with the snapshot keyword that 

writes the phase-space coordinates of all particles to the GPT outpfile at arbitrary simulation time. Because 

the snapshot keyword does not affect the stepsizes taken by the ODE solver it produces no overhead, apart 

from disk I/O, and it does not affect the overall accuracy. It syntax is described in detail in section 4.3.11. 

 

To obtain electromagnet field information, output can be generated with the tout keyword. This writes the 

electromagnetic fields at all particle positions to the outputfile. Internally, tout instructs the GPT ODE 

solver to decrease its stepsizes in such a way that the particle coordinates are calculated exactly at the 

specified times. The used algorithm looks ahead and starts to make small adjustments to the stepsizes ahead 

of the requested output time in order to end correctly. As a result, tout slows down the ODE solver. 

Furthermore, because stepsizes can be decreased but are never increased, tout increases the overall accuracy 

of the simulations. Relying on such a side-effect is not wise and we stongly suggest using the accuracy 

keyword to specify the overall simulation accuracy. For the exact syntax of the tout keyword please see 

reference section 4.3.15. 

 

Position output can be requested using the screen keyword. The particle coordinates are recorded when 

they pass a specified non-destructive plane in 3D space. Any number of planes with any orientation can be 

specified. Starting from GPT version 3.10, the screen implementation in GPT is 'perfect' in the sense that the 

interpolation error is always smaller or equal compared to the tracking error. Screens need to buffer particle 

coordinates and involve high-order interpolations. Consequently they are slower and more resource intensive 

compared to snapshots. For more information we refer to reference section 4.3.10. 

 

The coordinates of all the particles and optionally the electromagnetic fields are written as individual arrays 

in the GPT outputfile. For example, x is an array of all the x-coordinates of all the particles. A description of 

the arrays written to the outputfile is given in Table 1-F. How the outputfile is structured is explained in the 

next section. 

Table 1-F: Description of the particle array columns in the GPT outputfile. 

Name  Snapshot Screen Tout Description 
ID √ √ √ Particle identification numbers 
x √ √ √ x coordinate [m] 
y √ √ √ y coordinate [m] 
z √ √ √ z coordinate [m] 
Bx √ √ √ Normalized velocity β𝑥 
By √ √ √ Normalized velocity β𝑦 
Bz √ √ √ Normalized velocity β𝑧 
G √ √ √ Lorentz factor γ 
rxy √ √ √ Distance to z-axis [m] 
t  √  Time when particles cross the screen [s] 
fEx   √ Ex field at the particle coordinates [V/m]. 
fEy   √ Ey field at the particle coordinates [V/m]. 
fEz   √ Ez field at the particle coordinates [V/m]. 
fBx   √ Bx field at the particle coordinates [T]. 
fBy   √ By field at the particle coordinates [T]. 
fBz   √ Bz field at the particle coordinates [T]. 

 

Within a user element, the GPT kernel can be instructed to call a specified routine at every time output. 

Typically this mechanism is used to write the parameters of custom differential equations in the outputfile, 

but it can also be very helpful for debugging purposes. For more information about this feature, we refer to 

the GPT Custom Elements documentation. 
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At the end of the simulation the variable cputime is written. It contains the CPU time, measured in seconds, 

between the previous and current time output. It can be used to track where most of the CPU time is spent. 

The variable cputime not listed in a time group is the total CPU time used by GPT. 
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1.10 GDF 

The raw output of GPT consists of arrays containing the coordinates of the macro-particles and the 

electromagnetic fields. To efficiently accommodate additional output variables and parameter scans, the 

General Datafile Format (GDF) was developed. A GDF file consists of a number of GDF blocks, where 

every block contains binary data with a name. The x-coordinates of the particles for example are all written 

in a single block named x. Because all particle coordinates need to be written for every time output and every 

screen output, the GDF database is hierarchical. The blocks can be grouped together, where the groupname 

is itself a GDF block with name and data. For time output, the block name is time and the data is the 

simulation time itself. The GDF equivalent of such a structure is shown in Figure 1-5. Screen output is 

analogous, with block name position and the data the z-coordinate in the local coordinate system of the 

screen. 

 
 

etc=...... 

G={.......} 

z={.......} 

y={.......} 

x={.......} 

z={.......} 

time=2 ns 

y={.......} 

x={.......} 

time=1 ns 

 

etc=...... 

G={.......} 

z={.......} 

y={.......} 

x={.......} 

z={.......} 

y={.......} 

x={.......} 

 
Figure 1-5: GDF representation of the outputfile. The blocks represent a GDF-object and its data. The indentation 

represents the internal hierarchy. 

Although studying particle coordinates at consecutive output times can be very useful, generally macroscopic 

quantities like bunchlength, emittance and standard deviations are needed as well. The GDFA program is 

written to extract such information directly from the GPT outputfile. 

 

When the effect of any parameter needs to be studied, the Multiple Run (MR) facility can be used. MR 

instructs GPT to run with one varying parameter and creates one outputfile containing the results of all the 

simulations. Such an outputfile is schematically shown in Figure 1-6 where the effects of different settings 

for the variable phi are calculated. 

 
 

time=5 ns 

time=2 ns 

phi=1 mrad 

Particles Particles 

Particles Particles Particles 

Particles 

Particles Particles Particles time=1 ns 

phi=5 mrad phi=2 mrad 

  
Figure 1-6: MR Output when multiple time output is written for various settings of the parameter phi. 

GDFA needs extra information before such a file can be processed. When for example the average z-

coordinate versus the standard z deviation, a measure for bunch length, need to be studied, there are two 

possibilities. 

1. For every value of phi: Calculate average z and bunchlength. Every point is calculated at a different 

time. 

2. For every time: Calculate average z and bunchlength. Every point is calculated for a different setting 

of phi. 

One option is not arguably better than/preferable over the other, as depends on what needs to be studied. 

Therefore GDFA needs an additional parameter, which is named group_by. This parameters pecifies which 

level of hierarchy collapses. The first of the two options mentioned above groups by time, the second groups 

by phi. The group_by parameter itself is always output as an array in the produced outputfile. 

 

For a complete description of all the GDF programs we refer to chapter 3. Table 1-E lists the description of 

the names in the GPT outputfile 



 Collector design 29 

 

1.11 Collector design 

GPT can be used for the design of collectors and other beam-line elements in which scattering on the surface 

has to be taken into account. The main difference between collector design and normal beam-line simulations 

is found in the fact that scattered particles, generated when a particle hits a surface, play an important role. 

 

The scattering process is modeled as two separate steps in GPT: 

• Boundary elements calculate if, where and at what angle a particle hits a surface. Many basic surfaces 

like plates, cones, spheres, pipes, irises and toruses are built into GPT and custom shapes can be 

defined when needed. 

• The physical properties of the surface material are defined by a scatter element. When a hit is detected, 

the corresponding scatter element removes the incident particle and optionally creates one or more 

new scattered particles with an energy and angle distribution as function of the incident energy and 

angle. 

The separation between boundary elements and scatter elements allows the user to apply any material to any 

boundary. 

 

The GPT kernel stores all raw scatter statistics to the GPT outputfile for subsequent analysis. The position, 

energy, charge and angle of incidence of both the incoming and scattered particle are recorded. For the design 

of a collector consisting of several plates, the FISHFILE program described in section 3.5 reads the raw 

scatter statistics and writes the statistics per collector plate. The electrostatic field inside the collector is 

typically calculated by Superfish and imported in GPT as a 2D field-map. To keep the GPT inputfile and the 

Superfish file consistent, it is possible to generate the boundary description required in the GPT inputfile 

automatically from the Superfish file. 

1.11.1 Boundary elements 

GPT boundary elements, like a hollow pipe or sphere, calculate 2D surfaces in 3D space. They determine if 

a particle trajectory crosses the boundary and, if so, calculate the intersection point, angle of incidence and 

interpolated momentum. The applied scatter model, as described in section 1.11.2, determines the fate of the 

incident particle. Typically it is removed and optionally (back) scattered particles are generated. 

 

A 2D boundary in 3D space can be defined by: 

𝑓(𝑥, 𝑦, 𝑧) = 0 [1. 30] 

 

For example, the boundary of a hollow sphere with radius r is: 

𝑓(𝑥, 𝑦, 𝑧) = 𝑥2 + 𝑦2 + 𝑧2 − 𝑟2 = 0 [1. 31] 

 

All boundary elements implemented in GPT and their corresponding boundary equation are listed in section 

4.9. The cone, iris, pipe, sphere and torus elements are used to model cylindrically symmetric geometries. 

The plate element can be used to model asymmetric geometries. 

 

To detect if a particle trajectory crosses a boundary, the trajectory is first approximated by straight line 

segments between consecutive successful Runge-Kutta steps. As an optimization, the bounding-boxes of all 

elements are first used to determine if a line segment makes any chance of crossing the boundary. For 

example, a line segment running from (x1,y1,z1) to (x2,y2,z2) with positive z1 and positive z2 can never 

intersect with a plate at z=0 and a line with x1>R and x2>R can never intersect with a pipe with radius R. If 

the bounding-box tests does not rule out an intersection, the line segment is parameterized to a single variable 

𝜆: 

P(𝜆) = (

𝑥1 + 𝜆 Δ𝑥
𝑦1 + 𝜆 Δ𝑦
𝑧1 + 𝜆 Δ𝑧

) [1. 32] 

where ∆= (𝑥2 − 𝑥1, 𝑦2 − 𝑦1, 𝑧2 − 𝑧1). To stay between the start- and endpoint of the line segments, 𝜆 must 

always be between 0 and 1. Solving the intersection point P(𝜆) is identical to solving 𝜆 from: 

𝑓(P(𝜆)) = 0 where 0 < 𝜆 < 1 [1. 33] 

 

In the case of a sphere, this yields the following second-order equation: 

𝑎𝜆2 + 𝑏𝜆 + 𝑐 = 0 [1. 34] 
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where 

𝑎 = ∆𝑥2 + ∆𝑦2 + ∆𝑧2

𝑏 = 2(∆𝑥 𝑥1 + ∆𝑦 𝑦1 + ∆𝑧 𝑧1)

𝑐 = 𝑥1
2 + 𝑦1

2 + 𝑧1
2 − 𝑟2

[1. 35] 

 

We could have expected the boundary test for a sphere to be a second-order equation because a line and a 

hollow sphere can have a maximum of two intersections. Using the same argument, testing a plate 

intersection results in a first-order expression and a torus intersection test requires solving a fourth-order 

equation. 

 

When more boundaries are present, they must all be tested. When more boundaries are crossed, the boundary 

with the smallest positive 𝜆 is the nearest and the one actually hit. When the intersection point of the nearest 

boundary is calculated, the surface normal n at the intersection point P is determined using the gradient of f: 

𝐧(𝑥, 𝑦, 𝑧) = ∇𝑓 [1. 36] 

 

When the surface normal is known, the angle of incidence 𝛼 is given by: 

𝛼 = cos−1 (
𝐧∙∆

|𝐧| |∆|
) [1. 37] 

1.11.2 Scatter elements 

Whenever a boundary element detects a particle hitting its surface, the corresponding scatter element is called 

into action. This element defines the physical properties of the surface material. It is responsible for removing 

the incident particle and optionally generating one or more scattered particles. Just like regular GPT elements, 

a scatter element can have one or more parameters allowing a broader range of materials to be modeled using 

the same element. 

 

Apart from removing the incident particles and optionally generating one or more scattered particles, scatter 

elements also write detailed information of every particle-boundary intersection to the GPT outputfile. These 

‘hits’ are recorded for direct plotting, or for further analysis with the FISHFILE program described in section 

3.5. Table 1-G gives the scatter arrays written in the GPT outputfile. 

Table 1-G: Description of the scatter arrays in the GPT outputfile. 

Name  Description 
scat_x Array of the x coordinates of the ‘hits’ [m] 
scat_y Array of the y coordinates of the ‘hits’ [m] 
scat_z Array of the z coordinates of the ‘hits’ [m] 
scat_Qin Corresponding total charge of incident particle [C] 
scat_Qout Corresponding total charge of scattered particle(s) [C] 
scat_Qnet scat_Qin–scat_Qout 
scat_Ein Corresponding total kinetic energy of incident particle [J] 
scat_Eout Corresponding total kinetic energy of scattered particle (s) [J] 
scat_Enet scat_Ein–scat_Eout 
scat_inp Cos(angle of incidence) 

 

The simplest GPT scatter element is forwardscatter, described in section 4.9.1. It scatters a particle in the 

forward direction with user-defined probability P. A reflected macro-particle is generated with the same 

energy as the incident particle in the forward direction. The new number of elementary particles this macro-

particle represents is P*N, where N is the number of elementary particles represented by the incident particle. 

When P*N is smaller than a user-defined threshhold the new particle is not created to avoid the simulation 

running forever. A more realistic scatter element for a copper surface is described in section 4.9.2. 
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1.12 Automatic solving 

Typical use of GPT is to use MR to scan a variable and use GDFA to aggregate the result. This allows plots 

of for example spotsize versus lens strength to be obtained fully automatically. The GDFsolve program goes 

one step further: It can for example automatically find the current that you need to get a desired spotsize. 

GDFMGO (Multi-objective Global Optimization) can do the same thing, but it can also show you tradeoffs 

between conflicting objectives such as spotsize and pulse-duration. 

 

Both GDFsolve and GDFMGO are multi-dimensional solvers that can be used as a ’driver-programs’ for 

GPT simulations: Any number of variables in the GPT inputfile can be varied, and both GDFsolve and 

GDFMGO allow a non-equal number of variables and constraints as well as external boundary conditions 

for all variables. The objectives are all calculated by standard GDFA data-analysis, allowing both built-in 

and custom GDFA programs to be used. 

 

To understand how to use these solvers we first need to distinguish between three different use cases. They 

are summarized below, where f(x) implies a GPT run with variables x1…xN. 

 

Use case Program Description Algorithm 

Find multi-dimensional root 

  with multiple objectives  

GDFsolve Solve x given f(x)=a 

Solve x given f(x)=a, g(x)=b, … 

Newton-

Raphson 

Find nearest minimum 

  with multiple objectives 

GDFsolve Find x that minimizes f(x) 

Find x that minimizes a·f(x) + b·g(x) + … 

Powell 

Find global minimum 

  with multiple objectives 

GDFMGO Find x that minimizes f(x) 

Find tradeoff between f(x) and g(x) 

Genetic 

evolution 

 

GDFsolve, either used as a root-finder or as optimizer, assumes that the target objective(s) are smooth with 
respect to the variables. The program starts from a single point in variable space and calculates the derivate(s) 

by one ore more extra function evaluation at a fixed but finite distance away from the selected point. These 

derivatives are subsequently used to create a better initial estimate and the process is repeated until 

convergence. GDFMGO on the other hand does not make any assumptions about how the objectives relate 

to the variables. It does not start with a single point in variable space, but with a population of such points. 

The objectives are calculated for all these points, and the best ones are genetically combined to improve the 

population as a whole. 

 

In theory GDFMGO is the best algorithm. It can solve, optimize, and it is not very sensitive to local minima. 

In practice however we need to take into account that GDFMGO is intrinsically slow. Although there is an 

MPI version that can launch thousands of GPT runs simultaneously, typically a few hundred iterations are 

needed before convergence. Consequently, wall-clock time is, even with a supercomputer at your disposal, 

at least the time it takes to run hundreds of GPT runs. GDFsolve on the other hand can be much faster, 

especially when used as root-finder. The underlying Newton-Raphson algorithm doubles the number of 

significant digits at each iteration and given a good starting position it is possible to find roots in just a few 

iterations. 

 

Our advice is to first try to cast a problem into a form that is suitable for the root-finder and provide good 

starting position(s) for the variable(s). In that case GDFsolve will be the fastest method. 

 

For the optimization of a single objective, one should take into account that numerically calculating a 

derivative is sensitive to noise. Where the root-finder only needs the first derivative, the optimizer needs the 

second derivative to find the optimum. This makes it difficult to select the correct distance in variable space: 

On the one hand the stepsize should be rather large to prevent numerical noise, while on the other hand it 

should be quite small to get good accuracy. Finding the right balance can be tricky, but as long as the global 

optimization properties of GDFMGO are not needed using GDFsolve is recommended. 

 

For the optimization of multiple objectives, we recommend the use of GDFMGO. It has been specifically 

designed to handle that case, and the result is a plot giving the tradeoff between the objectives known as the 

Pareto front. This gives much more information about the underlying problem than the single output of 

GDFsolve, and it is an ideal tool for decision making.  

 

The following sections describe the internal algorithms of GDFsolve and GDFMGO. More practical 

information can be found in tutorial section 2.4 and reference sections 3.14 and 3.14 respectively. 
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1.12.1 Using GDFsolve as root finder 

GDFsolve used as root finder tries to find a simultaneous solution to the following set of non-linear equations: 

𝑓1(𝑥1, 𝑥2, … ) − 𝑓𝑡1 = 0 
𝑓2(𝑥1, 𝑥2, … ) − 𝑓𝑡2 = 0 

⋮ [1. 38] 

Or in vector notation: 

𝐟(𝐱) − 𝐟𝐭 = 0 [1. 39] 

The very simple vector notation in [1.39] is misleading because the components of f can represent completely 

unrelated physical quantities. Solving them simultaneously is in general a very difficult problem. 

 

When the dimensions of f and x are equal, a relatively simple solution can be obtained by writing a multi-

dimensional Taylor-series expansion of f around a start value x0: 

𝐟(𝐱) ≈ 𝐟(𝐱0) +
𝑑𝐟

𝑑𝐱
|
𝐱0

(𝐱 − 𝐱0) [1. 40] 

Subsequent solving of [1.40] provides a first order estimate for a new trial xn+1 based on previous guess xn: 

𝐱𝑛+1 = 𝐱𝑛 +𝐌
−1(𝐟𝐭 − 𝐟(𝐱n)) where 𝑀𝑖𝑗 =

𝑑𝑓𝑖
𝑑𝑥𝑗

[1. 41] 

Iterating the above procedure is known as multidimensional Newton-Raphson and works very well in the 

vicinity of a root. As shown in Figure 1-7, the derivative of the function is extrapolated to produce the next 

trial. Sufficiently near a root convergence is quadratic, i.e. the number of significant digits in x doubles at 

each step. 

 

 
Figure 1-7: Typical Newton-Raphson iteration sequence in one and two dimensions. 

There are however a number of problems with this approach: 

• Typical variables x can have very different scaling. When one column in M denotes total bunch charge 

in [C] while the next is beam energy in [eV], inverting that matrix can result in unacceptable 

truncation errors. 

• When the Jacobian matrix M can not be evaluated directly, it must be estimated numerically by a finite 

difference approach 𝑀𝑖𝑗 ≈ ∆𝑓𝑖 ∆𝑥𝑗⁄ . This not only reduces the order of convergence, but also imposes 

a new question: How large should ∆𝑥 be chosen? 

• There are a large number of situations where basic Newton-Raphson sends the solution to outer space 

in the first iterations or where the method does not converge at all. 

• Not all matrices M can be inverted. This is obvious when the number of variables and the number of 

constraints are not equal. But the same problem arises when one variable does not have any effect on f, 

or when one constraint is not affected by changing any x. 

• Almost all variables are bounded by external constraints. For example, variables can be limited by 

specifications of existing hardware, budget restrictions or the location of other beam line components. 

• The number of function evaluations required to obtain M is equal to the number of free parameters. 

This is very costly in terms of CPU time because every function evaluation neads a complete GPT run. 

 

The following sections present solution(s) used to approach these problems. 
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1.12.1.1 Scaling and initial stepsizes 

To avoid truncation error problems when the matrix df/dx is inverted, it is made dimensionless by dividing 

both f and x by a typical set of scale-factors: df and dx respectively. The user can specify the appropriate 

scaling as a constant value, a relative fraction or both. The total scaling is given by the vector length: 

𝑑𝑓𝑖 = √𝑑𝑓𝑎𝑏𝑠𝑖
2 + (𝑓 ∙ 𝑑𝑓𝑟𝑒𝑙𝑖)2 

𝑑𝑥𝑖 = ±√𝑑𝑥𝑎𝑏𝑠𝑖
2 + (𝑥 ∙ 𝑑𝑥𝑟𝑒𝑙𝑖)2 [1. 42] 

The sign for the steps in x is determined by the external boundary conditions, as explained in section 1.12.1.4. 

 

Although it is possible to automatically detect appropriate scaling, this will always result in more function 

evaluations. Especially because f can be a numerically noisy function depending on the number of particles 

and accuracy settings of the corresponding GPT run, we have decided not to implement dynamic scaling. 

 

To simplify the equations we directly subtract the target value ft from f such that the new function F must 

be zero at the solution. As a convention, both the scaled dimensionless function components F and the 

dimensionless variables X are written in uppercase. Now that the variables are properly scaled, the first step 

to obtain derivative information M can be chosen simply as Δ𝐗 = 1. This leads us to the following new set 

of equations: 

𝐅(𝐱) = (𝐟(𝐱) − 𝐟𝐭) 𝐝𝐟⁄  
𝐗 = 𝐱 𝐝𝐱⁄  
𝐌 = ∆𝐅 ∆𝐗 = 𝐅(𝐱𝑁 + 𝐝𝐱) − 𝐅(𝐱𝑁)⁄  

𝐱𝑁+1 = 𝐱𝑁 − (𝐌)
−1𝐅(𝐱0)𝐝𝐱 [1. 43] 

 

The scaling dx is a crucial parameter because it is directly related to the stepsize in the determination of M. 

It is our experience that almost all problems with GDFsolve are related to an incorrect scaling of the variables. 

Figure 1-8 shows a typical too small, good and too large dx. A too small dx is smaller than the simulation 

noise on the constraints. A too large dx sends the constraints into a non-linear regime. When no correct 

scaling can be found, the tracing accuracy of GPT must be increased or more particles must be added to the 

simulation. 

 

 
Figure 1-8: Too small, good and too large dx. 
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1.12.1.2 Backtracking 

One of the problems with the proposed scheme is that it can send a 

solution to outer space when the first estimate of x is not sufficiently 

near a root in F. A related problem can occur when the sequence 

simply does not converge. As shown in Figure 1-9 a very small 

difference in start position for x can change a convergent solution into 

a cyclic or even divergent scheme. 

 

To solve these convergence problems, we first have to detect that the 

algorithm is not working. Because F is scaled, its vector length can be 

used as convergence indicator: 

                                 |𝐹(𝑥𝑛+1) ≥ (1 − 𝛼)𝐹(𝑥𝑛)|                             [1. 44] 

When [1.44] is not satisfied with sufficiently small 𝛼, convergence 

problems may occur. A typical convergence factor 𝛼 is a few percent. 

Not meeting [1.44] usually indicates that the used step is too large. In 

that case the stepsize is reduced by a factor of 2, for three iterations if 

necessary, in an attempt to find a smaller F. If this fails, GDFsolve is 

unable to find a solution and terminates. 

1.12.1.3 Singular Value Decomposition 

Matrix inversion of the Jacobian M is numerically a dangerous 

process. Because the CPU time in all practical applications is 

dominated by the evaluation of F, it is in our opinion better to use 

Singular Value Decomposition (SVD). A full treatment of the method 

is beyond our scope here, but basically the method is as follows: 

 

The matrix M is written as the product of three matrices1: 

𝐌 = 𝐔 ∙ 𝑑𝑖𝑎𝑔(𝑤1, 𝑤2, … ) ∙ 𝐕
𝑇 [1. 45] 

where the columns of both U and V are orthonormal. For our application the columns of V define an 

orthonormal set of directions of the variables Xi and the columns of U define the corresponding change in 

the constraints Fi. The diagonal matrix containing wi, the singular values, defines the scaling between these 

two. 

 

Once the Singular Value Decomposition is calculated, inverting M is simple: 

𝐌−1 = 𝐕 ∙ 𝑑𝑖𝑎𝑔(1 𝑤1⁄ , 1 𝑤2⁄ , … ) ∙ 𝐔𝑇 [1. 46] 

 

Numerically you run into trouble when one or more of the wi’s is much smaller than the others. A relatively 

small wj indicates a change in X that does not affect F. So if you want to change F in that direction, you need 

a very large change in X. Typically, such giant steps lead you away from the solution rather than put you on 

top of it. Therefore the pragmatic approach is simple: Because you can not change F in the direction of a 

small wi, do not try. Numerically, this means that in the inversion process all 1/wi must be set to zero when 

wi is sufficiently small. 

 

When M is not square, the matrix U is not square either, but all observations still apply. In other words, the 

number of variables and constraints does not need to be equal. Thus we can use more variables, or even more 

constraints when desired. 

 

Summarizing the advantages of SVD over matrix inversion: 

• When M is ill conditioned, one or more wi’s are very small, F is very insensitive to one or more 

directions in X. Instead of sending the solution to near infinity, these directions can be ignored by 

setting the corresponding singular values to zero in the inversion process. 

• When X has more dimensions than F, the matrix M is under-conditioned. This results in a nullspace of 

M where a change in X does not affect F. The new trial value for X will not move in the nullspace. 

• When F has more dimensions than X the matrix M is over-conditioned. The new trial value for X is 

fitted in a least-squares sense in an attempt to solve for too many constrains. 

 

 
1 In literature, sometimes V is defined without the transpose. 

 
Figure 1-9: Convergent, cyclic and 

divergent iterations. 
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One question remains: How small can wi be before that direction must be ignored? This depends on correct 

scaling between the variables x and X and between the constraints f and F. Furthermore, it depends on the 

accuracy of the underlying GPT simulation. Finally, it depends on the machine precision but this is never a 

real concern for double-precision calculations. Specific situation-dependent experience is needed, but it 

appears that the method is not particularly sensitive: A typical range between 10-2 and 10-6 compared to the 

maximum wi can be used as criteria for smallness. 

1.12.1.4 External boundary conditions 

In many design scenario’s, the variables xj can not be chosen freely. They are restricted to boundary 

conditions such as the location of other beam-line components. In our implementation all variables are 

bounded by a minimum and maximum value, forming a hypercube of free space. 

 

When a new trial value xn+1 lies outside the hypercube, an attempt is made to move it inside by changing xn+1 

in the nullspace of M. This corresponds to a move for any 𝛌 of the form: 

𝐱 ← 𝐱 + 𝐕′ ∙ 𝛌 [1. 47] 

where only the columns of V corresponding to small wi are used in V′. 
 

The additional unknown vector 𝛌 can be solved from: 𝐱𝐛 = 𝐱+ 𝐕" ∙ 𝛌 where V" contains only the rows of 

V′ corresponding to the component of x that must be moved into the boundary hypercube, given by a 

corresponding xb. A unique solution for 𝛌 exists when there is an equal number of dimensions in the 

nullspace of M as there are unsatisfied boundary conditions. This process is illustrated in Figure 1-10 where 

nullspace of M is used to solve a boundary condition. 

 

 
Figure 1-10: A boundary condition is solved by moving the new estimate in the nullspace of M. 

Solving for one boundary condition might sometimes trigger a new boundary condition. Therefore, the 

complete boundary-solving process must be iterated until all boundary conditions are satisfied, or until no 

boundary condition can be solved anymore. Because the dimensions of the nullspace and the number of 

boundary conditions are not always equal, SVD is used again to solve for 𝛌. This does not necessarily satisfy 

all boundary conditions, and they sometimes need to be enforced with a warning message as a result. 

 

When a parameter is near the maximum of a boundary condition, the step to obtain the derivative information 

may violate the boundary condition. In that case, a negative step will be used. 

1.12.1.5 Broydens method 

Obtaining the Jacobian M requires as many function evaluations, complete GPT runs, as free parameters. 

This is expensive in terms of CPU time. However, it is possible to use the function information from the 

previously successful step to make an estimate of M without any additional function evaluations. This 

requires only one Jacobian to be calculated in the first step to start the process. The update method according 

to Broyden [2] is given by: 

𝐌𝑁+1 ≈ 𝐌𝑁 +
(𝛿𝐅𝑖 −𝐌𝑖 ∙ 𝛿𝐗𝑖)⊗ 𝛿𝐗𝑖

𝛿𝐗𝑖 ∙ 𝛿𝐗𝑖
[1. 48] 

where δ𝐅 is the difference in F in a step with size δ𝐗. 

 

The method might fail to produce a good representation of the actual Jacobian. In that case, the backtracking 

algorithm will not find a solution and GDFsolve must reinitialize M by calculating a full Jacobian. Especially 

when there is no solution to be found, Broydens Method can increase the number of function evaluations 

significantly. Furthermore, the method is not advisable when the number of variables is larger than the 

number of constraints. The algorithm can be switched on and off as required. 
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1.12.2 Using GDFsolve as optimizer 

GDFsolve as optimizer tries to find the minimum of any function g(x) by varying all components of x. The 

used algorithm is Powell and described in [2]. Our implementation is very close to [2] with the following 

modifications: Function evaluations with identical parameters are not repeated, one-dimensional 

optimization properly generalizes to a single-line minimization and relative termination detection is changed 

to an absolute value. Qualitatively, the algorithm is as follows: 

 

The first steps find the minimum in the direction of the first component of x. Starting from there, the second 

component of x is varied until a minimum is found. This process is repeated as many times as there are 

dimensions in x. To improve the efficiency of the algorithm, the average direction resulting from these 

iterations is also used as minimization direction, replacing the direction of the largest function decrease. The 

complete process is iterated until a stable solution is found. 

 

The line-minimization routine takes larger and larger steps downhill until a minimum is bracketed. That is 

three points where the middle point has the lowest function value. Then the actual minimum is found by 

either parabolic interpolation or golden section search. 

1.12.2.1 Required number of iterations 

Any smooth function g can be approximated as a second-order Taylor series around x0 by: 

𝑓(𝐱) ≈ 𝐟(𝐱0) +
𝑑𝑔

𝑑𝐱
|
𝐱0

(𝐱 − 𝐱0) +
1

2
(𝐱 − 𝐱0)𝐇(𝐱0)(𝐱 − 𝐱0) [1. 49] 

where the components of the Hessian matrix H are defined as: 

𝐻𝑖𝑗(𝐱0) =
𝑑2𝑔

𝑑 𝑥𝑖  𝑥𝑗
|
𝐱0

[1. 50] 

Solving for an extremum in g yields: 

𝐱 = 𝐱0 − 𝐇
−1(𝐱0) ∙

𝑑𝑔

𝑑𝐱
|
𝐱0

[1. 51] 

Because solving x requires knowledge of all components of H, at least N2 functions evaluations are required 

to find a minimum. Compared to the N evaluations required to find a root, optimization typically takes much 

more iterations than root-finding. 

1.12.2.2 Optimizing more functions simultaneously 

In real life one typically wants to have it all. For example both the best emittance and the shortest bunch-

length. This is not possible with any single-valued g as required by GDFsolve. Some tradeoff must be made 

between the two separate functions. Using GDFsolve this is accomplished by using individual weight factors 

mi for a number of independent functions gi to optimize. Making use of the same scaling dfi as defined in 

[1.42], the total g to minimize is then given by: 

𝑔 =∑𝑚𝑖

𝑔𝑖
𝑑𝑓𝑖

𝑖

[1. 52] 

As expected, a negative weight factor automatically maximizes the corresponding component. Please note 

that if this tradeoff is not a priori known GDFsolve cannot be used. In that case, the multi-objective solver 

GDFMGO must be used. 

1.12.2.3 Additional constraints 

Apart from wanting to optimize a function, ideally a number of additional constraints must be met. For 

example: Make sure that “all charge must come through”. To accomplish this, the scaled mismatch between 

the constraints and the function value is added as penalty to g. 

𝑔 =∑𝑚𝑖

𝑔𝑖
𝑑𝑓𝑖

𝑖

+ √∑(
𝑓𝑖 − 𝑓𝑡𝑖
𝑑𝑓𝑖

)
2

𝑖

[1. 53] 

We realize that this does not result in the most elegant algorithm for a number of reasons: Depending on the 

scaling the constraints will be met or not. And perhaps even worse, improper scaling of the constraints can 

move the location of the found optimum off the actual solution. The reason we choose this algorithm is that 

with proper scaling the method is very fast because it does not require any additional function evaluations. 

When robust constraint handling is required, the slower GDFMGO program is most likely a better choice. 
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1.12.2.4 Boundary conditions 

Just as with the root finder, not all parameters xi can be chosen freely. Space restrictions or budget reasons 

can impose maximum possible values. All variables are bounded again by a minimum and maximum value, 

forming a hypercube of free space. 

1.12.3 GDFMGO 

GDFMGO is a multi-objective global optimizer. Its internal algorithm evolves a population of candidate 

solutions towards the so-called Pareto-front. This front is defined as the set of points where it is impossible 

to improve one objective without making at least one other objective worse. The final result is a set of points 

equally spaced at or near the Pareto front, where each point is fully optimized in all its variables. 

 

The Pareto front samples, for the given objectives, the optimal combination of variables. For two objectives 

and ten variables, the Pareto front is a line through two dimensional objective space and ten dimensional 

variable space. In other words, the original problem of having to choose the best combination of ten variables 

has been reduced to the one dimensional problem of selecting where on the line you want to be. This collapse 

of dimensionality makes multi-objective optimization such a powerful tool for decision making. Its power 

does not come from providing the ‘the best’ solution, but from reduction of the dimensionality of the problem 

and simultaneously providing insight in tradeoffs between the different objectives. Tutorial section 2.4.4 

shows this in practice. 

 

GDFMGO starts with a fixed size population of candidate solutions with variables either chosen randomly 

in a user specified interval or read from file. Typically this initial population is very poor in terms of the 

objectives, and probably in violation of a number of constraints if present. The idea is to create improved 

candidate solutions based on the solutions already present, while gradually removing the worst ones. This 

process is repeated over and over again, and slowly the population as a whole evolves in the desired direction. 

Global convergence properties come from the fact that the population is pushed gently towards the Pareto 

front instead of steepest descent into a potential local minimum. Although there are plenty of pathological 

cases where this does not work, in practice the algorithm finds the global optimum in a impressively large 

number of cases with the default parameters. 

 

The key ingredients of the algorithm are a) creation of new candidate solutions based on the existing ones, 

b) ranking the solutions such that the worst can be removed and c) a stopping criterion. They are described 

in detail below. 

1.12.3.1 New species 

New random samples are created from the existing population. The mechanism we use is known as 

‘differential evolution’. To create a new combination of variables p, first four random species from the 

population are selected. We denote them u, v, w and x. Subsequently, an intermediate point t is calculated 

from u, v and w using: 

𝐭 = 𝐰 + 𝑠(𝐮 − 𝐯) [1. 54] 

The idea is that the new point is close to the existing w, but offset with the direction from v to u. To speed 

up convergence, the direction is slightly reduced by a scale factor s that must be below 1. In practice using 

this intermediate point t as the new point already works very well. However, when the entire candidate 

solution lies on a hyperplane in all variables there is no escape from this plane thereby stalling the algorithm. 

This is where the last selected point x comes into play, where there is a mutation probability (1 − 𝜌) that 

variables are selected from x instead of from t. To avoid duplicating x at least one of the variables must come 

from t. In equations: 

𝑐𝑟 = random_int[1, 𝑛] 

𝑝𝑖 = {
𝑡𝑖 𝑟𝑎𝑛𝑑𝑜𝑚[0,1] < 𝜌   ∨    𝑖 = 𝑐𝑟
𝑥𝑖 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

[1. 55] 

A lower 𝜌 increases global convergence properties at the cost of a slower convergence rate. In practice neither 

the scale factor s nor the mutation rate 𝜌 are critical parameters and the defaults of 0.6 and 0.9 respectively 

work fine in most cases. 

 

New candidate solutions are added until the population size is doubled. Then the population is ranked and 

trimmed to the original size again. How this is done is the subject of the next section. 
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1.12.3.2 Ranking procedure: NSGA 

The initial population is based on a random selection in all variables. Obviously, such random start conditions 

give poor results in terms of the objectives. The idea is to slowly improve this population, but to do this a 

ranking procedure is needed that defines which points are ‘better’ and which ones are ‘worse’. In case of a 

single objective this is trivial, since we can simply sort all candidate solutions: If the objective needs to be 

minimized, an ascending sorting order gives a natural rank and the ‘worse’ ones can simply be defined as an 

upper fraction. 

 

In the case of multiple and conflicting objectives things become more complicated. When a candidate 

solution has, compared to another one, shorter pulse-duration (good) but larger emittance (bad) it is not 

immediately clear if this one is better or worse. The idea followed in GDFMGO is based on the NSGA 

algorithm, where the ranking is based on domination: A point dominates another if it is better in at least one 

objective, and not worse in all other objectives. All points that are not dominated by any other point are given 

rank 0. This is the set that lies closest to the Pareto front, and these are the ‘best’ points in our set. The ones 

with rank 1 are the ones that are not dominated by any other point, not taking into account points with rank 

0. They are the ‘next best’. And so forth and so on. The final result is a candidate set that is fully ranked 

based on all objectives. An example is shown in Figure 1-11 where stdx and stdy are conflicting objectives 

to be minimized. Points with small stdx but large stdy are correctly assigned the same rank as points with 

large stdx but small stdy. 

 

 
Figure 1-11: Multi-objective ranking shown in colors ranging from blue, via green and yellow, to red. 

The ranking procedure is used to trim the candidate solution. Initially points with the highest rank are 

removed since they are furthest away from the Pareto front. When more than 50% of the points have rank 0, 

also particles with rank 0 are removed. This is done in such a way that the front is sampled as uniformly as 

possible by removing points with near neighbours. 

1.12.3.3 Additional constraints 

An extra complication in the ranking procedure is that in many cases there are additional constraints. An 

example is a spot size as small as possible, under the condition that the total charge is larger than 1 pC. With 

just one extra constraint, an intuitive ranking procedure is that all candidates that violate the constraint are 

dominated by candidates that do not violate the constraint. This allows the rest of the procedure to remain 

identical, and indeed this works just fine. The optimizer essentially first optimizes the entire population to 

not violate the constraint, and when this is established it continues the optimization in the constrained subset 

of variable space. 

 

With more constraints however, we have to be careful: It is impossible to define something like the sum of 

all violations. If the spotsize must be smaller than 10 micron and we are 1 micron off, and if the charge must 

be larger than 1 pC and we are 0.1 pC off, then the total violation is 1 micron plus 0.1 pC. These can only be 

added with additional scaling factors, and these typically cannot easily be defined. The solution is to not do 

any summation, but only count the number of violations. This works very robustly in practice, but there is 

still one problem. 

 

Tough optimization problems have almost all initial candidates in violation of several constraints. This results 

in too much evolutionary pressure on the initial set because the elitist nature of the algorithm will not 

temporarily give up on one constraint to fulfill another one. That fully undermines the global optimization 
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properties of the algorithm. To solve this problem GDFMGO uses dynamic constraints: The actual 

constraints are relaxed until at most half the population violates the constraint. This causes a much more 

gentle evolutionary push towards zero constrained violations, restoring the global convergence properties. 

1.12.3.4 Stop criterion 

GDFMGO stops the optimization when the worst solution has rank 1, i.e. when there are only two fronts. 

Furthermore GDFMGO stops the optimization after N generations, where one generation is defined as 

doubling the initial population size and trimming back to the original size. In practice, this combination 

works reasonably well, but we have to admit that these criteria need some experimenting on a case by case 

basis. 

 





 

2 Tutorial 
This chapter gives a tutorial introduction to the GPT package. All the files in the tutorial can be found in the 

GPT distribution in the tutorial directory. Within that directory, a subdirectory or folder exists for every 

section in the tutorial containing the described files. 
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2.2 The GPTwin user interface......................................................................................................... 46 
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2.1 Quadrupole focusing 

In this section we will simulate a rectangular beam with Lorentz factor 𝛾=100 through two quadrupole lenses. 

The first quadrupole lens focuses the beam in the y-direction and defocuses the beam in the x-direction. The 

second quadrupole lens does just the opposite. The net result is a focusing force in both directions and the 

length and strength of both quadrupoles is chosen so that the beam is sent through a focus in both directions 

at z=1 meter. 

 
Figure 2-1: Two quadrupole lenses can focus a beam in two directions: xz-plane (left) and yz-plane (right). 

2.1.1 The GPT inputfile 

The GPT inputfile needed to describe this simulation is listed in Listing 2-1. Like all inputfiles listed in the 

tutorial, it can be found at the location indicated in the corresponding caption. 

Listing 2-1: GPT inputfile for beam focusing using a quadrupole doublet. Filename: tutorial/quads/quads.in 

1. # GPT Tutorial: Quadrupole focusing 

2.  

3. # Define beam parameters 

4. gamma = 100 ; 

5. radius= 6e-3 ; 

6.  

7. # Start initial beam 

8. setparticles("beam",100,me,qe,0.0) ; 

9. setrxydist("beam","u",radius/2, radius) ; 

10. setphidist("beam","u",0,2*pi) ; 

11. setGdist("beam","u",gamma,0) ; 

12.  

13. # Position the quadrupole lenses 

14. quadrupole( "wcs","z",0.2, 0.1, 3.90 ) ; 

15. quadrupole( "wcs","z",0.5, 0.2,-3.25 ) ; 

16.  

17. # Specify output times 

18. snapshot(0,4e-9,0.05e-9) ; 

 

This sample GPT inputfile is described below line-by-line. The very first line in the sample GPT inputfile is 

ignored by the parser because it starts with a hash mark # indicating that the rest of the line is a comment. 

Comment-lines can appear anywhere in the GPT inputfile. 
1. # GPT Tutorial: Quadrupole focusing 

 

The first actual section in the GPT inputfile defines various parameters for later use. 
3. # Define beam parameters 

4. gamma = 100 ; 

5. radius= 6e-3 ; 

 

Line 4 defines the variable gamma to be equal to 100 and line 5 sets the radius to 6 mm. At this point, these 

variables don’t have any special meaning; they are just for user convenience. In lines 11 and 9, they are used 

to define the Lorentz factor of the beam and set the beam radius. User-defined variables can have any name, 

but can not start with a digit. 

 

The second section starts the initial beam. 
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7. # Start initial beam 

8. setparticles("beam",100,me,qe,0.0) ; 

9. setrxydist("beam","u",radius/2, radius) ; 

10. setphidist("beam","u",0,2*pi) ; 

11. setGdist("beam","u",gamma,0) ; 

 

The setparticles keyword, see section 4.2.1.1, is used to start 100 electrons in a particle set named beam. 

The predefined constants me and qe are set to the charge and mass of an electron. For other built-in constants 

we refer to Table 4-B on page 121. Because we will not include space charge in this simulation, the last 

parameter of setparticles, defining total charge, can be zero. 

After the particles are created, they are all positioned at the origin with zero velocity. The setrxydist 

keyword, see section 4.2.2.6, modifies the x-coordinates of the particles according to a specific distribution: 

Uniform ("u") with center radius/2 and width radius. The setphidist keyword, see section 4.2.2.7, 

sets a uniform angular distribution in the xy-plane over all angles. The combined effect of these two 

keywords is a disk-like beam, uniformly filled with particles in the xy-plane. Please note that the distribution 

of the x-coordinates as generated by setrxydist is far from uniform: It is linearly increasing with x such 

that after redistribution over all angles in the xy-plane the resulting beam is uniform. To produce an actual 

uniform distribution in x, the setxdist keyword can be used. 

The setGdist keyword, see section 4.2.3.8, gives all particles a Lorentz factor of gamma, previously defined 

as 100. 

 

The third section positions the two quadrupole lenses. 
13. # Position the quadrupole lenses 

14. quadrupole( "wcs","z",0.2, 0.1, 3.90 ) ; 

15. quadrupole( "wcs","z",0.5, 0.2,-3.25 ) ; 

 

The first parameter of the quadrupole element, see section 4.6.10, is the ECS, the Element Coordinate 

System. The default coordinate system of a quadrupole positions the lens around the origin, oriented in the 

z-direction. The ECS lists the new 3D position and 3D orientation of the quadrupole, relative to its default. 

The ECS specification "wcs","z",0.2, instructs GPT to position the quadrupole relative to the Word 

Coordinate System (WCS), the default coordinate system, but moved 0.2 m downstream. The second 

quadrupole is moved 0.5 m downstream. Only the positions are affected, the orientation remains 

unchanged. For the simulation of complex experiments, it can be useful to define custom coordinate systems 

and position elements relative to those. We refer to section 1.4 for details about custom coordinate systems 

and element coordinate transformations. 

The following two parameters of the quadrupole lens are length and strength. The first quadrupole has a 

length of 0.1 m and a positive strength. The second lens needs to work opposite to the first lens to focus the 

beam in two planes. This could have been achieved by rotating the element 90° around its axis using the 

ECS, but specifying a negative strength has the same result and is much easier. 

 

The fourth section defines when to write output. 
17. # Specify output times 

18. snapshot(0,4e-9,0.05e-9) 

 

The snapshot keyword, see section 4.3.11, is used to specify the times when output needs to be generated. 

The parameters are from, to and step, all measured in seconds. Output is written every 50 ps, between 0 

and 4 ns. 

2.1.2 The GPT batch file 

Every GPT simulation contains not only a GPT run, but also includes subsequent data analysis. To automate 

this process, GPT simulations are typically run as a batch file containing various commands. 

Listing 2-2: GPT batch file for beam focusing using a quadrupole doublet. Filename: 
tutorial/quads/quads.bat 

1. gpt -o result.gdf quads.in 

2. gdftrans -o traj.gdf result.gdf time x y z 

3. gdfa -o std.gdf result.gdf time stdx stdy avgz 

4. gdf2a -o std.txt std.gdf 

 

Listing 2-2 shows a sample batch file that could be used to run the quadrupole focusing example. It is briefly 

explained below as a short introduction to some of the capabilities of GPT. We refer to section 2.2 for a 
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description how to actually run this example using GPTwin. Chapter 3 lists all possible data analysis and 

pre- and post-processing tools available in the GPT package. Linux users can run GPT and subsequent data-

analysis tools using any command processor of their choice. Note that the GPT line needs a 

GPTLICENSE=xxx specification for GPT to run properly. 

 
1. gpt -o result.gdf quads.in [GPTlicense=xxx] 

This line commands the actual GPT simulation. The set-up, simulation parameters and output method as 

described in the inputfile quads.in are now executed. The result is written to the file result.gdf as 

specified with the –o option. The outputfile contains all particle coordinates at the requested times or 

positions and can directly be plotted using GPTwin, see Figure 2-2. Using GPTwin, one can cycle through 

the plots to and inspect the results. As explained in the complete GPT syntax in section 1.2, an additional –

v option is useful to track the progress of lengthy simulations. 

 

 
Figure 2-2: Sample raw GPT output: Particle coordinates as function of simulation time. 

5. gdftrans -o traj.gdf result.gdf time x y z 

The GDTRANS program converts the raw GPT output from result.gdf to trajectory output written in the 

file traj.gdf. Again, the –o option is used to specify the name of the outputfile. This file contains a list of 

particle trajectories, as shown in Figure 2-3. The trajectories are plotted as function of time, and to reduce 

the size of the file, only the x, y and z coordinates of the trajectories are stored. When a parameter is scanned 

using the MR program, the trajectories can also be plotted as function of the scanned parameter. See section 

3.17.for more information about the use of GDFTRANS. 

 

 
Figure 2-3: GDFTRANS trajectory output. 

6. gdfa -o std.gdf result.gdf time stdx stdy avgz 

The raw GPT output and the trajectory output are typically studied to verify that the inputfile describing the 

simulation is correct. After this step, one may be interested in overall quantities like bunch-length, beam size 

and emittance. The GDFA program reads the GPT output from the file result.gdf and writes a new file 

named std.gdf containing various macroscopic quantities. In this case, the file std.gdf contains only the 
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standard x- and y-deviations and the average longitudinal position all as a function of time, see Figure 2-4. 

As described in reference section 3.12, a very large number of data-analysis routines can be specified. It is 

even possible to create custom GDFA programs, as explained in the GPT Custom Elements documentation. 

 
Figure 2-4: GDFA output: Standard deviation of x- and y-size as function of average longitudinal position. 

4. gdf2a -o std.txt std.gdf 

The last line in our batch file converts the file std.gdf to the ASCII file std.txt using the GDF2A 

program, see section 3.6. Because GDF files are written in a special binary format, only GPTwin and the 

GDF utility programs can open them. To be able to export GPT results to other programs, GDF files can be 

converted to ASCII using the GDF2A program. Part of the result is shown in Figure 2-5. 

 
1.       stdx        stdy        avgz        time  

2.  3.030e-003  2.966e-003  0.000e+000  0.000e+000  

3.  3.030e-003  2.966e-003  1.499e-002  5.000e-011  

4.  3.030e-003  2.966e-003  2.998e-002  1.000e-010  

5.  3.030e-003  2.966e-003  4.497e-002  1.500e-010  

6.  3.030e-003  2.966e-003  5.996e-002  2.000e-010  

7.  3.030e-003  2.966e-003  7.494e-002  2.500e-010  

8.  3.030e-003  2.966e-003  8.993e-002  3.000e-010  

9.  3.030e-003  2.966e-003  1.049e-001  3.500e-010  

10.  3.030e-003  2.966e-003  1.199e-001  4.000e-010  

11.  3.030e-003  2.966e-003  1.349e-001  4.500e-010  

12.  3.030e-003  2.966e-003  1.499e-001  5.000e-010  

Figure 2-5: Selected GDF2A output. 
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2.2 The GPTwin user interface 

GPTwin is the MS-Windows user interface for the GPT package: An easy-to-use environment that covers 

all aspects of a GPT simulation: 

• It provides an editor for the development of inputfiles and custom elements with on-line help. 

• It executes GPT and data-analysis tools, while logging diagnostic messages. 

• It plots and prints the simulation results in a variety of formats ranging from scatter to color-density-

plots. 

• It fully automates the development of custom elements. 

 

After installation, the GPTwin executable can be started using: 

Start/Programs/General Particle Tracer/General Particle Tracer 

 

GPT inpufiles can be opened by dragging and dropping the file into GPTwin or by selecting the Open 

command from the File menu. Please use any of these methods to open the files quads.in and quads.bat 

in the tutorial folder. The tutorial folder is typically located in a subfolder of c:\program 

files\general particle tracer, but this may have been modified during installation. 

 

After performing the above steps, the GPTwin user interface should look similar to Figure 2-6. The toolbar 

(with the buttons below the menu), element bar (shown on the left) and the status bar (below) can all be 

switched on or off using the View menu. You can use a pointing device or the Window menu to arrange the 

documents within GPTwin. 

 

 
Figure 2-6: The GPTwin user interface with the files quads.in and quads.bat. 

2.2.1 On-line help 

On-line help can always be obtained by pressing the F1 key or selecting the Help menu. For example, when 

the cursor is located on a line containing the keyword quadrupole while F1 is pressed, a help screen as 

shown in Figure 2-7 is displayed. The buttons on the Help toolbar allow you to switch quickly between 

various help topics. 
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Figure 2-7: On-line help for a quadrupole lens. 

2.2.2 Running the quadrupole example using GPTwin 

The quads.bat batch file containing all commands to run the GPT simulation can be executed by selecting 

the file and clicking the  button on the toolbar. Alternatively, File/Run can be specified on the menu or 

the CTRL+R key-combination can be pressed. After the run command is specified, simulation messages are 

shown in the bottom part of the quads.bat window, as shown in Figure 2-8. The simulation is completed 

when the Finished message appears. 

More or less space can be reserved for the simulation messages by moving the splitter. When no messages 

are shown at all, you can still move the splitter, which is in this case located at the bottom of the window. 

Every diagnostic message is followed by its date and time for your convenience. 

 

 
Figure 2-8: Run window with messages. 

In this case, because there are no errors, only the commands themselves are shown. Otherwise, an error 

message will appear with the following format: 

filename.in(linenumber): Errormessage 

Double-clicking such an error opens the correct file and positions the cursor at the beginning of the line 

containing the error. Correct any errors and try again. Right-clicking in the messages section shows a pop-

up menu with additional commands. It is for example possible to save all messages to an ASCII file for 

further analysis. 

 

The  button can be clicked to stop any running simulation. Using this feature may result in a corrupted 

and unusable outputfile. 

2.2.3 Scatterplots 

The raw output of GPT consists of all particle coordinates at the requested output times or positions. To 

inspect the simulation results using GPTwin, you can do the following: 

• Open the outputfile quads.gdf either by double-clicking on it, by dragging it into GPTwin or by using 

the Open command from the File menu and selecting .gdf files types. 

• You will now get a dialog-box asking you what you would like to see. To display xy-scatterplots at the 

various output times, select to plot variable x along the X-axis and y along the Y-axis. Press OK. 

• You can now cycle through the plots using the cursor keys (← and →) or using the previous and next 

plot buttons (  and ) on the toolbar. The output times are listed in the subtitle of all plots. 
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Figure 2-9: Plot settings for quads.gdf 

Because all plots are autoscaled individually, you can not see the beam going through a waist, except by 

studying the range of the axes. Furthermore, the units would be more convenient when given in [mm]. To 

solve these shortcomings, set the scaling to manual and chance the units, as shown in Figure 2-9. 

• To produce this settings dialog-box, double-click anywhere in the plot window or select the Settings 

command from the Plot menu. 

• Go to the sheet specifying the X-axis. The values plotted along the axis are scale*x+offset. Set the 

scale to 1000 to convert from [m] to [mm]. When the axis scaling is changed, it is recommended to also 

change the axis label. Repeat for the Y-axis. 

• Select Manual scaling. Now you can enter the values for the minimum and the maximum. We suggest 

using -10 and 10. Repeat for the Y-axis. 

 

 
Figure 2-10: Result.gdf plotted in GPTwin. “Aspect ratio” is selected to plot a cylindrical-symmetric beam as a 

circle instead of an ellipse. 

Now all plots have the same scale, as shown in Figure 2-10. When you cycle through the plots, you will 

clearly see the beamsize changing and going through a waist. 

 

If you decide to rerun GPT with different inputfile parameters, you can update the selected plots either by 

pressing the Update button  on the Toolbar, by pressing F5 or by selecting the Update command from the 

Plot menu. The plots shown are then based on the new data. 

2.2.4 Statistics 

For detailed data analysis, the GDFA program can be used as explained in section 3.12. However, sometimes 

it is more convenient to calculate simple statistics directly from the raw GPT data. Figure 2-11 shows the 

statistics dialog, obtained by double-clicking on the plot, calculating the average z-position of all particles. 

The result can be plotted in the window and is automatically updated. 
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Figure 2-11: Statistics dialog calculating and plotting the average z-position of all particles. 

The Plot check box must be checked to plot the selected statistic in the window after the dialog is closed. 

The scale and offset parameters are identical to those on the x- and y-axis dialogs. Selectable statistical 

functions are listed in Table 2-A. Statistics are always calculated over the complete data set. Therefore, 

cropping a plotted axis by selecting manual scaling does not affect the results. 

Table 2-A: GPTwin statistics functions 

Function Description 
Min Minimum 
Max Maximum 
Max-Min Maximum-Minimum 
Avg Average 
Std Standard deviation 
Sum Sum 
N Number of particles 

2.2.5 Trajectory output 

Trajectory output is calculated in the batch file quads.bat from the raw GPT output by the GDFTRANS 

program: 

gdftrans -o traj.gdf result.gdf time x y z 

 

To display the results open the file traj.gdf, select z horizontally, x vertically and check the lineplot option 

on the General property page. Now the individual particle trajectories are shown one by one when cycling 

through the plots. Alternativelly, you can check the combine plot option, also on the General page, to plot 

all trajectories in the same window. 

 

Instead of plotting the x-coordinate along the y-axis, it is also possible to select the y-coordinate along the y-

axis. Use the New Window command in the Window menu to open a new window and plot a different 

projection. The result is shown in Figure 2-12. When the combine plot option is selected in neither of the 

plots, cycling through the individual trajectories in one plot will automatically show the corresponding 

trajectory in the other projection. When the GPT inputfile is modified and rerun, updating the plots with the 

Update button  on the Toolbar will automatically update both windows. 

 

 
Figure 2-12: Two different projections of all particle trajectories. 
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2.2.6 Extracting beam parameters 

Most data analysis is done by the GDFA program, capable of calculating a large number of different beam 

parameters from the raw GPT output. In this section, we will create plots of the transverse standard deviations 

as function of longitudinal position 

gdfa -o std.gdf quads.gdf time stdx stdy avgz 

 

The parameters stdx, stdy and avgz are standard programs of GDFA calculating the following beam 

properties: 

stdx Standard x-deviation of the particles: A measure for the beam size in the x direction. 

stdy Standard y-deviation of the particles: A measure for the beam size in the y direction. 

avgz Average z-coordinate of the particles: Beam position. 

 

The variable time instructs GDFA to produce output so that the output contains the requested beam 

parameters at different times. The output is written to the file std.gdf, specified with the –o option. For a 

complete description of GDFA and the built-in programs, we refer to section 3.12. 

 

To view std.gdf using GPTwin, you can do the following: 

• Open std.gdf. 

• Select Line plot, avgz on the horizontal axis and stdx on the vertical axis. Press OK. 

• To also see a plot of stdy, select the New window command from the Window menu. 

• Now select Line plot, avgz on the horizontal axis and stdy on the vertical axis. Press OK. 

 

You will now see two windows showing different results from the same file, as shown in Figure 2-13. 

 

 
Figure 2-13: Beam size as function of z. The waist in the x-direction is much more position dependent than the waist in 

the y-direction. 

2.2.7 Templates 

Having to set all plot options can be time consuming. As a convenience it is possible to save and load all plot 

settings using a template file. Template files always have extension .gdt. For example, when the file 

traj.gdf is first opened, loading the template traj_y_z.gdt immediately sets all options for a trajectory 

plot of y as function of z. In all tutorial sections, template files are present having a name in this format 

filename_yaxis_xaxis.gdt. When filename.gdf is opened with such a template, a yaxis as function 

of xaxis plot is immediately shown. The most convenient way to open a template is clicking the Load 

Template button in the lower-left corner of the plot-settings dialog box. Alternatively, the Load Template 

command in the Plot Menu can be used. 

 

The plot settings of an existing plot can be saved with the Save template command in the Plot menu. A dialog 

box appears asking what settings to store. To (re)load plot settings from a template file, the (Re)Load 

template command in the Plot menu can be used. A dialog box appears asking what plot settings to overwrite. 

Using this mechanism, it is possible to create templates for the x-axis only, or restore only the x-axis from a 

complete template. 
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2.2.8 Printing and exporting graphics 

Everything shown in a GPTwin window can be printed with the Print command in the File menu. The 

appropriate printer and paper size can be selected using Print setup in the File menu. 

 

When many plots are present, we recommend increasing the number of horizontal and vertical plots in the 

General dialog of the plot settings. To see if the results are as expected you can use the print preview 

command in the File menu. This allows you to cycle through the various pages and zoom in and out. 

 

Various important plot settings for printing graphics can be found in the Margins and Sizes property page of 

the plot settings, shown in Figure 2-14. 

 

 
Figure 2-14: Various plot settings 

Both text and graphics can be copied to the clipboard using the Copy command in the Edit menu. 

 

It is also possible to save a plot in a Windows Metafile or Enhanced Metafile format using Save As in the 

File menu. Such metafiles can be included by a variety of other programs like AutoCAD and TeX. 
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2.3 Scanning the beam energy 

This section continues with the example of the first section. Here the effect of the initial beam energy on the 

spot size at z=1 m is examined. The inputfile needed to examine this effect is shown in Listing 2-3 and can 

be found in the tutorial/quadscan folder. The corresponding batch file containing all the necessary 

commands, quadscan.bat, is explained below. 

Listing 2-3: GPT inputfile to examine the effect of beam energy on spotsize: 
tutorial/quadscan/quadscan.in 

1. # GPT Tutorial: Scanning beam energy 

2.  

3. # Start initial beam 

4. setparticles("beam",100,me,qe,0.0) ; 

5. setrxydist("beam","u",radius/2, radius) ; 

6. setphidist("beam","u",0,2*pi) ; 

7. setGdist("beam","u",gamma,0) ; 

8.  

9. # Position the quadrupole lenses 

10. quadrupole( "wcs","z",0.2, 0.1, 3.90 ) ; 

11. quadrupole( "wcs","z",0.5, 0.2,-3.25 ) ; 

12.  

13. # Specify output screen 

14. screen( "wcs","I", 1.0 ) ; 

 

The two differences with the previous inputfile are: 

A The beam parameters gamma=100 and radius=6e-3 statements are removed. This is needed because 

they are defined in a separate file, as we will see later in this section. 

B The snapshot statement is replaced with a screen statement. A screen interpolates the particle 

coordinates at a fixed plane in 3D space. Here the screen is positioned at z=1 m. For the reference of 

screen, see section 4.3.10. 

 

Now that we have the inputfile, the next step is to scan the beam energy. To accomplish this, various values 

for gamma and radius could be specified on the GPT commandline as follows: 
gpt -o res100.gdf quadbeam.in gamma=100 radius=6e-3 

gpt -o res110.gdf quadbeam.in gamma=110 radius=6e-3 

etc. 

 

Although this works, having to analyze all the outputfiles is tedious. Therefore, it is recommended to use 

Multiple Run (MR) to perform the same job. It runs GPT with one or more varying or fixed parameters, just 

like the commandline approach, but it collects all output in one structured GDF file. For a complete 

description of MR we refer to section 3.18. 

 

MR reads which parameter to set or scan from an additional file. For example to scan gamma over the range 

from 50 to 150 in steps of 5, and set the beam radius fixed at 6 mm we typically create a file named scan.mr 

containing the following lines: 
1. gamma 50 150 5 

2. radius 6e-3 

 

The command to run GPT with gamma varying from 50 to 150 then is: 

mr -v -o result.gdf scan.mr gpt quadbeam.in 

 

After running the MR command, all the output is contained in the file result.gdf. We can use GDFA 

again to calculate the beam’s standard x- and standard y-deviation: 

gdfa -o std.gdf result.gdf gamma stdx stdy 

 

This time the group_by variable is gamma. This is because we want to make a plot where every point is 

calculated for a different gamma. As a rule of thumb, the group_by variable is usually the scanned parameter, 

time or position. The complete batch file is listed in Listing 2-4, where ASCII output of the result is 

generated using the GDF2A program. 
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Listing 2-4: Batch file for scanning the beam energy. Filename: tutorial/quadscan/quadscan.bat 

1. mr -v -o result.gdf scan.mr gpt quadscan.in 

2. gdfa -o std.gdf result.gdf gamma stdx stdy 

3. gdf2a -o std.txt std.gdf 

 

The result is shown in Figure 2-15. To reproduce these plots, open std.gdf in GPTwin with template 

std_xgamma.gdt, select New Window and open again with template std_ygamma.gdt. 

 

 
Figure 2-15: Spot size as function of beam energy. 

The result shows that the effect of different beam energy on spot size is approximately equal in both planes. 

 

In order to use the same GPT inputfile with and without MR, default values for variables can be defined in 

the GPT inputfile as shown below: 

if( !defined(gamma) ) gamma=100 ; If not defined gamma, then set gamma to 100. 
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2.4 Automatic solving 

There are two programs that can be used to instruct GPT to automatically find a set of variables for given 

objectives and constraints: GDFSOLVE and GDFMGO. 

 

GDFMGO optimizes several conflicting objectives, without a-priori making a decision about the relative 

relevance. For example, in a beamline where total charge and pulse-duration are conflicting objectives, 

GDFMGO can make a scatterplot where the result is the trade-off between those objectives, and where each 

point is fully optimized in all variables. This is ideal for decision making and a great aid in understanding 

complex systems. The underlying genetic algorithm is extremely robust, but CPU intensive. 

 

GDFSOLVE solves for multi-dimensional roots or one-dimensional objectives using more mathematical 

tools. It is the more analytic program that uses an estimated Hessian matrix for optimization problems, and 

the Jacobian for root-finding. It is therefore much faster than GDFMGO, but because it works with 

derivatives of the objective functions it also is more sensitive to numerical noise. 

 

In this section an electron beam is sent through two quadrupole lenses and needs to be focused at z=1 m. 

Unlike the previous sections, the beam starts with a finite emittance to be able to make use of the Courant-

Snyder GDFA routines. Furthermore, both time and position output is requested to simplify reproduction of 

the results shown below. Finally the tracking accuracy is increased to ensure stable results if small changes 

are made to the quadrupole strengths. The complete inputfile is shown in Listing 2-5 where the beam energy 

gamma and the strengths of the two quadrupoles Q1 and Q2 still need to be specified. All files can be found 

in the tutorial/gdfsolve folder. 

Listing 2-5: GPT inputfile describing a beam through two quadrupole lenses with strengths Q1 and Q2. Both time and 

position output are requested. Filename: tutorial/gdfsolve/quads.in 

1. # GPT Tutorial: GDFsolve 

2.  

3. # A slightly higher accuracy is needed 

4. accuracy(5) 

5.  

6. # Real space of initial beam 

7. radius = 6e-3 ; 

8. setparticles("beam",100,me,qe,0.0) ; 

9. setrxydist("beam","u",radius/2, radius) ; 

10. setphidist("beam","u",0,2*pi) ; 

11.  

12. # Phase space of initial beam 

13. GBr = 10e-3 ; 

14. setGBrxydist("beam","u",GBr/2,GBr) ; 

15. setGBphidist("beam","u",0,2*pi) ; 

16. setGdist("beam","u",gamma,0) ; 

17.  

18. # Position the quadrupole lenses 

19. quadrupole( "wcs","z",0.2, 0.1, Q1 ) ; 

20. quadrupole( "wcs","z",0.5, 0.2, Q2 ) ; 

21.  

22. # Specify output screen 

23. snapshot(0,4e-9,0.05e-9) ; 

24. screen( "wcs","I", 1.0 ) ; 

 



 Automatic solving 55 

 

 
Figure 2-16: Standard deviation of x- and y-size as function of longitudinal position for gamma=100. The initial guess 

for the quadrupole settings, Q1=3 and Q2=–3 [T/m], does not produce a minimum in both planes at z=1 m. 

Figure 2-16 shows the results for gamma=100 with an estimated Q1=3 and Q2=–3 [T/m]. The plots can be 

reproduced with the following commands and subsequently plotting the file result.gdf. 

gpt -o quads.gdf quads.in gamma=100 Q1=3 Q2=-3 

gdfa -o result.gdf quads.gdf time avgz stdx stdy 

 

Clearly the beam is not sent through a minimum in the y-plane at z=1 m. The following sections describe 

how GDFSOLVE can be used to automatically adapt Q1 and Q2 such that a minimum is obtained in both 

planes. 

2.4.1 Finding a minimum using GDFsolve 

The GDFSOLVE program tries to satisfy multi-dimensional constraints and optimizes beam parameters by 

varying any number of GPT inputfile variables. This section demonstrates the use of GDFsolve by 

automatically finding the quadrupole settings of the previous sections. A description of the internal 

algorithms of GDFSOLVE can be found in sections 1.12.1 to 1.12.2 and more practical information can be 

found in reference section 3.14. 

 

With some patience and a structured approach, it is possible to find quadrupole settings that produce a 

minimum in both planes at z=1 m. GDFsolve can do this automatically. The required inputfile for GDFsolve 

describing the free variables and beam parameters to minimize is shown in Listing 2-6. 

Listing 2-6: Inputfile for GDFsolve requesting a minimum in x and y at z=1 m by varying Q1 and Q2. Filename: 

opti.sol 

1. [VARIABLES] 

2. Q1 = +3 ; # Initial value 

3. Q1.absdelta = 0.01 ; # Absolute stepsize 

4. Q1.min = 0 ; # Q1 must be positive 

5.  

6. Q2 = -3 ; # Initial value 

7. Q2.absdelta = 0.01 ; # Absolute stepsize 

8. Q2.max = 0 ; # Q2 must be negative 

9.  

10. [OPTIMIZE] 

11. stdx = 0 ; # Approximate minimum in stdx 

12. stdx.position = 1.0 ; # At position z=1 m 

13. stdx.abstol = 0.1e-3 ; # Absolute tolerance 

14.  

15. stdy = 0 ; # Approximate minimum in stdy 

16. stdy.position = 1.0 ; # At position z=1 m 

17. stdy.abstol = 0.1e-3 ; # Absolute tolerance 

 

The variables Q1 and Q2 are defined in the [VARIABLES] section and start from 3 and –3 respectively. Both 

Q1 and Q2 have an absolute initial stepsize of 0.01 specified using absdelta. This stepsize is very important. 

A too small step immediately leads to a local minimum caused by simulation noise. A too large step prevents 

the algorithm from getting started at all because all steps seem to deviate further from the minimum. When 

GDFsolve does not work as expected the initial stepsize is the first thing to check. To guarantee that Q1 and 

Q2 have the correct sign, min and max statements are used. 
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The [OPTIMIZE] section describes one or more GDFA analysis routines to optimize. Both standard x and y 

deviation, stdx and stdy, must be as small as possible at a position of 1 m. A change in beam size below 

0.1 mm, specified using abstol, is not significant. This tolerance is as important as the absdelta 

specification for a variable. A too high tolerance regards every solution as a minimum, while a too small 

tolerance instructs GDFsolve to find a minimum in the simulation noise. 

 

Instead of running GPT directly, we now instruct GDFsolve to run GPT repeatedly to find the desired 

minimum. Because the beam energy gamma is not specified in the GPT inputfile, it must also be defined on 

the commandline. The output of GDFsolve corresponds to the best GPT run found and can, just like any 

other GPT run, be analyzed by GDFA. The correct instructions to run GDFsolve and analyze the results are 

shown in Listing 2-7. The plotted output of GDFA immediately shows a minimum in both the horizontal and 

vertical plane, see Figure 2-17. When compared to manually finding a simultaneous minimum in two 

variables, GDFsolve saves a lot of tedious work in this example. 

Listing 2-7: Batch file to run GDFsolve and analyze the obtained minimum with GDFA. Filename: opti.bat. 

1. gdfsolve -v -o quads.gdf opti.sol gpt quads.in gamma=100 

2. gdfa -o result.gdf quads.gdf time avgz stdx stdy 

 

 
Figure 2-17: Output of GDFsolve used as optimizer, analyzed with GDFA: A minimum in both the horizontal and 

vertical plane. 

Clearly GDFsolve is able to find the requested minimum by varying Q1 and Q2. To know what settings of 

Q1 and Q2 correspond to the final minimum, the outputfile can be inspected using GDF2A. Alternatively, 

the verbose GDFsolve output can be examined. This output, shown when the –v option is specified, shows 

the progress of GDFsolve after each GPT run as shown in Figure 2-18. The first three columns specify the 

iteration number N, and the current settings for Q1 and Q2. The following two columns specify the resulting 

stdx and stdy, where the number between parentheses is the scaled result obtained by dividing by the 

specified tolerance. The last column is the rms value, the square root of the sum of the squares of the scaled 

results. This rms column is the value that GDFsolve tries to minimize. As shown in Figure 2-18, GDFsolve 

works its way in 49 iterations from 3 and –3 for Q1 and Q2 to the final solution of 3.92 and –3.25 [T/m]. 

 
  N          Q1         Q2       stdx               stdy             rms  

  1           3         -3  5.78e-005(   0.6)    0.00185(  18.5) (  19.1)  

  2        3.01         -3  6.36e-005(   0.6)    0.00183(  18.3) (  18.9)  

  3        3.03         -3   7.3e-005(   0.7)    0.00179(  17.9) (  18.7)  

  4        4.63         -3    0.00107(  10.7)    0.00174(  17.4) (  28.1)  

  5        3.64         -3   0.000445(   4.4)   0.000421(   4.2) (   8.7)  

  6         3.7         -3    0.00048(   4.8)   0.000298(   3.0) (   7.8)  

  7        4.05         -3   0.000706(   7.1)   0.000494(   4.9) (  12.0)  

  8        3.78         -3   0.000535(   5.4)   0.000121(   1.2) (   6.6)  

  9        3.89         -3   0.000596(   6.0)   0.000136(   1.4) (   7.3)  

 10         3.8         -3   0.000545(   5.4)  9.12e-005(   0.9) (   6.4)  

 11        3.82         -3   0.000554(   5.5)  7.25e-005(   0.7) (   6.3)  

 12        3.84         -3    0.00057(   5.7)  7.32e-005(   0.7) (   6.4)  

 13        3.83         -3    0.00056(   5.6)  6.74e-005(   0.7) (   6.3)  

 14        3.82      -2.99    0.00058(   5.8)  6.95e-005(   0.7) (   6.5)  

  .        .          .         .     .          .     .       . 

  .        .          .         .     .          .     .       . 

 43        3.92      -3.25  1.74e-005(   0.2)  6.97e-005(   0.7) (   0.9)  
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 44        3.94      -3.25  2.55e-005(   0.3)  8.26e-005(   0.8) (   1.1)  

 45        3.92      -3.24  3.68e-005(   0.4)  7.01e-005(   0.7) (   1.1)  

 46        3.92      -3.27  3.33e-005(   0.3)  7.12e-005(   0.7) (   1.0)  

 47        3.93      -3.25  2.28e-005(   0.2)  7.61e-005(   0.8) (   1.0)  

 48        3.91      -3.25  1.47e-005(   0.1)  7.86e-005(   0.8) (   0.9)  

 49        3.92      -3.25  1.74e-005(   0.2)  6.97e-005(   0.7) (   0.9)  

Figure 2-18: GDFsolve verbose output showing the progress from 3 and –3 for Q1 and Q2 respectively to the final 

solution of 3.92 and –3.25 [T/m]. 

2.4.2 Solving for a waist 

GDFsolve used as optimizer is a great tool, but 49 iterations for a relatively simple minimization could be a 

problem. Especially when we realize that when more variables are included the number of iterations often 

scales with N2. Your patience will be severely tested when each GPT run contains a non-trivial design 

including 3D spacecharge calculations. The solution is straightforward: Don’t use the optimizer unless you 

absolutely have to. In the above case, there is a very good alternative: The waist is not only defined by a 

minimum in stdx and stdy, but also as a zero in the Courant-Snyder α parameter. Minimizing stdx and 

stdy is equivalent to finding a zero in CSalphax and CSalphay. Such a root-finding procedure is typically 

much faster and often more reliable than minimizing a function. The required inputfile for GDFsolve is 

shown in Listing 2-8. 

Listing 2-8: Inputfile for GDFsolve finding a simultaneous zero in Csalphax and CSalphay by varying Q1 and Q2. 

Filename: root.sol 

1. [VARIABLES] 

2. Q1 = +4 ; # Initial value 

3. Q1.absdelta = 0.01 ; # Absolute stepsize 

4. Q1.min = 0 ; # Q1 must be positive 

5.  

6. Q2 = -3 ; # Initial value 

7. Q2.absdelta = 0.01 ; # Absolute stepsize 

8. Q2.max = 0 ; # Q2 must be negative 

9.  

10. [CONSTRAINTS] 

11. CSalphax = 0 ; # CSalphax must be zero 

12. CSalphax.position = 1 ; # At position z=1 m 

13. CSalphax.abstol = 1 ; # Absolute tolerance 

14.  

15. CSalphay = 0 ; # CSalphay must be zero 

16. CSalphay.position = 1 ; # At position z=1 m 

17. CSalphay.abstol = 1 ; # Absolute tolerance 

 

The [VARIABLES] section is identical to Listing 2-6, specifying to vary Q1 and Q2. The initial step used to 

calculate the derivative is specified with an absdelta of 0.01 and the correct sign is enforced using the min 

and max statements. To use GDFsolve as root finder, the [OPTIMIZE] section is replaced by a 

[CONSTRAINTS] section: CSalphax and CSalphay must both be zero at z=1 m. A solution is found when 

CSalphax and CSalphay are within abstol, in the rms sense, of the target value of zero. For a tolerance 

of unity, this reduces to a termination criterion of √CSalphax2 + CSalphay2 < 1. As shown in Listing 2-9 

and Figure 2-19 running GDFsolve and the produced results are almost identical to the minimization case 

described in section 2.4.1. 

Listing 2-9: Batch file to run GDFsolve and analyze the obtained minimum with GDFA. Filename: root.bat. 

1. gdfsolve -v -o quads.gdf root.sol gpt quads.in gamma=100 

2. gdfa -o result.gdf quads.gdf time avgz stdx stdy 
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Figure 2-19: Output of GDFsolve used as root-finder, analyzed with GDFA: A minimum in both the horizontal and 

vertical plane. 

The length of the verbose output shown in Figure 2-20 shows the big advantage of the root-finder approach. 

It takes only 5, compared to 49, attempts to get Q1 and Q2 to 3.93 and –3.26. This is plus or minus the 

specified absdelta, with about an order of magnitude improvement in CPU time. The reason for this 

improvent is a completely different algorithm for the root finder. The first function evaluation is identical, 

but then the Jacobian matrix is estimated by varying each variable an amount of absdelta. These lines are 

indicated by a J, and only the difference with the previous run is shown. After the first three runs, a matrix-

inversion in GDFsolve yields the first new attempt shown in run number four. A small correction to the 

Jacobian is then applied and the fifth estimate is already on target. 

 
  N          Q1         Q2   CSalphax           CSalphay             rms  

  1           4         -3       40.5(  40.5)      -7.22(  -7.2) (  41.2)  

  2J       0.01                 0.364(   0.4)     -0.502(  -0.5)  

  3J                  0.01       1.41(   1.4)     -0.198(  -0.2)  

  4        3.97      -3.28      -2.22(  -2.2)      -1.32(  -1.3) (   2.6)  

  5        3.93      -3.26      0.444(   0.4)     -0.442(  -0.4) (   0.6)  

Figure 2-20: GDFsolve verbose output showing the progress from 4 and –3 for Q1 and Q2 respectively to the final 

solution of 3.93 and –3.26 [T/m]. 

Is it really that simple to change from minimization to root-finding? Unfortunately, no. Root-finding is 

fundamentally different from optimization, and typically new (undesired) solutions are introduced. With 

good initial estimates this provides no problem, but when we start Q1 and Q2 for example from +2 and –2 

the results as shown in Figure 2-21 are produced: A collimated beam in the y-plane also produces a zero 

CSalphay, but this was not what we were looking for. 

 

 
Figure 2-21: Undesired solution for Q1 and Q2 starting from an initial estimate of +2 and –2 respectively. 

2.4.3 Scanning GDFSOLVE using MR 

Scanning a GDFsolve command using MR allows you to calculate optimal variable values as function of any 

other variable. It is not the typical thing to do as a novice GPT user. To explain the procedure, the previous 

example of section 2.4.2 is continued while scanning the beam energy gamma using MR. 
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Listing 2-10: While MR scans the beam energy gamma, GDFsolve is used to find the optimal settings for Q1 and Q2. 

Filename: scan.bat 

1. mr -v -o quads.gdf gamma.mr gdfsolve root.sol gpt quads.in 

2. gdfa -o result.gdf quads.gdf time avgz stdx stdy 

3. gdfa -o Q12.gdf quads.gdf gamma Q1 Q2 

where the file gamma.mr contains the following line: 
1. gamma 90 110 5 

 

As shown in Listing 2-10 the first line of the batch file runs MR with gamma varying from 90 to 110 as 

described in the file gamma.mr. Instead of directly running GPT with the quads.in file, GDFsolve is used 

to find the corresponding waist described in the root.sol file with identical constraints as described in 

section 2.4.2. The output of all this, quads.gdf, contains the best results for every gamma. Here we go one 

step further: Plotting the optimal Q1 and Q2 as function of gamma. The values for Q1 and Q2 are written in 

the outputfile which can be inspected using GDF2A: 

gdf2a –o result.txt result.gdf 

 

In order to plot the results using GPTwin, two short custom GDFA programs need to be written: 

int Q1_func( double *result ) { return( gdfmgetval( "Q1", result ) ) ; } 

int Q2_func( double *result ) { return( gdfmgetval( "Q2", result ) ) ; } 

 

The procedure how to add these functions is explained in the GPT Custom Elements documentation. After 

these programs have been added, the last GDFA line calculates Q1 and Q2 as function of gamma in the file 

Q12.gdf. The result is a perfectly linear correspondence, as shown in Figure 2-22. 

 

 
Figure 2-22: Optimum values for Q1 and Q2 as function of gamma. 

2.4.4 Multi-objective: GDFMGO 

We continue here with the same example of focusing a beam with two quadrupoles, but now as a multi-

objective problem. Our two objectives are to minimize stdx and stdy, in order to see how one depends on the 

other. In other words, we want to know how much bigger stdy becomes if we try to further reduce stdx. Such 

multi-objective optimization is the realm of GDFMGO, and the inputfile to accomplish this is given in Listing 

2-11.  
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Listing 2-11: Inputfile for GDFMGO to optimize for both stdx and stdy. Filename: opti.mgo 

1. [OPTIONS] 

2. populationsize=200 ;  # To make nice plots, not really needed 

3.  

4. [VARIABLES] 

5. Q1.min = 0 ;   # Q1 must be between 

6. Q1.max = 10 ;  # 0 and 10 

7.  

8. Q2.min = -10 ;  # Q2 must be between 

9. Q2.max = 0 ; # -10 and 0 

10.  

11. [OPTIMIZE] 

12. stdx.position = 1.0 ; # We look at z=1 m 

13. stdx.max = 0.002 ;  # Beam must be smaller than 2 mm 

14.  

15. stdy.position = 1.0 ; # Idem for stdy 

16. stdy.max = 0.002 ;  # 

 

When using GDFMGO it is not needed, or even possible, to specify deltas and tolerances for the variables 

and objectives. Here the population size is overwritten to 200 to make nicer plots. The default values work 

pretty well in most cases. Furthermore, to make the example more interesting, we changed the initial zero 

energy spread and created quadsmgo.in: 
16. setGdist("beam","u",gamma,gamma/5) ; 

 

Now we are ready to run GPT via GDFMGO to automatically get the trade-off between stdx and stdy: 

gdfmgo –v –o quads.gdf opti.mgo gpt –j 1 quadsmgo.in gamma=100 

 

The results can be plotted from quads.gdf with templates stdxy.gdt and q1q2.gdt. To illustrate the 

genetic algorithm, the 1st, 5th, 10th and final generations are shown in Figure 2-23. The code starts by 

randomly filling variable space for Q1 and Q2, based on the min and max values for the variables Q1 and Q2. 

The simulation results for stdx and stdy are subsequently ranked and only the best ones are candidates for 

further attempts. The ranking is shown as color coding in the plots, ranging from blue (good) to red (worse). 

The initial attempt seems hopeless, but already after 5 generations significant progress is observable: Quite 

a few results are below the 2 mm threshold as set in the mgo file, and the area in variable space is significantly 

reduced. At the 10th iteration, the Pareto front is already reached with very good approximation, see the dark 

blue datapoints. The sampling however is rather poor because too many points are still too far out, so the 

optimizer continues. At the final generation, number 31 in this case, the desired result is reached. It can be 

seen that above approximately 0.3 mm you can reduce both stdx and stdy, but if you want to reduce either 

below that value, you pay a big price in the other dimension. 

 

Note that the large area in variable space for Q1 and Q2 has fully collapsed to a parametric line. The meaning 

of this line is that if you want a small stdx and a small stdy, you only have to consider combinations of Q1 

and Q2 that lie on this line. The initial 2D problem has hereby collapsed into a 1D problem. The final 

dimensionality is always the number of objectives minus one, regardless of the number of variables. This 

spectacular reduction of dimensionality is an intrinsic feature of the multi-objective approach, and this makes 

it such a useful tool for decision making. 

 



 Automatic solving 61 

 

 

  

  

  
Figure 2-23: Evolution towards minimum values for both stdx and stdy automatically obtained with GDFMGO. 

Especially in the early stages of optimization, GDFMGO might run GPT with parameters very far off realistic 

settings. This can result in a significant waste of CPU time because unrealistic settings tend to consume 

relatively large amounts of computational power. It is therefore recommended to always add 

setrlimit("CPU",N,M) to the GPT inputfile, especially when running on large clusters. This instructs 

GPT to finish the timestep and abort a run softly after N seconds CPU time, while enforcing a hard-limit of 

M seconds. 
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2.5 Electrostatic accelerator 

This GPT simulation contains only one particle that is accelerated in a homogeneous electric field. This 

particle starts at the origin and is accelerated over 1 meter by a constant electric field of 1 MV/m. It allows 

us to test the numerical results with analytical expressions. More realistic accelerator models are typically 

included using the map2D_E element, described in section 4.7.5. Parameters of interest are z, β𝑧 and γ. First 

we will explain the inputfile and then verify the results quantitatively. 

 

The GPT inputfile located in the tutorial/accel folder is shown in Listing 2-12. The batch file 

accel.bat can be used to run the example. 

Listing 2-12: GPT inputfile with homogeneous acceleration field: tutorial/accel/accel.in 

1. # GPT Tutorial: Electrostatic accelerator 

2.  

3. # Homogeneous E-field: 1MV/m 

4. erect( "wcs", "z",0.5, 1,1,1, -1e6 ) ; 

5.  

6. # Position particle at origin with zero velocity 

7. setstartpar("beam",0,0,0, 0,0,0) ; 

8.  

9. # Output from 0 to 6 ns every 0.1 ns 

10. snapshot( 0, 6e-9, 0.1e-9 ) ; 

 

Line 4 positions an erect, see section 4.5.4, a uniform homogeneous electric field bounded by a rectangular 

box. The center of the box is at 0.5 m and all the box dimensions are 1 m. The electric field strength is 

1 MV/m. Line 7 starts one particle at the origin with zero velocity using setstartpar, see section 4.2.1.13. 

Line 10 instructs the GPT kernel to generate output every 0.1 ns upto 6 ns. 

 

The instruction to run GPT is: 

gpt -o result.gdf accel.in 

 

The outputfile, result.gdf, contains the particle coordinates as function of time, in a format devised for 

more than one particle to output. We want to plot the z-, β- and γ-coordinates of the single particle, but this 

can not be done immediately. As can be verified using gdf2a result.gdf, the outputfile has the following 

structure: 

 

time=0.0 ns  

 particle coordinates 

time=0.1 ns  

 particle coordinates 

  

time=6.0 ns  

 particle coordinates 

 

When plotted directly, such a file produces 61 plots containing just one point. What is needed is a GDF file 

with the following structure: 

z βz γ time 

... ... ... 0.0 ns 

... ... ... 0.1 ns 

    
... ... ... 6.0 ns 

 

Such output can easily be obtained with the GDFTRANS program, but also with GDFA: 

gdfa -o avg.gdf result.gdf time avgz avgBz avgG 

 

Taking the average of just one particle is the same as returning the particle coordinates. Since the programs 

to calculate averages are standard in GDFA, these can conveniently be used. avgBz calculates the average 

normalized velocity in the z-direction, avgG calculates the average Lorentz factor. The group_by variable 

is time, because the points in the plot are all calculated at different times. Whether to use GDFTRANS or 
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GDFA is a matter of taste, though we prefer GDFA because it allows us to switch between single- and 

multiple-particle simulations. The results are graphically shown in Figure 2-24. 

 

 
Figure 2-24: Normalized longitudinal velocity (left) and corresponding Lorentz factor (right) for an electron in a 

uniform acceleration field of 1 MV/m. 

As expected the velocity βz = vz c⁄  increases sharply in the beginning but then flattens asymptotically to 1 

as the Lorentz factor 𝛾 = 1 √1 − 𝛽2⁄  starts to differ significantly from unity. The Lorentz factor of the 

particle increases monotonically, because the acceleration force is constant. At z=1 the particle is at the end 

of the accelerator, beyond which βz and γ remain constant. 

 

To plot the kinetic energy of an electron, the following relation can be used: 

𝑇[𝑒𝑉] = (𝛾 − 1)𝑚𝑐2 |𝑞|⁄  
𝑇[𝑀𝑒𝑉] ≈ 0.511 𝛾 − 0.511 [2. 1] 

In other words, setting scale to 0.511 and offset to –0.511 converts the Lorentz factor of an electron to kinetic 

energy in MeV. The result is shown in Figure 2-25. 

 

 
Figure 2-25: Kinetic energy of an electron accelerated in a uniform 1 MV/m electric field. 
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2.6 Accuracy 

The quality of the numerical results as produced by GPT depends mainly on the following two factors: 

• The number of particles in the simulation 

• The specified accuracy 

 

Increasing the number of macro-particles in a simulation generally gives a more accurate result, especially 

for macroscopic quantities. For large numbers of particles the accuracy generally increases with the square 

root of the number of particles. The needed CPU time however increases at least linear with the number of 

particles. Therefore using more particles than necessary is not recommended. 

 

Using accuracy the number of significant digits in the individual particle coordinates can be specified to 

the GPT kernel. We refer to section 1.8 for a detailed description of the Runge-Kutta dynamic stepsize 

algorithm and section 4.3.2 for the accuracy reference. 

 

Consider for example the set-up of the previous section: A single particle accelerated over 1 meter in a 

homogeneous electric field with E=1 MV/m. Listing 2-13 contains the corresponding GPT inputfile where 

output is generated by a screen at z=2 m. The calculation accuracy is a variable named acc. 

Listing 2-13: GPT inputfile for electrostatic accelerator producing output z=2 meter with variable accuracy: 
tutorial/accuracy/accuracy.in 

1. # GPT Tutorial: Accuracy of the electrostatic accelerator 

2.  

3. # Accuracy to be used 

4. accuracy( acc ) ; 

5.  

6. # Homogeneous E-field 

7. erect( "wcs", "z",1/2, 1,1,1, -1e6 ) ; 

8.  

9. # Position particle at origin with zero velocity 

10. setstartpar("beam", 0,0,0, 0,0,0 ) ; 

11.  

12. # Output at z=2 m 

13. screen( "wcs","I", 2 ) ; 

 

The analytical expression for γ when z>1 m is: 

γ𝑧>1 = 1 + 𝐸kin 𝐸0⁄ [2. 2] 

where Ekin=qE and E0=mc2. For 1 MV/m this yields: γ ≈2.956935103. 

 

An example of using this inputfile, see acc5.bat, with an accuracy of 5 is: 
1. gpt -o acc5.gdf accuracy.in acc=5 

2. gdf2a -w 16 acc5.gdf 

The -w 16 option specifies a larger column width to print more significant digits. The result is: 

γ =2.956703025 

 

Using MR a complete scan can be made: 
1. mr -v -o result.gdf accuracy.mr gpt accuracy.in 

2. gdfa -o acc.gdf result.gdf acc avgG tutacc numderivs 

 

Where the file accuracy.mr contains the following line: 
1. acc 4 10 0.05 

 

This scans the variable acc from 4 to 10 in steps of 0.05. The Lorentz factor γ is then grouped by acc using 

GDFA. The number of significant digits and required CPU time as function of acc are shown in Figure 2-26. 

To plot the result with GDFA, we use a custom program to calculate the number of significant digits d: 

𝑑 = − log10((γ − γref) γref⁄ ) [2. 3] 

We refer to the GPT Custom Elements documentation for a description of custom GDFA programs. 
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Figure 2-26: Number of significant digits in γ (left) and the number of timesteps in the Runge-Kutta algorithm (right) 

as function of the specified accuracy. 

For almost all beamline simulations, the default accuracy setting of GPT of 4 is sufficient. However, high-

accuracy, single-particle simulations sometimes require a higher accuracy setting, typically in the range 

between 6 and 8. 
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2.7 Magnetic mirror 

As a demonstration of the high accuracy achievable with GPT a magnetic mirror is simulated. A magnetic 

field gradient reflects a charged particle gyrating around the magnetic field lines. The following set up is 

used to demonstrate this effect: 

A particle starts at 𝑧 = −1 m with initial velocity β=0.01 making an angle θ with the z-axis in the xz-plane. 

The y-coordinate of the particle is chosen to be the Larmor radius, causing the particle to rotate precisely 

around the z-axis. The field gradient is generated by a solenoid located at z=0 with a radius of 20 cm and 100 

loops of 100 A. 

 

The loss cone, the angles θ for which the particle is not reflected by the gradient, is given by [3]: 

sin2(θ) <
𝐁0
𝐁𝑚

[2. 4] 

where Bo and Bm are the initial and maximum magnetic field strengths respectively. The expression yields 

θ=4.98 in our case. The inputfile used to perform the simulations is given in Listing 2-14. 

Listing 2-14: GPT inputfile for a magnetic mirror: tutorial/magmir/magmir.in. 

1. # GPT Tutorial: Magnetic mirror demonstration 

2.  

3. # Ultra-high accuracy for best results 

4. accuracy(8) ; 

5.  

6. # Define beam parameters 

7. GBeta=0.01 ;                     # Initial norm. momentum 

8. GBetax=GBeta*sin(theta/deg) ;    # Norm. Momentum in x-direction 

9. GBetaz=GBeta*cos(theta/deg) ;    # Norm. Momentum in z-direction 

10.  

11. Bini=2.36968e-4 ;                # Initial B field (at z=-1) 

12. Rl=m*c*GBetax/(q*Bini) ;         # Larmor radius 

13.  

14. # Start the particle 

15. setstartpar( "beam", 0,Rl,-1, GBetax,0,GBetaz ) ; 

16.  

17. # Position the solenoid 

18. solenoid( "wcs", "I", 0.2,10000 ) ; 

19.  

20. # Time output for trajectories and theta-scan 

21. snapshot( 0,0.7e-6,0.5e-9) ; 

22. # snapshot( 1e-6 ) ; 

 

Mathematical functions like sin, cos, tan and sqrt can be used in a GPT inputfile like in normal computer 

code. The operator precedence is similar to C, with the exception of the exponential operator ^, not present 

in C, having the highest precedence. For a complete list of operators and built-in functions, we refer to Table 

4-A and Table 4-C on page 120. 

 

We will first examine the following two cases: θ=4.75° and θ=5.25°. In the first case the particle is expected 

to be lost, in the second case it is expected to be reflected. The results shown in Figure 2-27 were generated 

by performing the following commands and plotting the trajectory results: 
gpt -o t475.gdf magmir.in theta=4.75 

gdftrans -o traj475.gdf t475.gdf time x y z Bz 

gpt -o t525.gdf magmir.in theta=5.25 

gdftrans -o traj525.gdf t525.gdf time x y z Bz 
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Figure 2-27: Particle trajectory when θ=4.75° (left) and θ=5.25° (right). 

It is clear that in both cases the Larmor radius of the particle decreases because of the increasing magnetic 

field strength. The particle trajectory remains centered around the z-axis. When θ=4.75° the velocity remains 

positive and the particle is lost. When θ=5.25° the velocity changes sign and the particle is reflected. 

 

Now we will verify Error! Reference source not found. by scanning θ using MR. The following MR file c

an be used to scan θ from 0° to 10°, using ten times more steps in the interval 4°< θ <6°. To reduce the size 

of the outputfile, only one snapshot at 1 μs is needed. 

Listing 2-15: theta.mr 

1. theta 0  3 1 

2. theta 4  6 0.1 

3. theta 6 10 1 

 

To plot the z-coordinate as function of theta the following commands have to be specified. Before running, 

please make sure that only snapshot output at 1 μs is specified. 

mr -v -o result.gdf theta.mr gpt magmir.in 

gdfa -o magmir.gdf result.gdf theta avgx avgy avgz avgBx avgBy avgBz 

 

 
Figure 2-28: Final particle position as function of angle of incidence. 

The result, Figure 2-28, indicating for which value of θ the particle is lost, is close to the analytical value: 

θ=4.98. A larger final time or screen output and more points around θ=5° can be used to calculate the 

simulation’s loss cone with more accuracy. It yields approximately 4.96 and is left as an exercise. 
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2.8 Element Coordinate System 

All GPT elements, both standard and custom, can be positioned anywhere in 3D space with any orientation. 

This can be very useful when simulating misaligned or rotated beamline components. GPT uses orientation 

vectors to position elements and their working will be explained in this section. The use of these vectors is 

the same for all elements. 

 

As an example we will use two current loops placed vertically above and below the beampath, as shown in 

Figure 2-29. Together these loops produce a vertical field which bends an electron beam in the horizontal 

plane. To model the current loops we have chosen to use the solenoid element because it has its magnetic 

field defined over all space, not only close the z-axis. For a reference of the element solenoid see section 

4.6.15. 

 
 

 
Figure 2-29: Schematic picture of the current loops and the generated field lines. 

When using the standard orientation of a solenoid, it is positioned perpendicular to the beam path with the 

beam going through its center, as shown in Figure 2-30. This is the orientation of a standard focusing coil. 

As we have seen in previous sections, such a solenoid can be placed using the following syntax: 

solenoid("wcs","z",1, R, I) ; 

This places a solenoid at a distance of 1 m from the origin in the z-direction. 

 

 
Figure 2-30: Standard orientation of a solenoid. 

Because of the 3D capabilities of the GPT kernel, the standard solenoid can still be used to simulate our 

steering coils. The coils can be positioned off axis and facing a different direction by specifying an element 
coordinate transform (ECS) in the inputfile. More information about GPT coordinate systems can be found 

in sections 1.1 and 1.4.3. 

 

First we rotate the solenoid around its origin by specifying its new orientation vectors. The new orientation 

is shown in Figure 2-31. The solenoid has been rotated 90 around its x-axis. 

 

 
Figure 2-31: Orientation of a solenoid rotated 90 around its x-axis. 

The complete syntax line for such a solenoid is: 

solenoid("wcs", 0,0,1, 1,0,0, 0,0,-1, R, I) ; 
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The first parameter specifies the coordinate system relative to which the subsequent coordinates are given. 

In our case this is "wcs". Then follow three sets of x-,y-,z-coordinates specifying the position and orientation 

of the element. 

 

The first coordinate set gives the position of the element in x-, y-, z-coordinates. The specified distances are 

in meters and relative to the coordinate system specified as the first parameter. In our example the center of 

the solenoid is placed at a distance of 1 m from the origin of "wcs" in the z-direction. It is not moved in the 

x- or y-direction. This translation is specified as 0,0,1. 

 

The second coordinate set specifies the direction of the new x-direction using directional cosines. The first 

parameter determines how much of the new x-vector lies in the direction of the x-axis of the reference 

coordinate system. The reference coordinate system is specified by the first parameter of the syntax line, in 

our case it is "wcs". The second parameter determines how much of the new unit x-vector lies in the direction 

of the y-axis of the reference coordinate system. And the third parameter determines how much of the new 

unit x-vector lies in the direction of the z-axis of the reference coordinate system. In our case the direction 

of the x-axis has not changed, because the solenoid has been rotated round its x-axis. Therefore we specify 

a unity transformation in the x-direction 1,0,0. 

 

The third coordinate set specifies the direction of the new unit y-vector the same way as we did for the new 

x-direction. The components of the new directions are given relative to the standard unit vectors. In our 

example the new direction of unit vector y is opposite to the "wcs" z-direction. This is specified as 0,0,-1. 

 

The new z-direction is calculated by the GPT kernel and does not have to be specified: �̂� = �̂� × �̂�. The kernel 

also handles all normalizations. 

 

Finally the reoriented solenoid has to be positioned above the beampath, as shown in Figure 2-32. This means 

that it has to be moved in the y-direction of the WCS coordinate system. To move the solenoid 5 cm in this 

direction should be specified as the translation 0,0.05,1. 

 

 
Figure 2-32: Solenoid with a new orientation positioned above the beampath. 

The complete syntax line now becomes: 

solenoid("wcs", 0,0.05,1, 1,0,0, 0,0,-1, R, I) ; 

 

A second solenoid is placed 5 cm below the beampath with the same orientation. The corresponding inputfile 

is shown in Listing 2-16. 
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Listing 2-16: GPT inputfile demonstrating a non-trivial ECS: tutorial/ecs/ecs.in 

1. # GPT Tutorial: Bending particles using two current loops 

2.  

3. # Define particle parameters 

4. gamma = 10 ; 

5. betaz = sqrt(1-gamma^-2) ; 

6. vz    = c*betaz ; 

7.  

8. # Start particles 

9. setstartpar( "beam", -.2e-3,0,0, 0,0,gamma*betaz ) ; 

10. setstartpar( "beam",  .0e-3,0,0, 0,0,gamma*betaz ) ; 

11. setstartpar( "beam", +.2e-3,0,0, 0,0,gamma*betaz ) ; 

12.  

13. # Position the solenoids 

14. solenoid( "wcs", 0, 0.05,1, 1,0,0, 0,0,-1, 0.1, 100 ) ; 

15. solenoid( "wcs", 0,-0.05,1, 1,0,0, 0,0,-1, 0.1, 100 ) ; 

16.  

17. # Specify output times 

18. snapshot( 0,1.5/vz,0.05/vz ) ; 

 

Now the two solenoids are placed above and below the beampath in their new orientation. To view the 

trajectory of the particle run the batch file: tutorial/ecs/ecs.bat. It contains the command to run GPT 

with inputfile ecs.in and outputfile result.gdf: Then the trajectories are calculated with the 

GDFTRANS program and written to traj.gdf. 

gpt -o result.gdf ecs.in 

gdftrans -o traj.gdf result.gdf time x y z 

 

The particle trajectories can be shown by plotting the z-position horizontally and the x-position vertically, as 

shown in Figure 2-33. 

 
Figure 2-33: Particle trajectories through the steering coils, plotted using GPTwin. 

We see in Figure 2-33 that the beam is bent in the positive x-direction due to the solenoid field. Please note 

that outside the coils there is a small magnetic field with opposite direction, causing a small deflection in the 

negative x-direction. 

 

For macroscopic beam investigation, we can also use the GDFA program: 

gdfa -o avg.gdf result.gdf time avgx avgy avgz 
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2.9 Initial particle distribution 

In this example, we will start a 1 MeV electron beam with a total charge of 100 pC. The position, momentum 

and energy distributions are all Gaussian, but this can easily be modified to uniform, linear or quadratic 

distributions when required. Such a beam can be specified in a number of well-defined steps: 

Step Plane(s) Elements used 

Specifying the particle set  setparticles 

Specifying the real-space distribution functions xyz setzdist, 

setxdist, setydist, 

setrxydist, setphidist 

Specifying the phase-space distribution functions xβx, yβy setGBxdist, setGBydist 

Scale emittances xβx, yβy setGBxemittance, setGByemittance 

Specifying the energy-distribution function γ (Energy) setGdist 

Specifying divergence angles xβx, yβy addxdiv, addydiv 

 

The files for this tutorial section are located in the folder gpt/tutorial/cylbeam. A snapshot(0) 

statement is used to inspect the initial particle distribution at t=0. In other words, a snapshot(0) statement 

writes the particle distribution to the outputfile exactly as it starts. 

 

To start the particles in our sample 1 MeV electron beam, we first define a particle set named "beam", 

containing 1000 particles having a total charge of 100 pC. The setparticles element is described in 

section 4.2.1.1. The built-in constants me and qe represent the mass and charge of an electron respectively. 
1. nps  = 1000 ; # Start 1000 particles 

2. Qtot = -100e-12 ; # Total charge 100 pC 

3. setparticles( "beam", nps, me, qe, Qtot ) ; 

 

To give these particles a Gaussian longitudinal distribution centered around z=0 we use the setzdist 

element, see section 4.2.2.5. The typical length is specified as 4 mm and the distribution is extended to 3 

sigma in both directions. In this case the distribution specification is: "g",0,4e-3,3,3. The resulting 

longitudinal distribution is shown in Figure 2-34. 
4. zlen   = 0.004 ; # Buch length: 4 [mm] 

5. radius = 0.002 ; # Bunch radius: 2 [mm] 

6. setzdist( "beam", "g", 0,zlen, 3,3 ) ; 

 

 
Figure 2-34: Longitudinal particle distribution obtained using GDF2HIS, see section 3.9. 

It is quite simple to specify other distributions. For example a uniform distribution centered around z=1 mm 

could be specified by: "u",1e-3,4e-3. Please see section 1.6.1 or Table 1-C on page 19 for a description 

of all possible distribution specifications. 

 

The elements setxdist and setydist are used in a similar way as setzdist. In this example, the radial 

distribution of the particles is Gaussian in r and specified using setrxydist, see section 4.2.2.6. For radial 

distributions it is important to never generate negative radii. Therefore, the left tail of the Gaussian 

distribution is set to 0 sigma. For a uniform distribution, the distribution parameters of setrxydist must 

always be: "u",rmax/2,rmax. 

The setrxydist element only modifies the x-coordinates of the particles, assuming a rotational symmetric 

distribution in the xy-plane. Therefore, setphidist, see section 4.2.2.7, must be used to specify a uniform 

φ distribution over 2π in the xy-plane. The resulting distribution is shown in Figure 2-35. 
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7. setrxydist( "beam", "g", 0, radius, 0,3 ) ; 

8. setphidist( "beam", "u", 0, 2*pi ) ; 

 

 
Figure 2-35: Beam distribution in xy-plane scatterplot (left) and density plot (right). The density plot is created with 10 

times more particles. 

As an alternative to setrxydist and setphidist the elements setxdist and setydist can be used to 

specify the distribution in the xy-plane. Therefore, it is very important to understand the difference between 

setrxydist and setxdist. Both elements set the x-coordinates of the particles to a specified distribution. 

However, a uniform distribution for setxdist sets the x-coordinates of all particles uniform in the x-plane 

only. A uniform distribution for setrxydist results in a uniform distribution in the xy-plane when a 

uniform setphidist is also used. To accomplish this, setrxydist adds relatively more particles at larger 

radii because the amount of ‘space’ on a circle grows linear with r. 

 

The phase-space distribution is set using setGBxdist and setGBydist, see section 4.2.3.1 and 4.2.3.3 

respectively. We use a Gaussian distribution centered around zero with a standard deviation of 1e-3, cut-off 

at three sigma. Please note that by specifying these distributions, we implicitly specify the transverse 

emittances. However, we don’t need to worry about this too much, because the emittances can be fine-tuned 

later. Also the divergence angles are specified separately. Important in this step is only the type of 

distribution, e.g. Gaussian or uniform. 
9. setGBxdist( "beam", "g", 0, 1e-3, 3,3 ) ; 

10. setGBydist( "beam", "g", 0, 1e-3, 3,3 ) ; 

 

The transverse emittances are set using setGBxemittance and setGByemittance, see sections 4.2.3.9 

and 4.2.3.10 respectively. These elements scale the transverse momentum coordinates linearly till the 

specified emittance is reached. In this example, the emittance is set to 5π mm-mrad. Running the GDFA 

programs nemixrms and nemiyrms will result in emittance values of 5π mm-mrad, independent on the 

average beam energy and divergence angles specified later. 
11. setGBxemittance( "beam", 5e-6 ) ; 

12. setGByemittance( "beam", 5e-6 ) ; 

 

Now we can specify the beam energy distribution using setGdist. In this example, an average energy of 

1 MeV and a uniform energy spread of 1% are used. The Lorentz factor is calculated from the average beam 

energy. The result is shown in Figure 2-36. 
13. Eo  = 1e6 ;   # Average beam energy: 1 [MeV] 

14. G   = 1-q*Eo/(m*c*c) ; # Corresponding gamma 

15. dG  = (G-1)/100 ;  # 1% Energy spread 

16. setGdist( "beam", "u", G, dG ) ; 
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Figure 2-36: Correlation between longitudinal position and beam energy. The interference pattern is an artifact of the 

Hammersley sequence. The addzdiv element rotates this plot. 

Optionally, the transverse phase-space divergence angles can be specified using addxdiv and addydiv, see 

section 4.2.4.1 and 4.2.4.3 respectively. When written as a separate element, it is not possible to include the 

beam radius in the divergence calculations because the beam radius is differently defined for a uniform and 

a Gaussian transverse distribution. Therefore, the divergence must always be specified in [rad/m]. To create 

a beam with a radius of 2 mm and a divergence angle of 0.1 rad, a divergence of 50 rad/m must be specified. 

In this example, a divergence of 1 rad/m is used, defocusing in the x-plane and focusing in the y-plane. The 

result is shown in Figure 2-37. 
17. addxdiv( "beam", 0,  1 ) ; 

18. addydiv( "beam", 0, -1 ) ; 

 

 
Figure 2-37: Transverse phase-space plots. The vertical axis is the transverse velocity, normalized by the speed of light. 
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2.10 Photo-cathode, starting particles as function of time 

This section demonstrates how to start particles as function of time. All files are located in the 

tutorial/cathode folder. The example is a 100 pC electron bunch, emerging from a flat photo-cathode 

during 100 fs. A typical set-up consists of a copper or semiconductor cathode surface illuminated by a laser 

pulse. Either an RF cavity or an electrostatic accelerating field must be present to accelerate the electrons 

away from the cathode. Space-charge effects are not included in this example, but can easily be added with 

the spacecharge2Dcircle element. 

 

To start the electrons emerging from the cathode, we first define a particle set named "beam", containing 

1000 particles having a total charge of 100 pC. 
1. # Photocathode 

2. nps  = 1000 ; # Start 1000 particles 

3. Qtot = -100e-12 ; # Total charge 100 pC 

4. setparticles( "beam", nps, me, qe, Qtot ) ; 

 

These particles are to be started uniformly in a 100 fs time interval, having an initial radius of 0.25 mm. 
7. tlen = 100e-15 ; # Laser pulse length: 100 fs 

8. radius = 0.25e-3 ; # Bunch radius: 0.25 mm 

 

The radial distribution of the particles is uniform "u" in r and is set using setrxydist. The third parameter 

of setrxydist is the center of the radial distribution, half the beam radius. The beam is cylindrical 

symmetric, specified as a uniform φ distribution over 2π using setphidist. This will result in a particle 

distribution as shown in Figure 2-38. 
5. setrxydist( "beam", "u", radius/2, radius ) ; 

6. setphidist( "beam", "u", 0, 2*pi ) ; 

 

 
Figure 2-38: Particle distribution in xy-plane. 

The following code assumes that all electrons leave the cathode having an energy of precisely 0.4 eV. 

Initially, setGBzdist is used to set the corresponding γβz of all particles. Then the velocity component is 

homogeneously distributed over half a sphere using setGBthetadist. This element sets a spherical particle 

distribution in the γβz-γβ𝑟-plane, keeping the angle in the γβx-γβ𝑦-plane constant. setGBphidist must be 

used to enforce cylindrical symmetry. The half-sphere distribution of the particles is shown in Figure 2-39. 

Please note that these start conditions automatically determine the initial emittance. 
9. Eo  = 0.4 ;   # Start with 0.4 eV 

7. G   = 1-q*Eo/(m*c*c) ; # Corresponding Gamma 

8. GB  = sqrt(G^2-1) ; # Corresponding Gamma*Beta 

9. setGBzdist(     "beam", "u", GB, 0 ) ; 

10. setGBthetadist( "beam", "u", pi/4, pi/2 ) ; 

11. setGBphidist(   "beam", "u", 0, 2*pi ) ; 
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Figure 2-39: Phase space distribution. 

Before setting the time-distribution with settdist, it is important to check the initial particle distribution. 

All plots shown before are created with the snapshot(0) line and without using settdist. 

 

When the simulation is started using the above lines, all particles are emitted from the cathode at t=0. The 

settdist element sets the time-distribution of the particles. The release-time is independent on all other 

coordinates, creating the possibility to start any particle anywhere, anytime. To make this tutorial simulation 

a little more interesting, we add a constant 100 MV/m electric field with the erect element to accelerate the 

electrons away from the cathode surface. In a rf photo-gun simulation it would be appropriate to use the 

map25D_TM element. 

10. # Start in time 

11. erect("wcs","I", 1,1,1, -100e6) ; # Constant electric field 100 MV/m 

12. settdist("beam", "u", 0, tlen) ; 

13. snapshot(-tlen/2, 1.5*tlen, tlen/10) ; 

 

The settdist keyword in this example sets a uniform distribution centered around zero having a total width 

of tlen. In other words, it starts all particles uniformly between –50 and 50 fs. As a result, the simulation 

time automatically starts at –50 fs to be able to take all particle trajectories into account. This is observed in 

the subsequent snapshot statement, where the first snapshot is requested at –tlen/2. In this case, this 

triggers a warning when running this inputfile because no particle starts at the outer left and right points of a 

distribution. The resulting particle distribution as function of time is shown in Figure 2-40. 

 

 
Figure 2-40: Particle distribution at various simulation times. The number of particles linearly increases in the interval 

between –50 and 50 fs. 

To see the charge and particle emission as function of time, the GDFA program can be used: 

gdfa -o avgs.gdf cathode.gdf time Q numpar 

The results are shown in Figure 2-41. 
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Figure 2-41: Charge (left) and number of particles (right) as function of simulation time. 
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2.11 Collector design 

In this section we demonstrate how to use GPT to design a collector. The result is current and power density 

on the collector plate(s), where space-charge effects and multiple scattering are included. In this example, an 

artificial 20 mA, 500 eV electron beam is collected in a simple collector, stretched in y-direction, as shown 

in Figure 2-42. Section 2.11.7 explains how to design a cylindrical-symmetric collector. The potential on the 

electrode is –1 kV. 

 

 
Figure 2-42: Sample collector with particle trajectories. The particle trajectories are imported in a 3D drawing program 

using the GDF2DXF program. 

The files for this tutorial section are located in the folder gpt/tutorial/collector. 

2.11.1 Creating a GPT field-map 

In this example, the Poisson code is used to calculate the potential. It is possible to use other field-solvers 

such as TOSCA or MAFIA. We refer to the ASCI2GDF and RAW2GDF programs for the conversion of the 

field-output to a GPT field map. 
 

The Poisson-file needed to describe the simple collector is shown in Listing 2-17. Together with all other 

field-map related files, it can be found in the fieldmap subfolder of the collector tutorial files. This folder 

also includes a batch file named collector.bat containing all required commands to run Superfish and convert 

to the output to GPT format. 

 

The commands to run Poisson are: 

automesh collector.sf 

poisson 
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Listing 2-17: collector.sf: Poisson file to describe the collector shown in Figure 2-42. 

1. &reg dx=0.1, dy=0.1, conv=1.0, xmin=0,xmax=6, ymin=-1,ymax=4,icylin=0, 

2. nbsup=0,nbslo=1,nbsrt=1,nbslf=0,kprob=0,xjfact=0.0 & 

3.  

4. &po x=0,y=-1 & 

5. &po x=6,y=-1 & 

6. &po x=6,y=4 & 

7. &po x=0,y=4 & 

8. &po x=0,y=-1 & 

9.  

10. &reg mat=0,voltage=0,ibound=-1 & 

11. &po x=0,y=1 & 

12. &po x=2,y=1 & 

13. &po x=3,y=4 & 

14. &po x=6,y=4 & 

15. &po x=6,y=-1 & 

16.  

17. &reg mat=0,voltage=0,ibound=-1 & 

18. &po x=0,y=0 & 

19. &po x=1,y=0 & 

20. &po x=1,y=-1 & 

21. &po x=0,y=-1 & 

22. &po x=0,y=0 & 

23.  

24. &reg mat=0,voltage=1000.0,ibound=-1 & 

25. &po x=4,y=-1 & 

26. &po x=4,y=0 & 

27. &po x=5,y=3 & 

28. &po x=5,y=-1 & 

29. &po x=4,y=-1 & 

 

The Poisson output cannot be used directly in GPT simulations. It must first be interpolated on a rectangular 

grid using sf7, and then converted to the GDF format with FISH2GDF: 

sf7 

fish2gdf -o collector.gdf outsf7.txt 

 

The sf7 program requires an additional file, collector.in7, which describes the interpolation parameters 

as shown in Listing 2-18. 

Listing 2-18: collector.in7: interpolation parameters 

1. rect noscreen 

2. 0 -1 6 4 

3. 121 101 

4. end 

 

After the above commands are specified, the collector.gdf field-map is ready for use. 

2.11.2 The GPT boundary file 

Before the field-map created in section 2.11.1 can be used, the boundaries must be defined in a separate GPT 

inputfile. When the field-map is created using Poisson, this step is quite simple: 

fishfile -g boundaries.in -y 1 collector.sf 

 

The file boundaries.in now contains a description of all the boundaries in the collector.sf file. For a 

cylindrical-symmetric set-up, the boundaries are defined by scattercone, scattertorus, scatterpipe 

and other elements. Otherwise, the set-up contains just rectangular scatterplate elements. 

2.11.3 Setting up the simulation 

In the file listed in Listing 2-19 a 20 mA, 500 eV rectangular beam is started and send into the collector as 

described in section 2.11.1. Ofcourse this is not a realistic beam, but serves only as an example. 
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Listing 2-19: collector.in: Main GPT inputfile for simple collector 

1. # Basic beam parameters 

2. Eo   = 500 ;    # Energy [eV] 

3. G    = 1-qe*Eo/(me*c*c) ;  # Corresponding Lorentz factor G [] 

4. Beta = sqrt(1-G^-2) ;  # Corrsponding Normalized velocity [] 

5. dE   = 0.2 ;    # Energy spread [fraction of Eo] 

6. I    = 0.02 ;   # Beam current [A] 

7.  

8. # Simulation parameters 

9. tlen = 1e-9 ;   # Gun time [s] 

10. nps  = 100 ;    # Number of particles [] 

11. Qtot = -I*tlen ;   # Total charge in tlen [C] 

12. nmac = (Qtot/qe)/nps ;  # Initial nmacro 

13.  

14. # Start a collection of particles (unphysical but simple rectangular beam) 

15. setparticles("beam",nps,me,qe,Qtot) ; 

16. setxdist("beam","u", 5e-3,3e-3) ; 

17. setydist("beam","u", 0e-3,3e-3) ; 

18. settdist("beam","u", tlen/2, tlen ) ; 

19. setGdist("beam","u", G, dE*(G-1) ) ; 

20.  

21. # Import collector field-map 

22. Zcol = 0.0 ; 

23. map2Dr_E("wcs","z",Zcol, "fieldmap/fieldmap.gdf","Y","X","Ey","Ex", 1,-Efac ) ; 

24. zminmax("wcs","I", -1e-6, 1 ) ; 

25.  

26. # Define scatter model 

27. copperscatter_fix("wcs","z",Zcol, "copper",0.01*nmac,2*nmac) ; 

28.  

29. # Spacecharge calculations 

30. spacecharge3D ; 

31.  

32. # Output specification 

33. accuracy(5) ; 

34. outputvalue("tlen",tlen) ;  # Used by hierarchical data-analysis 

35. snapshot(0,1e-7,1e-10) ;  # Trajectory plots 

36. # tcontinue(1e-7) ;   # Data analysis only 

 

The field map of the collector is imported using the map2Dr_E element. For a cylindrical symmetric 

collector, map2D_E must be used. By convention, the collector is placed at longitudinal position Zcol. On 

the sample disk, the field strength is defined as Efac on the GPT command-line to be able to perform a scan 

in a later stage. 

 

Normally collector simulations need to be performed for (semi) continuous beams. Because GPT is a time-

domain code, such a beam is often represented by a much shorter bunch to save CPU time. In the above case, 

we start a beam with a uniform distribution during the variable tlen, equal to 1 ns. For reliable results, only 

100 particles are typically insufficient. Because convergence is sometimes much slower, we strongly 

recommend rerunning the simulation with double the number of particles till the parameters of interest 

stabilize. 

 

The copperscatter element is used to define all the scatter statistics. For a simulation of the primary beam 

only, the forwardscatter element with a probability of 0 can be used instead. 

 

The snapshot statement is required for trajectory plotting. Only tcontinue is sufficient for power- or 

current-density analysis. 

2.11.4 Trajectory output 

The multiple-snapshot option must be selected to plot particle trajectories. The following commands can be 

used to produce the results as shown in Figure 2-43. Using GPTwin you can open the file traj.gdf, load 

template traj.gdt and the result should be identical. 

gpt -o collector.gdf collector.in fieldmap/boundaries.in 
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gdftrans -o traj.gdf collector.gdf time x y z G 

 

 
Figure 2-43: Particle trajectories inside the collector. File traj.gdf plotted with template traj.gdt. 

For trajectory results, the combine-plot option must always be selected. As a result, the primary and 

secondary particles are always potted in the same graph. 

2.11.5 Unrolled position 

For power- and current-density calculations, only the tcontinue output statement is required and the 

snapshot keyword can be removed. This stores the 3D scatterstatistics in the outputfile. However, when 

this file is plotted directly, the results are not much illuminating, see Figure 2-44. For example the trajectory 

plot indicates that the vertical line at x=40 mm is caused by a z-dependence, but there simply is no reliable 

way to tell if the power density is lower or higher in that area from these plots. 

 

  
Figure 2-44: Direct output of the scatter elements. File collector.gdf.with tcontinue keyword only. 

To overcome these problems, we define a coordinate d specifying the ‘unrolled’ position. This coordinate d 

runs along a collector plate and keeps measuring the distance along the edge. The unrolled coordinate for 

our single collector plate is listed in Table 2-B. Because d is monotonically increasing, following the distance 

of the plate, it is area preserving. As such, it is the most convenient parameter to plot along the horizontal 

axis for density plots. 

Table 2-B: Collector plate coordinates and corresponding unrolled position. 

z [mm] x [mm] d [mm] 

0 10 0 

20 10 20 

30 40 51 

60 40 81 

 

The FISHFILE program can be used again to calculate this ‘unrolled position’ parameter: 

fishfile -y 1 -o scatter.gdf fieldmap/collector.sf collector.gdf 

 

The result of the above command is the file scatter.gdf, plotted in Figure 2-45. The vertical lines are 

completely gone as desired. A new problem is the fact that the scatter elements are able to generate fractions 

of the incoming particles to keep the statistics correct. In other words, not all dots in the plots represent an 
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equal amount of particles. Therefore, it is essential to use the density-plot feature of GPTwin using weighted 

data. 

 

 
Figure 2-45: Scatter statistics as function of unrolled position. File scatter.gdf plotted with template 

scatter_d.gdt. 

2.11.6 Current- and power-density 

Creating a density plot using GPTwin is straightforward: Select the density-plot option. Using this option is 

scientifically correct however can be a challenge. When not enough data is present, it is tempting to increase 

the blur, but this in turn makes everything Gaussian, independent on the actual distribution. 

 

The important things to do when creating a density plot of power density are: 

• Select scat_01E in the weight_by box. This array represents the total Energy for the collector plate 01. 

• Weight by bin area 

• Set the scaling to manual. 

• Set the maximum Energy in the Max box. The ratio between energy and power is the simulation time 

tlen. Therefore, in our 1 ns simulation, an energy density of 1 W/m2 corresponds to a Max energy of 

10–9. 

 

When properly done, the scaling adapts itself to the number of bins, is independent on the number of particles 

in the simulation and follows the units along the x- and y-axes in the plot. When these are both mm, the 

scaling is to W/mm2, see Figure 2-46. 

 

The total energy on the collector plate can be calculated using the statistics as Sum(scat_01E). Scaling to 

power can be done by dividing by tlen in the scale box. 

 

Current density is completely analogous to power density, except that the scat_01Q array must be used. It 

represents the total charge Q for collector plate 01. 

 

  
Figure 2-46: Current and power density as function of position on collector plate. File scatter.gdf plotted with 

templates scatter_Q.gdt and scatter_P.gdt respectively. 
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2.11.7 A Cylindrical symmetric collector 

The GPT simulation of a cylindrical-symmetric cavity is analogous to the previous case. All required 

modifications are shown in Table 2-C. For a detailed explanation of the FISHFILE output, please see section 

3.5. 

Table 2-C: Modifications required for a cylindrical-symmetric cavity. 

 Rectangular Cylindrical Description 

GPT Fieldmap map2D_Er map2D_E Cylindrical field map. 

FISHFILE options -y height  Don’t specify the height. 

Plot arrays (x,y) scat_nnd, 
scat_nny 

scat_nnd, 
scat_nnphi 

The angle in the xy-plane is typically plotted. 

Density scaling scat_nnE, 
scat_nnQ 

scat_nnEor, 
scat_nnQor 

For correct scaling, E/r and Q/r must be used. 

2.11.8 Scanning a parameter 

Practically any parameter can be scanned with the MR program. The typical use is running GDFA on the 

output of the FISHFILE program to directly obtain total current and power statistics per collector plate as 

function of the scanned parameter. The scatterInn and scatterPnn programs can be used to calculate 

plot total current and power for the first ten collector plates. For example, the following commands calculate 

current and power on the first collector plate as function of potential. The results are shown in Figure 2-47. 

mr -v -o collector.gdf Efac.mr gpt collector.in fieldmap/boundaries.in 

fishfile -y 1 -o scatter.gdf fieldmap/collector.sf collector.gdf 

gdfa -o stats.gdf scatter.gdf Efac scatterI01 scatterP01 

 

 
Figure 2-47: Total current and power on first collector plate as function of potential. File avgs.gdf plotted with 

templates avgs_Q.gdt and avgs_P.gdt respectively. 
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3 GDF 
GPT Datafile Format, GDF, is a file format developed for programs producing large amounts of numerical 

data. It is the native output format of the General Particle Tracer, GPT, allowing it to automatically scan 

parameters and perform efficient data processing and visualization. GDF-files are machine independent and 

can be transferred between PC’s and Linux machines. 

 

This chapter describes the basics of a GDF file and the following utility programs: 

ASCI2GDF Converts an ASCII file to a GDF file. 

ASTRA2GDF Convert output from the ASTRA program to input for GPT. 

FISH2GDF Converts SUPERFISH output to a GDF file. 

FISHFILE Calculates “unrolled” scatter statistics or creates a GPT inputfile based on a Superfish file. 

GDF2A Writes the contents of a GDF file in ASCII to the terminal or a file. The file can be 

processed by an ASCII-based editor or imported into a spreadsheet program. 

GDFFLATTEN Removes one level from the hierarchical structure of a GDF file by combining the results. 

GDF2DXF Converts a GDF file to a point, line or vector drawing for further customization in a 2D or 

3D drawing package. 

GDF2GDF Combines several GDF files into a single file, optionally sorting the top-level group. 

GDF2HIS Calculates histograms from the contents of a GDF file. The output is in GDF format and 

can be plotted or converted to ASCII. 

GDF2SDDS Converts a GDF file to an SDDS file. 

GDF2VTP Convert a GDF file to ParaView format. 

GDFA Removes one level of hierarchy in a GDF file by performing user-specified calculations. 

The calculations typically produce averages and standard deviations of arrays, reducing 

the total amount of data considerably. 
GDFMGO Multi-objective genetic optimizer for GPT. 

GDFSELECT Select a specific or a range of groups from a GDF file. 

GDFSOLVE Multi-dimensional root finder and optimizer for GPT. 

GDFTRANS Transpose a GDF file to calculate trajectories as function of any parameter. 

MR Scan one or more parameters and concatenate the output in a single hierarchical file 

RAW2GDF Converts a raw binary datafile to a GDF file. 
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3.1 Basics 

A GDF file is a file containing binary data in a structured form. Basically, a GDF file consists of a general 

header followed by one or more data blocks. Every block has a name and contains data. Almost all native 

C/FORTRAN data types are supported. A simple GDF file is shown schematically in Figure 3-1. 

 

General header 

string "This is a string" 

number 12 

value 1234e56 

array {1.1,2.1,3.1,4.1,5.1} 

Figure 3-1: Simple GDF file 

Such a list of named blocks containing all kinds of data is impractical when the number of blocks becomes 

excessively large. Therefore the blocks are stored hierarchically. 

 

As an example consider the output of the particle tracer GPT. It needs to store particle coordinates at different 

simulation times. The particle coordinates are stored as separate arrays containing the coordinates of the 

individual particles. Because the particle coordinates are calculated at different times, the blocks are grouped 

together by time. A (simplified) GPT outputfile is shown schematically in Figure 3-2. 

 

General header 

time 1  

 x {x1,x2,x3,...} 

 y {y1,y2,y3,...} 

 z {z1,z2,z3,...} 

  

time 2  

 x {x1,x2,x3,...} 

 y {y1,y2,y3,...} 

 z {z1,z2,z3,...} 

Figure 3-2: GDF-output of the particle tracer GPT. 

Groups can be nested. Suppose, for example, that the coordinates of the particles are calculated at two times 

with a different value for the variable var. The GDF file can then be represented as shown in Figure 3-3. 

General header 

var 4  

 time 0  

  particle coordinates 

 time 1  

  particle coordinates 

var 5  

 time 0  

  particle coordinates 

 time 1  

  particle coordinates 

Figure 3-3: GDF-file containing nested groups. 

The MR program, see section 3.18, is used to create groups based on parameter scans, while the GDFA 

program, see section 3.12, is used to flatten the hierarchy by one level to ease interpretation of the results. 
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3.2 ASCI2GDF 

asci2gdf [-hHimv] [-c chars] [-s number] [-t topline] [-o outfile] [-a outfile] 

  infile [arr1 fac1] ... 

ASCII file to GDF converter. 

 

-h Give short help and quit. 

-H Give long help and quit. 

-i Ignore error lines and continue. 

-m Low memory mode reading all columns one at a time. 

-v Verbose mode. Progress and file statistics are shown. 

-c chars Ignore lines starting with any of chars. Default "#;". 

-s number Skip the first number of lines. 

-t columns Lists the names of all columns in a file that contains the data only. 

-o outfile Write output to outfile. 

-a outfile Append output to outfile. 

infile ASCII file to be converted. 

arrN facN Name of the array(s) as listed in infile, directly followed by their multiplication factor. 

 

ASCI2GDF converts a tabulated ASCII file to a GDF file. The resulting GDF file can be read by the field 

map elements and by all GPT utility programs capable of handling GDF files. ASCI2GDF writes all columns 

that are present in infile in the outfile, except for columns with a specified multiplication factor fac of 

0. Non-zero multiplication factors can be used to convert from non-SI units to SI units. When the original 

column is already in SI units, neither the name nor its multiplication factor need to be specified on the 

commandline. All lines starting with a hash mark # and all blank lines are ignored. To test if the resulting 

file is correct, the GDF2A program can be used. 

 

The ASCII file to be converted must have the following structure: 
1. # Comment section 

2. name1  name2  name3  name4 

3. data   data   data   data 

4. data   data   data   data 

5. …      …      …      … 

 

The following commandline converts the above-listed file sample.txt to GDF: 

asci2gdf -o sample.gdf sample.txt 

 

The conversion can be verified with GDF2A. Without the –o option the output appears on the screen: 

gdf2a sample.gdf 

 

The following commandline instructs ASCI2GDF to multiply array name2 by 100 and to omit name4 in the 

resulting GDF file. Because name1 and name3 are not specified, they are converted to the outputfile with 

multiplication factor 1. 

asci2gdf -o sample.gdf sample.txt name2 100 name4 0 

 

Files with a non-conforming header, or files without header at all, can in many cases still be imported using 

the –s and –t options. The –s option skips the specified number of lines, whereas the –t option can be used 

to list the names of all the columns. They can be used in combination to overwrite the column names without 

modifying the file itself. The following example imports the above file importing the columns as n1…n4 

instead of name1…name4. 

asci2gdf -o sample.gdf –s 1 –t "n1 n2 n3 n4" sample.txt 
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3.3 ASTRA2GDF 

astra2gdf [-hHv] [-o outfile] [-a outfile] [-s flag] infile 

Convert ASTRA output to GDF format. 

 

-h Give short help and quit. 

-H Give long help and quit. 

-v Verbose mode. Progress and file statistics are shown. 

-s flag Import particles with given status flag. 

-o outfile Write output to outfile. 

-a outfile Append output to outfile. 

infile ASTRA file to be converted. 

 

ASTRA2GDF converts the 10 column ascii ASTRA output to the binary GDF format. This GDF file can 

subsequently be read by setfile in a GPT inputfile to further track the particles. Only particles with ‘flag’is 

5 are written to the outputfile. All other particles are silently ignored. 

 

The following conversions take place: 

• The z-, pz- and time-coordinate of the first line are added to all other lines. 

• Time in [ns] is converted to time in [s]. 

• The momenta px,py and pz in [eV/s] are converted to dimensionless GBx,GBy,GBz where GBi=pi/mc. 

• The charge per macroparticle in [nC] is converted to dimensionless number of elementary particles. 

• The ASTRA particle ‘index’ is converted to two columns m [kg] and q [C] containing the mass and 

charge of the underlying elementary particles. This is implemented for index values 1=electrons, 

2=positrons, 3=protons, and 4=hydrogen ions. 

 

The following commandline converts the ASTRA outputfile file TestRun.0031.001 to GDF: 

astra2gdf -o TestRun.gdf TestRun.0031.001 

 

The file can subsequently be used as initial paticle distribution in a GPT inputfile using: 

setfile("beam","TestRun.gdf") ; 

settdist("beam","u",0,0) ; 

 

The reason for the last line is that ASTRA confusingly writes both time and position coordinates. Either one 

can be used, but care should be taken to not use both time and position coordinates simultaneously. If the 

output is used directly, setfile will assume an initial particle distribution with both time and position 

coordinates varying, and without warning the initial conditions will not correspond to the intended output of 

ASTRA. Because both GPT and ASTRA are time-domain tracking codes the most natural thing to do is 

having a varying position coordinate at a fixed time. We therefore use settdist to overwrite the time 

distribution to zero. 

 

Only the ascii output variant of ASTRA is currently supported. 
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3.4 FISH2GDF 

fish2gdf [-hHv] [-o outfile] [-a outfile] infile 

Converts SUPERFISH output to a GDF file. 

 

-h Give short help and quit 

-H Give long help and quit 

-v Verbose mode 

-o outfile Write output to outfile 

-a outfile Append output to outfile 

infile Name of the SF7 file to convert to GDF 

 

FISH2GDF is the first part of the interface between the SUPERFISH set of codes and GPT. Electrostatic, 

cylindrical symmetric magnetostatic field profiles and cylindrical symmetric rf cavities can be imported into 

GPT using FISH2GDF and the GPT elements listed in Table 3-A. The reference for the GPT field-map 

elements is given in section 4.7 and for a description of the SUPERFISH codes, we refer to [4]. 

Table 3-A: GPT Field map elements for various SUPERFISH solvers. 

Problem SuperFish Solvers GPT elements 

Electrostatic POISSON/PANDIRA map2D_E, map2Dr_E 

Magnetostatic POISSON/PANDIRA map2D_B 

RF Cavity FISH map25D_TM 

 

The different SUPERFISH programs output the results in different units. For example electric field strength 

is calculated in V/cm for electrostatic problems, while MV/m is used for cavity calculations. FISH2GDF 

converts all units to SI using the conversion factors listed in Table 3-B. 

Table 3-B: Conversion factors to SI. 

SF unit New (SI) unit Conversion factor Type 

Cm m 10–2 All 

G T 10–4 Magnetostatic 

G-cm Tm 10–6 Magnetostatic 

MV/m V/m 106 Cavity 

A/m T μ0=1.2566410–6 Cavity 

V/cm V/m 102 Electrostatic 

V Volt 1 Electrostatic 

 

Some columns in the SUPERFISH output contain characters in the upper 128 characters of the MS-Linedraw 

character set. FISH2GDF converts these names to regular ASCII using Table 3-C. 

Table 3-C: Conversion from SUPERFISH to ASCII names 

SF Name in 

MS-LineDraw 

GDF Name 

|E| |E| 

|B| |B| 

Bφ Bphi 

Aφ Aphi 

 

To be able to use FISH2GDF, first a problem-description file for SUPERFISH must be created. After running 

AUTOMESH and one of the SUPERFISH solvers, the results can be inspected using VGAPLOT. The 

calculated field profile must then be interpolated to a rectangular grid and converted to the GDF format using 

SF7 and FISH2GDF. The resulting GDF file can be imported into GPT using one of the corresponding field-

map elements. The following batch file automates the whole process: 

 
1. automesh infile 

2. poisson / pandira / fish 

3. vgaplot  (Optional to inspect the results) 

4. sfo   (Optional to normalize the fields) 

5. sf7 

6. fish2gdf  -o fieldmap.gdf outsf7 

7. gdf2a fieldmap.gdf (Optional to inspect the results) 
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where the file infile.in7 specifies the interpolation range for either cylindricaly symmetric (left option) 

or xy (right option) mode of operation. 
1. rect noscreen rect noscreen 

2. rmin zmin rmax zmax xmin ymin xmax ymax 

3. Nr Nz Nx Ny 

4. end end 

 

The following line in the GPT inputfile positions a magentostatic field map at z=1m. 

map2D_B("wcs","z",1,"fieldmap.gdf", "r","z", "Br","Bz", 1.0 ) ; 
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3.5 FISHFILE 

fishfile [-hHvr] [-o outfile] [-t tolerance] [-g GPTfile] [-y height] 

  [-z offset] fishfile [scatfile.gdf] 

Calculates ‘unrolled’ scatter statistics or creates a GPT inputfile based on a Superfish file. 

 

-o outfile Write output to a file named outfile containing the ‘unrolled’ scatter statistics and other 

useful information 

-h Give short help and quit. 

-H Give long help and quit. 

-v Verbose output. 

-t tolerance The maximum tolerance [m] between the Superfish geometry and the scattered data. This 

option is useful when the GPT inputfile doesn’t precisely match the superfish file. The 

default tolerance is 1 micron. 

-g GPTfile Writes a GPT scatter file based in the Superfish geometry as specified in fishfile. 

-y height Specifies the y-height [m] for a rectangular geometry. When a GPT inputfile is generated 

the boundary elements range from y=–height/2 to y=height/2. When not specified, the 

geometry is assumed to be cylindrical symmetric. 

-z offset Subtract the specified offset [m] from the data before starting the analysis. 

fishfile Superfish file describing the cylindrical symmetric geometry. The first region is assumed 

to be the boundary and is ignored. 

scatfile.gdf GPT outputfile with scatter statistics to be ‘unrolled’. 

 

The arrays written in outfile.gdf are written per plate number nn. They are: 

scat_nnx x-coordinate of primary particle [m]. 

scat_nny y-coordinate of primary particle [m]. 

scat_nnz z-coordinate of primary particle [m]. 

scat_nnE Energy of primary particle minus the energy of all scattered particles [J]. 

scat_nnQ Charge of primary particle minus the charge of all scattered particles [Q]. 

scat_nnd Unrolled position [m]. 
 

For cylindrical symmetric geometries, the following arrays are also written: 

scat_nnphi Angle in xy-plane [rad], measured counterclockwise from the x-axis. 

scat_nnr Distance to z-axis [m]. 

scat_nnEor Identical to scat_nnE divided by scat_nnr. 

scat_nnQor Identical to scat_nnQ divided by scat_nnr. 

scat_nnrphi Identical to scat_nnr times scat_nnphi. 

 

Fishfile is the main program to analyze the results of a collector simulation using GPT. The raw output of 

GPT consists of the 3D collision point and the charge and energy of both the primary and the scatted particles, 

as described in section 1.11.2. Interpreting these results is time-consuming and difficult. The Fishfile 

program automates most analysis parts using the concept of ‘unrolled’ data. Furthermore, Fishfile is capable 

of generating a GPT file containing the boundary elements from a Superfish inputfile. 

 

For cylindrical-symmetric geometries, the x and y coordinates in the Superfish file are converted to r and z 

respectively. When the –y option is used, the geometry is assumed to be cartesian and the x and y coordinates 

are converted to z and x respectively. In both cases, the units are converted from [cm] to [m]. 
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3.6 GDF2A 

gdf2a [-hHv] [-w width] [-o outfile] infile [arrays...] 

Writes a GDF-file in ASCII form to the terminal or to a file. 

 

-h Give short help and quit. 

-H Give long help and quit. 

-v Verbose mode. Instructs the program to write additional information, such as data type. 

-w width Specify the width (in characters) of each field. Default 10. 

-o outfile Write output to a file named outfile. If not specified, output is written to stdout. 

infile Filename of the GDF file to convert to ASCII. If not specified, the program reads the GDF 

file from stdin unless arrays are listed. In the latter case, a dash - must be specified to 

read from from stdin. 

arrays The names of the arrays to be written to outfile. If not specified, all arrays are written. 

 

Note: To reduce the size of the ouputfile, the default number of digits written is set to single precision. The 

–w 16 option can be used to instruct GDF2A to write output in double precision. 

 

Because GDF2A can read from stdin and write to stdout, it can be piped after any command that writes 

a GDF file to stdout. 
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3.7 GDF2DXF 

gdf2dxf [-hHvlp] [–f scaling] [-o outfile] inputfile x y [z] [fx fy [fz]] 

Converts a GDF file to a point, line or vector drawing for further use in a 2D or 3D drawing package. 

 

-h Give short help and quit 

-H Give long help and quit 

-v Verbose mode 

-l Output lineplots 

-p Output scatterplots (default) 

-o outfile Write output to outfile 

infile Name of the file to perform the calculations on. When GDF2DXF has to read from stdin, 

a dash (-) must be specified explicitly for infile. 

x The name of the array specifying the x-coordinates. 

y The name of the array specifying the y-coordinates. 

z Optional name of the array specifying the z-coordinates. If this array is specified, the 

drawing package must be able to handle 3D data. 

 

For vector plots, the following additional options are available: 

-f scaling Vector plot only: Specify the scaling for the vector length. 

fx Optional name of the array specifying the x-direction for vector plots. 

fy Optional name of the array specifying the y-direction for vector plots. 

fz Optional name of the array specifying the z-direction for vector plots. 

 

GDF2DXF can be used to export GDF data to the DXF format. The latter format is recognized by almost all 

drawing packages and DTP programs currently available. It allows you for example to plot simulated particle 

trajectories through a schematic drawing of your set-up. For example to import the zx-plane of a GDF file as 

a line drawing into AutoCAD, the following commands can be specified: 

GDF2DXF -l -o outfile.dxf infile.gdf z x 

Start AutoCAD 

dxfin outfile.dxf 
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3.8 GDF2GDF 

gdf2gdf [-hHvis] [-t group] [-o outfile] [-a outfile] 

  infile1 [value1] [infile2 [value2]] ... 

Combines several GDF files into a single file, optionally sorting the top-level group. 

 

-h Give short help and quit. 

-H Give long help and quit. 

-v Verbose mode. Progress and file statistics are shown. 

-i Ignore recoverable errors and continue. 

-s Sort top-level group. 

-t group Top-level group. 

-o outfile Write output to outfile. 

-a outfile Append output to outfile. 

infile[s] Names of all the GDF files to be concatenated 

value[s] Optional values for the top-level group. 

 

GDF2GDF combines several GDF files into a single large one. If file1.gdf, file2.gdf and file3.gdf 

have the exact same hierarchy, they can be combined into all.gdf with the following commandline: 

gdf2gdf –o all.gdf file1.gdf file2.gdf file3.gdf. 

 

Things get a little more complicated if the files to be combined do not have the same hierarchy. A typical 

scenario for this is when a file produced by MR needs to be combined with the result of a single additional 

run. Suppose that the MR file var135.gdf contains the simulation results for the variable var being 1, 3 

and 5 and that the single run, single4.gdf, is created for var equal 4. These files can be combined, but 

only if the top-level group is specified with the –t option: 

gdf2gdf –t var –o all.gdf var135.gdf single4.gdf 

 

GDF2GDF will try to extract the value of var from single4.gdf to rearrange the hierarchy, but this only 

works if the file has been produced by MR. If the file has been produced by GPT, e.g. 

gpt -o single4.gdf inputfile.in var=4, this will not work. In that case, the value for the top-level 

group must be given directly after the filename on the commandline as follows: 

gdf2gdf –t var –o all.gdf var135.gdf single4.gdf 4 

 

Even this may not produce the desired result, as the ordering for var will become 1, 3, 5, 4. If sorted output 

is desired, please use the –s option to sort the top-level domain ascending order. 

gdf2gdf -s –t var –o all.gdf var135.gdf single4.gdf 4 

 

Technical note: When the inputfiles are huge, GDF2GDF first locks them, and subsequently reads them all 

storing only the hierarchy. The actual data is not stored but recorded as 64-bit file-offsets into the locked 

inputfiles. The next step builds the structure of the outputfile in memory by concatenating the hierarchy of 

the inputfiles. If needed, one level of hierarchy is added for single runs, and optionally the top-level domain 

is sorted. As a last step, the outputfile is written as one set of consecutive write operations, where each time 

the data is fetched from the appropriate inputfile at the stored location. 
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3.9 GDF2HIS 

gdf2his [-hHvbls] [-n weight] [-o outfile] infile array width [offset] 

Calculates histograms of the specified array. For every particle in this array GDF2HIS determines which 

interval of the histogram it belongs to and raises the count for that bar by one. 

 

-h Give short help and quit. 

-H Give long help and quit. 

-v  Verbose mode. Displays the number of bars in the histogram for every group in the 

infile. 

-b  Write the complete histogram. When this option is selected, the output can be plotted as a 

lineplot outlining the individual bars of the histogram. 

-l Write the outline of the histogram. When plotted as a lineplot only the outline of the 

histogram is shown, not the individual bars. 

-s Divide the height of the histograms by the specified width. 

-n weight Count all contributions as specified in the weight array. For GPT simulations, nmacro 

can be used to count the number of elementary particles. 

-o outfile Write output to a file named outfile. If not specified the output is written to stdout. 

infile Name of the file containing the array to calculate histograms of. When GDF2HIS has to 

read from stdin, a dash (-) must be specified explicitly for infile. 

array Name of the array used to calculate the histogram. Typical examples are z and G. 

width Width of an interval within the histogram. 

offset The ‘left-right’ offset of the bars. If not specified, 0 is assumed, indicating one bar to the 

left side of zero and one to the right. 

 

When GDF2HIS is run, a histogram is calculated for every group in the GDF file containing the specified 
array. In these groups, the following two arrays are appended: 

array_his: Array of the positions of the centers of the intervals. 

array_cnt: Array of the number of datapoints within one interval. 

The string array is replaced by the name of the array specified on the commandline. The range of the 

histograms is obtained automatically from the minimum and maximum values of the data. 

 

When the -b option is selected on the commandline, the arrays array_hisbar and array_cntbar are 

written in the ouputfile as well. When these two arrays are plotted as a xy-lineplot, the bars of the histogram 

are drawn. 

 

When the -l option is selected, the arrays array_hisline and array_cntline are also written in the 

ouputfile. When these two arrays are plotted as a xy-lineplot, the outline of the histogram is drawn. 

 

Example: 

Suppose infile.gdf is a file containing all particle coordinates at different times. To calculate a histogram 

of the energy distribution in steps of 0.01, the following command can be specified: 

gdf2his -b -o outfile.gdf infile.gdf G 0.01 

This produces the file outfile.gdf where the arrays G_cntbar and G_hisbar are appended for every 

GDF group containing the particles. The outputfile should be plotted using a line plot, Figure 3-4. 

 
Figure 3-4: Example of GDF2HIS. The gamma’s of the particles of a bunch are converted to a histogram to show the 

energy distribution. 
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3.10 GDF2SDDS 

gdf2sdds [-hHva] [-o outfile] infile [arrays ...] 

Converts a GDF file to the SDDS format. 

 

-h Give short help and quit. 

-H Give long help and quit. 

-v Verbose mode, instructs the program to write additional information during processing. 

-a Writes an ASCII SDDS file. When not specified, a binary file is written. Before use, please 

see the note below about precision. 

-o outfile Write output to a file named outfile. If not specified, output is written to stdout. 

infile Filename of the GDF file to convert to ASCII. If not specified, the program reads the GDF 

file from stdin. To read from stdin when arrays are specified, a dash (‘-’) must be 

specified. 

arrays The names of the arrays/parameters to convert. If not specified, all GDF information is 

converted to the SDDS format. 

 

This program converts a GDF file to a file in the Self Describing Data Set (SDDS) format [5]. The SDDS 

format is supported by a toolkit consisting of a number of powerful and efficient programs for analyzing, 

manipulating and plotting SDDS data. The SDDS toolkit can be downloaded free of charge from Argonne 

National Laboratory. 

 

The GDF2SDDS program writes GDF arrays as column data in SDDS format. Single values in GDF are 

converted to parameters in SDDS. When one or more arrays are specified, only the selected arrays are 

written to SDDS. GDF group names such as time, position and the values of one or more scanned parameters 

are always written to SDDS. As dictated by the SDDS column format, all specified arrays must have equal 

length. 

 

To convert the x-, y- and z-coordinates in the GDF file test.gdf to the SDDS file test.sdds, the 

following command can be used: 

gdf2sdds –o test.sdds test.gdf x y z 

 

Because GDF2SDDS writes to stdout when no output filename is given, it can be piped before any 

command that reads an SDDS file from stdin. This allows efficient use of the –pipe=in option of many 

of the SDDS toolkit programs, as demonstrated in the following example: 

gdf2sdds test.gdf | sddsquery –pipe=in 

 

Note: The –a option writes an ASCII SDDS file. To reduce the size of the outputfile, double-precision 

floating-point numbers are written with only 8 digits precision. Because this causes loss of precision, it is 

recommended not to use this option except for diagnostic purposes. 
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3.11 GDF2VTP 

gdf2vtp [-hHv] [-m] [-i index] [-o outfile] infile [arrays...]  

Converts a GDF-file to ParaView format 

 

-h Give short help and quit. 

-H Give long help and quit. 

-v Verbose mode. Instructs the program to write additional information during every stage of 

the conversion process. 

-m Force multi-page outfile.pvd file to be written, also for single-group input. 

-i index Group the files in outfile.pvd by specified index. Default time. 

-o outfile Write output to a file named outfile.vtr for rectilinear grids, outfile.vtp for point 

data, and outfile.pvd for group information. 

infile Filename of the GDF-file to convert to ParaView format. A dash ("-") can be specified to 

read from stdin. 

arrays The names of the arrays to be written to outfile. If not specified, all arrays are written. 

 

This program converts a multi-group GDF-file to a sequence of ParaView files. When infile contains a 

GPT phase-phase distribution, the output will be point-data containing the particle phase-space coordinates. 

When the input is an axis-aligned grid containing field-information, the output will be a rectilinear grid that 

can be sliced in ParaView. The program automatically distinguishes between these different modes of 

operation, and it automatically assigns the correct extension to outfile: .vtp for point-data and .vtr for 

rectilinear (field) grids. When the input has multiple GDF-groups, the output is a sequence of files numbered 

from 1 to N and a separate collection file named outfile.pvd is written that contains the pointers to the 

individual files. 

 

Because ParaView format is meant for 3D visualization, xyz-data must be present. It is currently not possible 

to convert for example the output of GDFA. Default all arrays present in the GDF file are converted to 

ParaView format. This can be limited using the arrays option by specifying the list of arrays that need to 

be stored. 

 

Many GDF-files contain separate groups containing for example multiple time outputs or as a result of a 

parameter scan. Such multi-group files are converted to a sequence of files named outfile.N.vtp for 

point-data and outfile.N.vtr for rectilinear grids. In addition, a separate outfile.pvd file is written 

referencing these individual files and providing collection information to ParaView. Although the numbered 

files can be opened by ParaView, the typical procedure is to open the .pvd file instead because this allows 

you to conveniently cycle back and forth through the multi-group results. 

 

In a workflow where sometimes single-group and sometimes multi-group output is generated, we strongly 

advice the use of the -m option and always work with the .pvd file. This is because when switching from 

multi-group to single-group output, the old numbered files will not be deleted from disk. Consequently, it is 

very easy to mistakenly open a file that was produced by a previous or maybe even older simulation. This 

issue is solved by working with the .pvd since it will always contain the correct collection, where sometimes 

this happens to be a collection of 1. In terms of performance there is no penalty for working with the 

collection since .pvd files are tiny because they do not contain any simulation data. 

 

Vector data in the GDF file is automatically converted to a single array. For example, the magnetic field 

arrays named fBx, fBy and fBz in the GDF inputfile will be stored as a single vector array named fB. If 

individual arrays are specified using the array specification, and if this list does not list all vector 

components, the conversion to vector form does not take place. 

 

One remaining issue converting multi-group files is that the .pvd collection file format only supports 

“timestep” as running variable. This potentially conflicts with the GDF format where it is possible to have 

scans with some other variable changing from group to group. For a sequence of time-outputs, the timestep 

in the .pvd file is set to the GPT simulation time. In all other cases, timestep in the .vtp file is simply 

set to an integer matching the number of the referenced outputfile instead. The latter behavior can be 

overwritten using the -i index option, where you can for example specify that the output of a scan over 

phase should be converted such that phase in GPT becomes timestep in ParaView. Running with the -v 

option gives hints and suggestions in confusing cases. 

 



96 GDF 

 

Group information is also converted to ParaView format in the form of so-called <FieldData>. This 

information is visible in ParaView alongside the <PointData>, and it can be shown in Render View using 

the AnnotaAttributeData filter. 

 

A few examples of how to use GDF2VTP are listed in Table 3-D shown below. 

Table 3-D: Example use of GDF2VTP. 

Command: Comments: 
gpt -o outfile.gdf infile.in 

gdf2vtp -o outfile.vtp outfile.gdf 

 

where infile.in contains: 
tout(1e-9); 

Writes outfile.vtp containing the phase-space 

coordinates of all particles at t=10–9. 

Idem, where infile.in contains: 
tout(0,10e-9,1e-9); 

Writes outfile.1.vtp…outfile.11.vtp containing 

phase-space coordinates of all particles at the specified 

times. Also writes the collection file outfile.pvd where 

timestep lists the correct simulation time. 

Idem, where infile.in contains: 
screen(10e-3,20e-3,1e-3); 

Writes outfile.1.vtp…outfile.11.vtp containing 

phase-space coordinates of all particles at the specified 

positions. Also writes the collection file outfile.pvd 

where timestep just runs from 1 to 11. 
gpt -o outfile.gdf infile.in 

gdf2vtp -i position -o outfile.vtp 

  outfile.gdf 

 

where infile.in contains: 
screen(10e-3,20e-3,1e-3); 

Schizophrenic mode where position in GPT is shown as 

time in Paraview. 

gpt -o outfile.gdf infile.in 

gdf2vtp -o outfile.vtp outfile.gdf 

 

where infile.in contains: 
setstartxyzgrid(...); 

tout(0); 

Writes outfile.vtr containing a rectilinear grid of 

field-data. The position and spacing where the fields are 

sampled is given by the parameters of 
setstartxyzgrid(“set”,Lx,dx,Ly,dy,Lz,dz) 

where L and d specify the length and spacing respectively 

in the xyz-directions. Not all dimension need to have 

thickness, and for example a slice in the zx-plane can be 

specified bysetting Ly=dy=0. 

Idem, where infile.in contains: 
q=0.0; 

setstartxyzgrid(“set”,...); 

settransform(“wcs”,”ox,oy,oz”,1,0,0, 

0,1,0, “set) ; 

tout(0,10e-9,1e-9); 

Here we position stationary particles with zero charge so 

that the observer grid itself is not being tracked during the 

multiple-time output. Furthermore, the field-data is 

centered around the point ox,oy,oz. 
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3.12 GDFA 

gdfa [-hHv] [-o outfile] [-a outfile] infile group_by prog ... 

Writes a GDF file containing the results of performed calculations. 

 

-h Give short help and quit. 

-H Give long help and quit. 

-v Verbose mode. 

-s Silent mode. Don’t display informative messages about unsuccessful progs. 

-o outfile Write output to a file named outfile. If not specified, the output is written to stdout. 

-a outfile Append output to a file named outfile. This option is for internal use only. 

infile Name of the file to perform the calculations on. When GDFA has to read from stdin, a 

dash (-) must be specified explicitly for infile. 

group_by The name of the variable used to group the data. Use time for snapshot/tout output 

and position for screen output. When MR is used, you can also use the name of the 

scanned parameter. 

prog ... The name(s) of one or more programs to run on the infile. See the following sections 

for a complete overview. The GPT programmer’s reference describes the procedure how 

to create custom GDFA programs. 

 

The following GDFA programs are currently available: 

3.12.1 Averages ..................................................................................................................................... 98 
3.12.2 Standard deviations .................................................................................................................... 98 
3.12.3 RMS Emittance routines ............................................................................................................ 99 
3.12.4 90% and 100% Emittance routines .......................................................................................... 100 
3.12.5 Courant-Snyder parameters ...................................................................................................... 100 
3.12.6 Robust estimates: Median and Range ...................................................................................... 101 
3.12.7 Miscellaneous routines ............................................................................................................. 102 
3.12.8 Scatter statistics ........................................................................................................................ 102 
3.12.9 Obsolete functions .................................................................................................................... 102 
 

To explain GDFA we continue with the example of Figure 3-3. For convenience, we now represent this GDF 

file in the form shown in Figure 3-5. 

 

 time=0 time=1 

var=4 Particle coordinates Particle coordinates 

var=5 Particle coordinates Particle coordinates 

Figure 3-5: GDFA representation of a GDF-file containing two nested groups. 

Firstly, GDFA runs the specified progs on the data of the infile. A prog is a function of the data and 

returns a scalar. stdz for example returns the standard deviation of the array of the z-coordinates. After the 

first pass, the data can be represented as shown in Figure 3-6. For a complete list of the progs currently 

available we refer to the following sections. 

 

 time=0 time=1 

var=4 stdz stdz 

var=5 stdz stdz 

Figure 3-6: GDFA representation of a GDF-file containing two nested groups. 

Secondly, GDFA eliminates the group_by group by making arrays of the results returned by the progs. 

Continuing with our example, we have two possible group_by variables: time and var. The results when 

grouped by time and var are both shown in Figure 3-7. 

 

When time is chosen, the var hierarchy is maintained and the result is shown schematically in Figure 3-7. 

When var is chosen, the time hierarchy is maintained and the result is shown schematically in Figure 3-7. 

 

General header  General header 

var 4   time 0  

 stdz {.,.}   stdz {.,.} 

 time {0,1}   var {4,5} 
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var 5   time 1  

 stdz {.,.}   stdz {.,.} 

 time {0,1}   var {4,5} 

Figure 3-7: Grouped by time (left) and grouped by var (right). 

The group_by variable itself is always included as an array. If more than one prog is specified, GDFA 

makes separate arrays for the results of all the progs. If one prog fails to calculate its result, the results of 

all the other progs are ignored too. 

 

Custom GDFA programs can be created similar to custom GPT elements. The procedure is described in the 

separate GPT programmer’s reference. 

 

We would like to thank Dr A. Büchner for providing us with the initial versions of the emittance and Courant-

Snyder routines and allowing us to share them with other GPT users. 

3.12.1 Averages 

The average is a good estimate for the center of a distribution without outliers. For an alternative robust 

estimate insensitive to outliers, please see Median in section 3.12.6. All averages are weighted by the number 

of elementary particles each macro-particle represents. The following GDFA routines are implemented: 

 

Name Equation Description 

avgx �̅� =
∑𝑛𝑖𝑥𝑖

∑𝑛𝑖
  Average x-coordinate [m]. 

avgy �̅� Average y-coordinate [m]. 
avgz 𝑧̅ Average z-coordinate [m]. 

avgr ∑𝑛𝑖 √(𝑥𝑖 − �̅�)2 + (𝑦𝑖 − �̅�)2 ∑𝑛𝑖⁄   Average r-coordinate [m]. 

avgBx 𝛽𝑥̅̅ ̅ Average 𝛽𝑥-coordinate 

avgBy 𝛽𝑦̅̅ ̅ Average 𝛽𝑦-coordinate 

avgBz 𝛽𝑧̅̅ ̅ Average 𝛽𝑧-coordinate 
avgG �̅� Average 𝛾 
avgt 𝑡̅ Average time [s] useful for position output. 
avgfEx 𝐸𝑥̅̅ ̅  Average Ex-field [V/m]. 
avgfEy 𝐸𝑦̅̅ ̅  Average Ey-field [V/m]. 

avgfEz 𝐸𝑧̅̅ ̅  Average Ez-field [V/m]. 
avgfBx 𝐵𝑥̅̅ ̅  Average Bx-field [T]. 

avgfBy 𝐵𝑦̅̅ ̅  Average By-field [T]. 

avgfBz 𝐵𝑧̅̅ ̅  Average Bz-field [T]. 

avgp 
𝛽0

(1−𝛽0
2)
1/2

𝑚𝑐

|𝑒|
 with 𝛽0 =

𝛾𝛽̅̅ ̅̅

�̅�
 Mean beam momentum [eV-s/m]. 

3.12.2 Standard deviations 

The standard devation, also known as rms value, is a good estimate for the width of a distribution without 

outliers. For an alternative robust estimate insensitive to outliers, please see the 50% ranges in section 3.12.6. 

All standard deviations are weighted by the number of elementary particles each macro-particle represents. 

The following GDFA routines are implemented: 

 

Name Equation Description 

stdx std(x)=√
∑𝑛𝑖(𝑥𝑖−�̅�)

2

∑𝑛𝑖
 Standard x-deviation [m]. 

stdy std(y) Standard y-deviation [m]. 
stdz std(z) Standard z-deviation [m]. 
stdBx std(𝛽𝑥) Standard 𝛽𝑥-deviation 
stdBy std(𝛽𝑦) Standard 𝛽𝑦-deviation 

stdBz std(𝛽𝑧) Standard 𝛽𝑧-deviation 
stdG std(𝛾) Standard 𝛾-deviation 
stdt std(t) Standard time deviation [s]. 
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3.12.3 RMS Emittance routines 

In our opinion, the normalized transverse emittance can best be calculated as the area in position and 

transverse momentum coordinates: x and 𝛾𝛽𝑥 . However, to remain compatible with other codes, the 

emittance in the following GDFA programs is calculated in velocity space, x and 𝛽𝑥 . This value is multiplied 

by the average of the Lorentz factor 𝛾 for normalization. Without energy spread, these results are identical. 

However, when there is a relatively large energy spread, or when the phase space is far from elliptical, the 

results can be significantly different. See the GPT programmer’s reference to adapt the routines to your own 

taste. 

 

In all routines, the emittance is defined as the phase-space area divided by π. Therefore, the units of emittance 

are often presented as [π mm-mrad]. The factor π in the dimension is included to assure the reader that π has 

been factored out of the phase-space area. 

 

The SI units for transverse and longitudinal emittance are [m-rad] and [J-s] respectively. The transverse 

emittance routines nemixrms, nemiyrms, nemirrms, nemix90, nemiy90, nemix100 and memiy100 

calculate their results in [m-rad]. The longitudinal emittance is calculated in [eV-s] by nemizrms, nemiz90 

and nemiz100 for convenience. To convert nemixrms from its SI result to [π mm-mrad] one should 

multiply by 1,000,000: One time by 1000 to convert from [m] to [mm] and one time by 1000 to convert from 

[rad] to [mrad]. 

 

To calculate the normalized RMS-emittances, first xc, yc, x’c and y’c are calculated by GDFA using: 

𝑥𝑐  = 𝑥 − �̅�  𝑦𝑐  = 𝑦 − �̅�

𝑥′𝑐 = 𝛽𝑥 − 𝛽𝑥̅̅ ̅  𝑦′
𝑐
= 𝛽𝑦 − 𝛽𝑦̅̅ ̅

[3. 1] 

The quantities x’ and y’ are directly multiplied by 𝛾 to provide correct normalization for beams with high 

energy spread and high divergence angles. All parameters are centered around zero. 

 

The RMS emittance for the x-x’ and y-y’ phase spaces are defined by: 

nemixrms = �̅�√𝑥𝑐2̅̅ ̅ ∙ 𝑥′𝑐
2̅̅ ̅̅ − 𝑥𝑐𝑥′𝑐̅̅ ̅̅ ̅̅ ̅2

nemiyrms = �̅�√𝑦𝑐2̅̅ ̅ ∙ 𝑦′𝑐
2̅̅ ̅̅ − 𝑦𝑐𝑦′𝑐

̅̅ ̅̅ ̅̅ ̅2
[3. 2] 

 

When a cylindrical symmetric beam rotates around the z-axis, such as in a solenoidial field, strong x-y’ and 

x’-y correlations result in very large values for the rms x- and y-emittances. This does not signal phase-space 

dilution or loss of beam quality in any way. It is just an artifact of the numerical method used to calculate 

the emittance. The emittance decreases again when the solenoidal field vanishes. This effect can be reduced 

by calculating the r-emittance, using the hypervolume in x-x’-y-y’ subspace, to calculate the emittance using: 

nemirrms = �̅�√휀𝑥,𝑟𝑚𝑠 ∙ 휀𝑦,𝑟𝑚𝑠 − |𝑥𝑐𝑦𝑐̅̅ ̅̅ ̅̅ ∙ 𝑥′𝑐𝑦′𝑐
̅̅ ̅̅ ̅̅ ̅̅ − 𝑥𝑐𝑦′𝑐

̅̅ ̅̅ ̅̅ ̅ ∙ 𝑥′𝑐𝑦𝑐̅̅ ̅̅ ̅̅ ̅| [3. 3] 

 

The units of nemixrms, nemiyrms and nemirrms are emittances in [m-rad]. However, the values are 

typically multiplied by 1,000,000 and quoted as [π mm-mrad]. Also please note that the results will be a 

factor of 4 less than the results produced by the now-obsolete nemix and nemiy programs. 

 

The longitudinal emittance is calculated by: 

𝑡𝑐 = 𝑡 − 𝑡̅ 
𝛾𝑐 = 𝛾 − �̅� [3. 4] 

nemizrms =
𝑚𝑐2

|𝑞𝑒|
√𝑡𝑐

2̅ ∙ 𝛾𝑐
2̅̅ ̅− 𝑡𝑐𝛾𝑐̅̅ ̅̅ ̅̅ 2 

The factor mc2/qe is used to convert the units to [eV-s]. 

 

When time output is used, all particle coordinates have the same time coordinate. In this case, the time 

coordinate is obtained by extrapolating the centered position using 𝑡𝑖 = −(𝑧𝑖 − 𝑧̅) 𝑐𝛽𝑧,𝑖⁄ . 
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3.12.4 90% and 100% Emittance routines 

As an alternative to the RMS emittance, one can define ‘per-particle’ emittance values: Every particle is at 

the boundary of an ellipse with the same orientation and shape as the ‘average ellipse’, but with a different 

size. The area/π of this ellipse is the emittance of the particle. 

 

The calculations are estimates, based on the overall ellipse parameters calculated by the Courant-Snyder 

parameters. As such, they do not necessarily produce the smallest possible ellipse enclosing 90% or 100% 

of the particles. When distributions are far from elliptical in phase space, these routines can not be used. 

 

First the following parameters are calculated using all particles: 

𝑎𝑥 = −𝑥𝑐𝑥′𝑐̅̅ ̅̅ ̅̅ ̅ 𝑏𝑥 = 𝑥𝑐2̅̅ ̅ 𝑐𝑥 = 𝑥′𝑐2̅̅ ̅̅ 𝑒𝑥 = √𝑏𝑥𝑐𝑥 − 𝑎𝑥2

𝑎𝑦 = −𝑦𝑐𝑦′𝑐̅̅ ̅̅ ̅̅ ̅ 𝑏𝑦 = 𝑦𝑐2̅̅ ̅ 𝑐𝑦 = 𝑦′𝑐2̅̅ ̅̅ 𝑒𝑦 = √𝑏𝑦𝑐𝑦 − 𝑎𝑦2

𝑎𝑧 = −𝑡𝑐𝛾𝑐̅̅ ̅̅ ̅ 𝑏𝑧 = 𝑡𝑐2̅ 𝑐𝑧 = 𝛾𝑐2̅̅ ̅ 𝑒𝑧 = √𝑏𝑧𝑐𝑧 − 𝑎𝑧2

[3. 5] 

 

The a, b, c parameters are very similar to the Courant-Snyder parameters α, β, γ. The ‘per-particle’ emittance 

is then given by: 

휀𝑥,𝑖 = (𝑐𝑥(𝑥𝑖 − �̅�)
2 + 2 𝑎𝑥(𝑥𝑖 − �̅�)(𝑥

′
𝑖 − 𝑥 ′̅) + 𝑏𝑥(𝑥

′
𝑖 − 𝑥 ′̅)

2) 𝑒𝑥⁄  

휀𝑦,𝑖 = (𝑐𝑦(𝑦𝑖 − �̅�)
2 + 2 𝑎𝑦(𝑦𝑖 − �̅�)(𝑦

′
𝑖
− 𝑦 ′̅) + 𝑏𝑦(𝑦

′
𝑖
− 𝑦 ′̅)

2
) 𝑒𝑥⁄ [3. 6] 

휀𝑧,𝑖 = (𝑐𝑧(𝑡𝑖 − 𝑡̅)
2 + 2 𝑎𝑧(𝑡𝑖 − 𝑡̅)(𝛾𝑖 − �̅�) + 𝑏𝑧(𝛾𝑖 − �̅�)

2)
𝑚𝑐2

|𝑞𝑒|𝑒𝑧
 

 

The nemi*100 programs calculate the emittance of the worst offender, equal to the area/π of the ellipse 

enclosing all particles: 

nemix100 = max(휀
𝑥
) 

nemiy100 = max(휀𝑦) [3. 7] 
nemiz100 = max(휀

𝑧
) 

 

The nemi*90 programs calculate the area/π of the smallest ellipse enclosing 90% of the particles. It provides 

more stable results than the 100% values, but it should be noted that all particles are used in the determination 

of the phase-space ellipse dimensions and orientation. 

nemix90 = 휀𝑥,𝑖  | 90% of particles 𝑗 have 휀𝑥,𝑗 ≤ 휀𝑥,𝑖 
nemiy90 = 휀𝑦,𝑖  | 90% of particles 𝑗 have 휀𝑦,𝑗 ≤ 휀𝑦,𝑖 [3. 8] 
nemiz90 = 휀𝑧,𝑖  | 90% of particles 𝑗 have 휀𝑧,𝑗 ≤ 휀𝑧,𝑖 

3.12.5 Courant-Snyder parameters 

The CSalpha*, CSbeta* and CSgamma* routines calculate the Courant-Snyder parameters named α, β and 

γ. All Courant-Snyder parameters satisfy the equation: 𝛾𝛽 − 𝛼2 = 1. 

 

To avoid confusion, the symbols 𝛽 and 𝛾 are always used for the normalized velocity and the Lorentz factor 

respectively when not specified otherwise. To obtain the Courant-Snyder parameters, first the following 

quantities are calculated: 

𝑥𝑐 = 𝑥 − �̅� 𝑥′𝑐 = 𝛽𝑥 − 𝛽𝑥̅̅ ̅ 휀x = √𝑥𝑐
2̅̅ ̅ ∙ 𝑥′𝑐

2̅̅ ̅̅ − 𝑥𝑐𝑥𝑐
′̅̅ ̅̅ ̅̅ 2

𝑦𝑐 = 𝑦 − �̅� 𝑦′
𝑐
= 𝛽𝑦 − 𝛽𝑦̅̅ ̅ 휀y = √𝑦𝑐2̅̅ ̅ ∙ 𝑦′𝑐

2̅̅ ̅̅ − 𝑦𝑐𝑦𝑐′̅̅ ̅̅ ̅̅ 2

𝑡𝑐  = 𝑡 − 𝑡̅  𝛾𝑐  = 𝛾 − �̅� 휀z = √𝑡𝑐2̅ ∙ 𝛾𝑐2̅̅ ̅ − 𝑡𝑐𝛾𝑐̅̅ ̅̅ ̅2

[3. 9] 

Please note that the emittance values are not normalized. Furthermore, the quantities 𝛽𝑥  and 𝛽𝑦  are not 

divided by 𝛽𝑧 , similar to the nemixrms and nemiyrms equations. 

 

The Courant-Snyder parameters are then calculated by: 
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CSalphax = −𝑥𝑐𝑥𝑐′̅̅ ̅̅ ̅̅ 휀x⁄ CSbetax = 𝛽𝑧̅̅ ̅ ∙ 𝑥𝑐2̅̅ ̅ 휀x⁄ CSgammax = 𝑥′𝑐
2̅̅ ̅̅ (휀x ∙ 𝛽𝑧̅̅ ̅)⁄

CSalphay = −𝑦𝑐𝑦𝑐′̅̅ ̅̅ ̅̅ 휀y⁄ CSbetay = 𝛽𝑧̅̅ ̅ ∙ 𝑦𝑐2̅̅ ̅ 휀y⁄ CSgammay = 𝑦′
𝑐
2̅̅ ̅̅ (휀y ∙ 𝛽𝑧̅̅ ̅)⁄

CSalphaz = −𝑡𝑐𝛾𝑐̅̅ ̅̅ ̅ 휀z⁄ CSbetaz =
|𝑞𝑒|

𝑚𝑐2
∙
𝑡𝑐2̅

휀z
CSgammaz =

𝑚𝑐2

|𝑞𝑒|
∙
𝛾𝑐2̅̅ ̅

휀z

[3. 10] 

The average of 𝛽𝑧  is a correction factor applied to remain consistent with other codes. The units of CSalpha 

are dimensionless. The units of CSbetax and CSbetay are [m/rad] and the units of CSgammax and 

CSgammay are [rad/m]. The units of CSbetaz and CSgammaz are [s/eV] and [eV/s] respectively. 

 

3.12.6 Robust estimates: Median and Range 

Data analysis based on averages, standard deviations or rms emittances is very sensitive to outliers. This is 

typically of little concern when analyzing GPT results obtained with a mesh-based space-charge model, but 

it can be disastrous with point-to-point Coulomb interactions. The reason for this is that these point-to-point 

interactions cause non-Gaussian heating, leading to a Holtsmark distribution in phase-space. This distribution 

has incredibly long tails with divergent rms values. Consequently, calculating the average value of a limited 

number of sample particles gives an extremely inaccurate estimate for the center of the distribution. Using 

the standard deviation as a measure for the width of the distribution doesn’t work either, and even increasing 

the amount of particles to be tracked in the hope to improve things doesn’t help. Clearly it is not wise to 

calculate averages, or any statistic that is sensitive to outliers, when outliers are expected to be present. In 

such cases, use robust estimates such as the median instead of the average, and for example a 50% range 

instead of the standard deviation. Just as with most actual experiments, these quantities essentially ignore a 

few outliers, regardless of where these outliers happen to be. 

 

Name Equation Description 
medianx sort(x)[½N] Median of the x-coordinates [m] 
mediany sort(y)[½N] Median of the y-coordinates [m] 
medianz sort(z)[½N] Median of the z-coordinates [m] 
mediant sort(t)[½N] Median of the time-coordinates [s] 
medianBx sort(Bx)[½N] Median of the 𝛽𝑥-coordinates [] 
medianBy sort(By)[½N] Median of the 𝛽𝑦-coordinates [] 
medianBz sort(Bz)[½N] Median of the 𝛽𝑧-coordinates [] 

where the notation sort(x)[½N] indicates the center element of the sorted array of x-coordinates. When N is 

even, a linear interpolation is used between the middle two elements. 

 

Name Equation Description 
Dx_50 sort(x)[¾N]−sort(x)[¼N] 50% range of the x-coordinates [m] 
Dy_50 sort(y)[¾N]−sort(y)[ ¼N] 50% range of the y-coordinates [m] 
Dz_50 sort(z)[¾N]−sort(z)[¼N] 50% range of the z-coordinates [m] 
Dt_50 sort(t)[¾N]−sort(t)[ ¼N] 50% range of the time-coordinates [s] 
dBx_50 sort(Bx)[¾N]−sort(Bx)[¼N] 50% range of the 𝛽𝑥-coordinates [] 
dBy_50 sort(By)[¾N]−sort(By)[¼N] 50% range of the 𝛽𝑦-coordinates [] 
dBz_50 sort(Bz)[¾N]−sort(Bz)[¼N] 50% range of the 𝛽𝑧-coordinates [] 

 

The above robust analysis routines are primarily used for the analysis of point-to-point interactions results 

where each particle in the simulation represents exactly one elementary particle. Nevertheless, all routines 

properly take into account the amount of elementary particles that each macro particle represents. In other 

words, if some particle represents for example two elementary particles, the code handles this case as if this 

particle appears twice in the list to be sorted and N is adjusted accordingly. The implementation properly 

handles cases where the number of elementary particles represented by a macro particle in the simulation is 

non-integer or extremely large. 
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3.12.7 Miscellaneous routines 

 

Name Equation Description 
cputime cputime Total CPU time used by the simulation [s]. On a multi-core 

machine this is the combined time of all the individual cores. 
rmax max(√𝑥2 + 𝑦2)  Maximum of radius [m]. 

numpar length(x) Number of particles ‘alive’. 
Q ∑ 𝑁𝑖𝑞𝑖𝑖   Total charge [Q]. 

3.12.8 Scatter statistics 

The following functions work in combination with the FISHFILE program, described in section 3.5, to obtain 

total current and power for each collector plate. Each nn must be replaced by 01, 02, …, 10 indicating the 

plate number. The programs convert total charge and energy to current and power respectively by dividing 

by the variable tlen. This variable must be present in the GPT outputfile, written using outputvalue, and 

must indicate the width of the uniform time distribution of the initial particles. An example is shown in 

tutorial section 2.11.8. 

 

Name Equation Description 
scatterInn ∑ scat_nnQ

tlen
  Total current on collector plate number nn. 

ScatterPnn ∑ scat_nnE

tlen
  Total power on collector plate number nn. 

3.12.9 Obsolete functions 

The following functions are maintained for backward compatibility only. Please use the given alternatives 

instead. 

 

 

The nemix and nemiy routines start by calculating 

𝑥𝑐  = 𝑥 − �̅�  𝑦𝑐  = 𝑦 − �̅�

𝑥′𝑐 = 𝛽𝑥 − 𝛽𝑥̅̅ ̅  𝑦′
𝑐
= 𝛽𝑦 − 𝛽𝑦̅̅ ̅

[3. 11] 

Then the average rotation around the z-axis is subtracted: 

�̅� 𝑐⁄ =
∑ 𝛽𝑦,𝑖𝑥𝑖 − 𝛽𝑥,𝑖𝑦𝑖𝑖

∑ 𝑥𝑖
2 + 𝑦𝑖

2
𝑖

 

𝛽𝑥,𝑖 = 𝛽𝑥,𝑖 + �̅�𝑦𝑖 𝑐⁄ [3. 12] 
𝛽𝑦,𝑖 = 𝛽𝑦,𝑖 − �̅�𝑥𝑖 𝑐⁄  

The emittance for the x-x’ and y-y’ phase spaces are then defined by: 

nemix = 4�̅�√𝑥𝑐
2̅̅ ̅ ∙ 𝑥′𝑐

2̅̅ ̅̅ − 𝑥𝑐𝑥𝑐
′̅̅ ̅̅ ̅̅ 2

nemiy = 4�̅�√𝑦𝑐2̅̅ ̅ ∙ 𝑦′𝑐
2̅̅ ̅̅ − 𝑦𝑐𝑦𝑐′̅̅ ̅̅ ̅̅ 2

[3. 13] 

It is important to note that the nemix and nemiy routines always produce a factor 4 higher emittance values. 

Furthermore, they do not calculate weighted averages. 

Name Equation Alternative Description 
nemix See below nemirrms Normalized rms emittance in (𝑥, 𝛽𝑥) subspace 
nemiy See below nemirrms Normalized rms emittance for (𝑦, 𝛽𝑦) subspace 
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3.13 GDFFLATTEN 

gdfflatten [-hHg] [–o outfile] group_by infile.gdf 

Removes one level from the hierarchical structure of a GDF file by combining the results. 

 

-o outfile Write output to a file named outfile 

-a outfile Append output to a file named outfile 

-h Give short help and quit. 

-H Give long help and quit. 

-g Write group information as seperate column. 

-v Verbose mode. Display iteration output containing all variables and constraints. 

group_by Group to be removed during flattening. 

infile.gdf File to be flattened 

 

GDFFLATTEN changes the hierarchical structure of a GDF file by concatenating data from several groups. 

The data itself is hereby not changed. GDFFLATEN eliminates the group_by group of the inputfile while 

maintaining the rest of the hierarchical structure. This is done by rearranging the data such that all data is 

grouped together without taking into account the group_by level in the hierarchy. 

 

When the -g option is specified, GDFFLATTEN runs in lossless mode by writing the group_by variable 

as a separate column to the outputfile. 

 

One possible use of GDFFLATTEN is to obtain better statistics by combining the results of several GPT 

runs where each run is launched with a different seed for the random number generator. In that case, the MR 

program is used to launch N different runs, with N different seeds. Although this works great with the MPI 

version of MR on a cluster with N nodes, the resulting outputfile is difficult to analyze because it contains 

“seed” as outermost group in the hierarchy. Flattening on “seed” solves this issue because it will produce a 

file as if N times more particles had been tracked. Such a file is much easier to post-process with the standard 

tools such as GDFA. 
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3.14 GDFMGO 

gdfmgo [-hHvk] -j nCPU [–o outfile] infile.sol program [parameters] 

or 

mpirun [options] gdfmgo [-hHvk] –o [outfile] infile.sol program [-j 1] 

[parameters] 

 

Multi-objective genetic global optimizer for the specified program. 

 

-o outfile Write output to a file named outfile 

-a outfile Append output to a file named outfile 

-h Give short help and quit. 

-H Give long help and quit. 

-v Verbose mode. Display iteration output containing all variables and constraints. 

-j nCPU Run simultaneously over nCPU processors in a multi-processor system. When not 

specified, all cores in the system are used. The MPI version uses the [options] of 

mpiexec to allocate computational resources and the -j option is ignored. 

-s initial Read the initial population from the file initial instead of generating a random 

distribution. This file can be the output of a previous GDFMGO run. 

-k Keep all datapoints in the initial distribution, even if the population size is smaller. 

-r Do not delete raw outputfiles. 

-f path Store raw simulation results in path.  

-g executable Use the given executable for data analysis. Default GDFA. 

infile.sol Name of the file containing information about the parameters that are to be varied and the 

constraints to be met. See Table 3-I for specific sections in this file. 

mpiexec [options] Use mpiexec to launch multiple instances of program in parallel. 

program [parameters] Command line of a program that creates a GDF file and recognizes the 

-o option, for example GPT. 

 

GDFMGO is a multi-objective genetic global optimizer that is applicable to a wide range of optimization 

problems. Its main use is to estimate the optimal trade-off between conflicting objectives, such as large 

current and low emittance, while adjusting all free variables. It approximates this optimal trade-off, better 

known as the pareto front, by genetically optimizing a population of samples across all their variables. This 

is a CPU intensive method, but very stable and relatively insensitive to simulation noise. An MPI version is 

available to run GDFMGO on clusters and supercomputers. Information about the internal algorithms of 

GDFMGO can be found in section 1.12.3. One dimensional optimization problems are sometimes better 

suited for GDFSOLVE, described in section 0. 
 

GDFMGO is a load-balanced optimizer: Different runs can use a different amount of CPU time to complete 

without degrading performance. However care should be taken that the program to run does not spawn new 

threads in an attempt to increase calculation speed. This will work counter-productively in almost all cases 

because the course-grain multithreading by GDFMGO will typically outperform fine-grain multithreading 

of the program. We have seen cases where the performance dropped by over a factor of 10. Consequently, 

when GDFMGO is used in combination with MR and/or GPT we strongly recommend including –j 1 in 

the commandline options for these programs. This yields: 

gdfmgo –o output.gdf infile.sol mr –j 1 scan.mr gpt –j 1 input.in 

or the same with mpirun [options] prepended for the MPI version. 

 

It is possible to continue the optimization of a previous GDFMGO run, or start with a custom dataset, using 

the –s option. This option is rather forgiving in terms of the amount of data provided: Neither the columns 

nor the length of the dataset is critical. This makes it possible to continue a previous run, but with one or 

more variables added. In that case, the initial population is based on the provided data with the newly added 

variables randomly initialized. If the initial dataset is larger than the population size, the dataset is truncated 

based on the values in the column mgorank. The –k option can be used to force the first generation to use 

the entire dataset, even if it is larger than the population size. A smaller dataset than population size is 

appended with random points. The GDFSELECT program can be used to start from a specific generation of 

a previous run. 
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The variables and objectives for GDFMGO are read from infile.sol file, or any other filename you 

provide on the command line. It is an ASCII file that must contain all section listed in Table 3-E. A 

sample .mgo file is shown in Listing 3-2. 

Table 3-E: Sections in the .mgo file and a GDFMGO output description 

Section Section Description 
[OPTIONS] 3.14.1 Sets various options and constants directly related to the algorithm. 
[VARIABLES] 3.14.2 Defines the variables to be varied. 
[OPTIMIZE] 3.14.3 Defines the constraints to be minimized or maximized. 
 3.14.4 Output description of GDFMGO 

 

Listing 3-1: Sample .mgo file for GDFMGO. 

1. # Minimize stdx and maximize stdG by varying Isol1 and Isol2. 

2.  

3. [OPTIONS] 

4. populationsize = 50 ; # Increase default population size to 50 

5. generations = 50 ;  # Decrease default maximum number of generations to 50 

6. ignoreerrors = 1 ;  # Interpret errors as bad objectives 

7.  

8. [VARIABLES] 

9. Isol.min = 0 ;  # Variable Isol must be positive 

10. Isol.max = 1000 ;  # with max value 1 kA 

11.  

12. Isol2.min = 0 ;  # Same for Isol2 

13. Isol2.max = 1000 ;  #  

14. Isol2.startmin = 500 ; # But we start in the range [500-1000] 

15.  

16. [OPTIMIZE] 

17. stdx.position = 1 ;  # Minimize stdx at z=1 m, requires screen at z=1 m 

18. stdx.log = 1 ;  # where log(stdx) is what matters 

19.  

20. stdG.weight = -1 ;   # Maximize stdG 

21. stdG.position = 1 ;  # also at z=1 m 

 

3.14.1 Options 

In the [OPTIONS] section, the following options can be set. The syntax is shown in Table 3-F. 

Table 3-F: Options syntax. 

Syntax Required Default Description 

[OPTIONS] No  Start of options section. 

ignoreerrors No 0 If set to 1, all error codes are equivalent to an infinitely 

bad simulation result. The optimization continues and in 

most cases this works surprisingly well. 

populationsize No Calculated Total size of the population 

generations No 100 Maximum number of generations 

minfronts No 2 Minimum number of fronts 

minviolatoins No  Stop when all candidate solutions have less than the 

given number of constraint violations. 

scalefactor No 0.6 See description in section 1.12.3.1 

mutationrate No 0.9 See description in section 1.12.3.1 

dynamicminmax No 1 See description in section 1.12.3.3 and 3.14.3. Value 1 

turns dynamicminmax on. 

defaulttime No  Default time for all objectives 

defaultposition No  Default position for all objectives 

printGDFAwarnings No 1 Print warnings for unsuccessful GDFA progs. 

 

The optimization process is terminated when either the maximum number of generations or the minimum 

number of fronts is reached. 
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If not specified, the populationsize is calculated as 10∙Nv∙(1+No), with Nv the number of variables and No 

the number of objectives. In many cases this is a rather safe setting and the same solution can be reached 

more efficiently by reducing the population size. 

 

This minviolations option can be used to bootstrap the optimisation with quick-and-dirty simulations that 

focus on getting all variables into the correct range. It is particularly effective when many of the initial runs 

give very poor results or don’t run to completion at all. The rationale using this option is that in most cases 

the initial variables are so far off that the first runs are not an optimisation, but elimination of variable space. 

As long as not all constraints are met almost all evolutionary pressure is applied into the direction of getting 

all variables into acceptable range. This process does not require very precise simulations: It makes no sense 

to calculate one run with very high precision when it is internally compared to a run that fails to be within 

any of the constraints. This option allows elimination of variable space using less-precise simulations (no 

space charge, few hundred particles, low accuracy), optionally with a rather large population size in order to 

not miss any of the solutions. The final population can be fed into a subsequent highprecision run using the 

-s option of the optimiser. As a generalisation it is possible to specify a value different from 1. In that case 

the optimisation process stops when all candidate solutions have less than N constraint violations. 

3.14.2 Variables 

The [VARIABLES] section defines all variables to be varied. The syntax is shown in Table 3-G. In case an 

estimate for the optimal values is already known, these can be specified with startmin and startmax 

separately from the obligatory min and max values. 

Table 3-G: Variable syntax. 

Syntax Required Description 

[VARIABLES] Yes Start of variables section. 

var.min = min ; Yes Set the lower bound for variable var to min. 

var.max = max ; Yes Set the upper bound for variable var to max. 

var.startmin = min ; No Set the lower bound of the initial population to min. 

var.startmax = max ; No Set the upper bound of the initial population to max. 

var.log = l ; No A value of 1 indicates that the initial sampling of this variable is 

linear on a logarithmic scale. A value of -1 must be used when all 

values, i.e. min and max, are negative. 

var.cyclic = 1 No Informs the optimizer that the given var is cyclic. 

 

The usual Differential Evolution (DE) algorithm does not work well for cyclic variables such as rf-phases 

because candidate solutions near the outer edges of the variable range cannot be successfully combined with 

the usual equations. The reason is as follows: If we omit crossover from the discussion, a new candidate x is 

formed from u, v and w using: x = w + s (u-v) where s is a scale factor to enforce convergence. If u and v are 

at the outer edges of the min-max range, the actual difference is almost zero when cyclicity is taken into 

account. However, with the above equation it is the full-range multiplied by s that is added to w, instead of 

almost zero. This results in two sub-populations being formed near the min and max values of the variable 

range. Setting cyclic switches the internal algorithm to modulo (max-min) mathematics solving the 

problem. 

 

Example: Add a variable phi that is cyclic in [0,2π]. 

 
[VARIABLES] 

phi.min = 0 ; 

phi.max = 6.28318530718 ; 

phi.cyclic = 1 ; 

3.14.3 Optimize 

The [OPTIMIZE] section defines the objective(s) to be minimized/maximized and their boundaries. The 

syntax is shown in table Table 3-H. All objectives must hold either at a specific position or time, and this 

must correspond to a matching screen or tout line in the GPT inputfile. The sign of the weight determines 

if the objective must be minimized (default) or maximized. Objectives can have min and max values, and 

this takes precedence in the ranking procedure. Effectively this means that the optimizer will first try to find 

settings where all objectives are within their min/max values, and only then will it start the actual multi-

objective optimization process. 
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Table 3-H: Optimize syntax. 

Syntax Required Description 

[OPTIMIZE] Yes Start of optimize section. 

opt.time = t ; One of Specify the time t when function opt must be minimized. 

opt.position = p ; these Specify the position p where constraint opt must be minimized. 

opt.weight = m ; No A weight of 1 instructs the optimizer to minimize this objective 

while a weight of -1 maximizes this objective. Objectives with 

zero weight are ignored by the optimizer, but the value is written 

in the outpufile. 

opt.log = l ; No A value of 1 indicates that the optimal sampling of this objective 

along the pareto front is equidistant on a logarithmic scale. A value 

of -1 must be used when all values are negative. 

opt.min = min ; No Objective must be larger than min. 

opt.max = max ; No Objective must be smaller than max. 

 

Setting weight=0 makes the objective irrelevant for the final ranking, but min/max values for the same 

objective can be used to filter out unwanted solutions. Furthermore, the constraint will be written in the 

outputfile for further analysis. 

 

It is possible to have a variable also as objective. For example, if we want to know the tradeoff between the 

current through a small focusing solenoid and the achievable spotsize, than the current through the solenoid 

is both a variable (in the GPT inputfile) and an objective (lower current is better). To accomplish this, it is 

sufficient to repeat the name of the variable in the constraints section with the proper weight setting (1 to 

minimize, −1 to maximize). In that case the min/max values of the objective are automatically transferred to 

the variable. 

 

The min and max constraints have priority in the ranking procedure to get the most selective pressure in the 

direction of satisfied constraints. Typically this yields an entire population within all constraints in the first 

few generations. However, priority ranking of the constraints can backfire if the entire population is outside 

the min/max boundaries in only one of the objectives. In that case, there is a lot of pressure to get all other 

objectives inside their min/max boundaries, but the objective that is the furthest off is virtually ignored. To 

compensate for this undesired side-effect, the min/max boundaries are in that case temporarily adjusted to 

span at least 25% of the population. This yields balanced selective pressure for all constraints, even if none 

of the population is within the constraints. This temporary adjustment of the boundaries can be switched off 

by setting dynamicminmax=0 in the [OPTIONS] part of the inputfile. 

 

If neither time or position is specified, the defaulttime or defaultposition is used instead. These 

can be set in the [OPTIONS] section of the inputfile. 

3.14.4 Output 

GDFMGO writes all variables and all objectives of the entire population to the outputfile in separate groups 

for each generation. The one group that is not labeled with a generation number is the final result, and this is 

the group that is plotted in GPTwin when opening the outputfile. 

 

The rank of each member of the population and the number of constraint violations are written to the 

outputfile in the columns mgorank and mgoviolations respectively. All points closest to the Pareto front 

have rank zero, the adjacent points have rank one, and so on. It is instructive to make scatterplots color-coded 

on mgorank and/or mgoviolations to visually inspect the progress of the optimizer. 

3.14.5 Technical notes 

Not all runs of GDFMGO produce the exact same result, on the contrary. Even when starting from the exact 

same distribution, spawning different runs on different threads and/or CPUs results in an unpredictable 

ordering of the results coming in. This slightly randomizes the entire optimization process, potentially 

producing very different results after many generations. However, each GFDMGO will converge towards a 

uniformly sampled Pareto front. 

 

It is often expected that with the –s option the results of the first generation are an exact copy of the initial 

data provided. However, because GDFMGO is a load-balanced optimizer, this is hardly ever the case for the 

following reason: When a few function evaluations, i.e. GPT runs, take a long time to complete, the first 
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generation is reached before all datapoints in the initial dataset are evaluated. The first generation therefore 

contains the fastest to calculate variables in the initial dataset combined with a few newly created samples. 

If the initial dataset is a relatively good initial condition, this shows as a first generation that is very good 

except for a few strange outliers. The outliers disappear because the remaining datapoints of the initial set 

will be mixed in with the second, or maybe even later generations. 

 

For performance reasons the constraints could also be read from file when the –s option is used to continue 

from a previous run. This however, is not done: The initial variables are read, but the objectives are always 

newly recalculated. The reason for this is that reading the results from file will be disastrous when in the 

meantime the GPT inputfile, MR setting or fieldmaps have been modified. Since reading the results from 

file saves the recalculation of just one generation we decided this is not worth the risk. 

 

It is recommended to add setrlimit("CPU",N,M); to the GPT inputfile when running the optimizer on 

large clusters. The reason is that in practice there are always a few GPT runs in an unfortunate parameter 

regime that take forever to complete, if at all. These runs can be automatically cut with setrlimit, saving 

valuable resources. The above line instructs GPT to attempt not start a new timestep after N seconds of CPU 

time, whereas after M seconds the program is hard-terminated by the underlying operating system no matter 

what. 

 

On large clusters it is sometimes difficult to set path environment variables. One of the approaches is to copy 

all executables into the same directory as the inputfiles, and use ./gpt on the command line in combination 

with  –g ./gdfa. For us it solved a problem, although we realize that there are much more elegant solutions 

available. 
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3.15 GDFSELECT 

gdfselect [-hHvkr] [–o outfile] infile.gdf groupname [value | begin end] 

Select a specific group by fixed value or with a range of values from another GDF file. 

 

-o outfile Write output to a file named outfile 

-a outfile Append output to a file named outfile 

-h Give short help and quit. 

-H Give long help and quit. 

-v Verbose mode. 

-k Do not collapse hierarchy on single-value selection. 

-r Reverse selection criteria. 

groupname Name of the group to be selected. 

value Select a single value. 

begin end Select a range of values. 

 

GDFselect can be used to create a GDF file containing a subset of the groups present in another GDF file. It 

can for example be used to select a subset of a GDF file for further processing, reduce file size by removing 

unneeded information, or prepare initial conditions for GDFMGO by selecting which generation of a 

previous run to start from. Selection is based on groupname that must either have the specified value or a 

value that falls in the begin end range, endpoints included. For example, to convert time output at 1 ns 

from a GPT simulation to ASCII, the following commands can be given (assuming GPT produces output at 

1 ns by a tout(1e-9) line): 

gdfselect -o output_1ns.gdf gpt_output.gdf time 1e-9 

gdf2a -o output_1ns.txt output_1ns.gdf 

 

Selecting a range between 1 and 5 ns is also possible: 

gdfselect -o ouput_1to5ns.gdf gpt_output.gdf 1e-9 5e-9 

 

Despite its name, gdfselect actually removes information when anywhere in the hierarchy the specified 

groupname is present with a value or range outside the given criteria. You essentially specify what to 

remove, not what to keep. This implies that all information remains where the given groupname is not present 

all. Consequently, specifying a range for time output, such as time -1e100 +1e100 will not remove the 

position output from a GPT simulation result that contains both time and position output. However, 

specifying a bogus value for the position output will remove all position output while keeping all time output: 

gdfselect -o time_output.gdf combined_output.gdf position -1e100 

 

It is possible to run gdfselect iteratively on the output of gdfselect. This is useful when dealing with 

more complicated hierarchies created by the mr program, but also when selecting a subset of the time output 

from a simulation result that contains both time and position output. 

 

When only a single value is specified, the entire group is removed from the hierarchy unless the -k option 

is specified. The selection criteria can be reversed using the -r option. 
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3.16 GDFSOLVE 

gdfsolve [-hHv] [–o outfile] infile.sol program [parameters] 

Multidimensional solver for the specified program 

 

-o outfile Write output to a file named outfile 

-a outfile Append output to a file named outfile 

-h Give short help and quit. 

-H Give long help and quit. 

-v Verbose mode. Display iteration output containing all variables and constraints. 

infile.sol Name of the file containing information about the parameters that are to be varied and the 

constraints to be met. See Table 3-I for specific sections in this file. 

program [parameters] Command line of a program that creates a GDF file and recognizes the 

-o option, for example GPT. 

 

GDFsolve can be used to polish off a solution, based on a good initial estimate. The primary method used is 

based on multidimensional Newton-Raphson, providing quadratic convergence in the vicinity of a solution. 

GDFsolve can also be used as multidimensional optimizer, but this feature is less useful as it is far less 

efficient and sensitive to local minima and simulation noise. 

Table 3-I: Sections in the .sol file and a GDFsolve output description 

Section Section Description 
[OPTIONS] 3.16.1 Sets various options and constants directly related to the algorithm. 
[VARIABLES] 3.16.2 Defines the variables to be varied. 
[CONSTRAINTS] 3.16.3 Defines the constraints to be met. 
[OPTIMIZE] 3.16.4 Defines the constraints to be minimized or maximized. 
 3.16.5 Output description of GDFsolve 

 

Information about the internal algorithms of GDFsolve can be found in sections 1.12.1 to 1.12.2. A 

sample .sol file without an optimize section is shown in Listing 3-2. 

Listing 3-2: Sample .sol for GDFsolve: Find Isol resulting in an avgr of 1 mm. 

22. # Solve average beam radius (avgr) = 1 mm by varying Isol. 

23.  

24. [OPTIONS] 

25. backtracking = 0 ; 

26.  

27. [VARIABLES] 

28. Isol = 1000 ;  # Define variable to vary, starting value is 1000 

29. Isol.reldelta = 0.01 ; # Use 1% difference to obtain derivative information 

30. Isol.min = 0 ;  # Isol must be positive 

31.  

32. [CONSTRAINTS] 

33. avgr = 1.0e-3 ;  # avgr must be 1 mm 

34. avgr.pos = 1 ;  # at z=1 m 

35. avgr.abstol = 0.1e-3 ; # with a tolerance of +/- 0.1 mm 
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3.16.1 Options 

In the [OPTIONS] sections, the following options can be set. The syntax is shown in Table 3-J. 

Table 3-J: Options syntax. 

Syntax Required Default Description 

[OPTIONS] No  Start of options section. 

forcejacobian = 1 ; No Depends Forces a full Jacobian matrix to be calculated 

after each successful step. When not specified, 

Broydens’ update method is used when the 

number of variables is less or equal than the 

number of constraints, see section 1.12.1.5. 

SVDtolerance = tol ; No 0.001 Ratio between the largest and smallest Singular 

Value. When the ratio is smaller than tol, the 

corresponding direction is dropped. 

minconvergence = a ; No 0.01 Every step must bring the scaled constraints (1-

a) closer to the solution. When this criterion can 

not be met, GDFsolve terminates with an error. 

backtracking = 0 ; No 1 Disable the backtracking algorithm and 

terminate with an error when |F| increases. 

keepgoing = 1 ; No 0 Disable all termination criteria and keep running 

until the executable is forced to stop externally. 

Using this option is not recommended for 

inexperienced users. 

optimizetolerance = tol ; No 0.05 The optimizer stops iterating when the target 

scaled rms value does not change more then tol. 

ignoreerrors = 1 ; No 0 Assume all error codes from GPT and GDFA to 

be a very bad simulation result. Please use with 

care. 

3.16.2 Variables 

The [VARIABLES] section defines all variables to be varied. The syntax is shown in Table 3-K. 

Table 3-K: Variable syntax. 

Syntax Required Description 

[VARIABLES] Yes Start of variables section. 

var = x ; Yes Defines a new variable named var, with initial estimate x. 

var.absdelta = abs ; At least The absolute scaling of variable var is abs. 

var.reldelta = rel ; one The relative scaling of variable var is rel. 

  The total scaling is defined as: 𝑑𝑥 = ±√abs2 + 𝑥2 ∙ rel2 . 
var.min = lb ; No Variable lower bound for variable var is lb. 

var.max = ub ; No Variable upper bound for variable var is ub. 

 

The scaling delta is important for the internal algorithms of GDFsolve because the derivative of all 

constraints is approximated by taking steps larger or equal to delta. As a result, a too small delta is very 

sensitive to simulation noise caused by a too low accuracy setting or insufficient particles in the simulation. 

On the other hand, a too large delta could send the derivative approximation into the non-linear regime. 

Before GDFsolve is used, we recommended first making a scan over a number of delta’s and plotting every 

constraint. 

3.16.3 Constraints 

The [CONSTRAINTS] section defines all constraints to be met simultaneously. The syntax is shown in Table 

3-L. 
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Table 3-L: Constraints syntax 

Syntax Required Description 

[CONSTRAINTS] No Start of constraints section. 

con = ft ; Yes Define a new constraint named con to have target value ft. 

con.time = t ; One of Specify the time t when constraint con must be met. 

con.position = p ; these Specify the position p where constraint con must be met. 

con.abstol = abs ; At least The absolute tolerance of constraint con is abs. 

con.reltol = rel ; one The relative tolerance of constraint con is rel. 

  The total tolerance is defined as: 𝑑𝑓 = √abs2 + 𝑓𝑡2 ∙ rel2 . 
 

The geometric length of all scaled constraints |F| is given by: 

|F| = √∑(
con− ft

𝑑𝑓
)
2

[3. 14] 

A solution is found when |F| ≤ 1. Apart from the termination criterion, the tolerance is also used in the 

internal algorithms of GDFsolve as the inverse weight of the constraints. 

 

When an identical constraint must be used at different times or locations, the con name can be prepended 

with group: notation. For example, the following section makes the average beam radius 3 mm at z=1 m 

and 2 mm at z=2 m. The tolerance is set to 0.1 mm in both cases. 

[CONSTRAINTS] 

a:avgr = 3.0e-3 ; 

a:avgr.position = 1.0 ; 

a:avgr.abstol = 0.1e-3 ; 

 

b:avgr = 2.0e-3 ; 

b:avgr.position = 2.0 ; 

b:avgr.abstol = 0.1e-3 ; 

3.16.4 Optimize 

The [OPTIMIZE] section defines the function(s) to be minimized. The syntax is shown in Table 3-M. 

Table 3-M: Optimize syntax. 

Syntax Required Description 

[OPTIMIZE] No Start of optimize section. 

opt = ft ; Yes Define a new function named opt with approximate minimum ft. 

opt.time = t ; One of Specify the time t when function opt must be minimized. 

opt.position = p ; these Specify the position p where constraint opt must be minimized. 

opt.abstol = abs ; At least The absolute tolerance of function opt is abs. 

opt.reltol = rel ; one The relative tolerance of function opt is rel. 

  The total tolerance is defined as: 𝑑𝑓 = ±√abs2 + 𝑓𝑡2 ∙ rel2 . 
opt.weight = m ; No Defines the weight of the constraint. When not specified 1 is 

assumed. A negative value must be specified to maximize a 

function. 

 

When more than one function and/or additional constraints are specified, GDFsolve tries to minimize: 

𝑓 = |F| + ∑ m
opt

𝑑𝑓
[3. 15] 

A negative weight parameter can be used to maximize a function. 

3.16.5 Output 

GDFSolve writes output when all constraints are met and/or when a minimum has been found. Without a 

solution, there is no output. The outputfile itself contains the settings of all variables and the values of the 

corresponding constraints, followed by the complete output of the successful GPT run. All variables and 

constraints can be inspected using GDF2A. 

 

The output of GDFsolve can also be analyzed with GDFA like the output of a normal GPT run. Furthermore,  

the MR utility can be used in combination with GDFsolve. This solves for identical constraints as function 
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of a scanned parameter. This construction builds an outputfile of all successful GPT runs as function of the 

scanned parameter. GDFA can be used to analyze these results. 

 

When the –v option is specified, GDFsolve writes iteration output to the messages window. It consists of the 

following columns: 

N The iteration number. 

varN Value of the N’th variable. 

conN Value of the N’th constraint to be solved. This value is followed by the scaled F value, the 

number of tolerances off the target, between parentheses. When for example con1 has a 

value of 10, a target of 4 and a delta of 1, the display will be 10(6) indicating that the 

constraint is 6 tolerances off its desired value. 

optN Value of the N’th function to minimize. This value is followed by the scaled result, the 

number of tolerances off the estimated minimum times the weight, between parentheses. 

When for example opt1 has a value of 10, an estimated minimum of 4 and a delta of 1, the 

display will be 10(6) indicating that the value is expected to drop 6 tolerances. 

rms When GDFsolve is used as root finder, the rms value is the vector length of F, the scaled 

distance from a solution. When GDFsolve is used as optimizer, the scaled results of the 

functions to minimize are added to this value. 

 

Only the differences in variables and constraints are displayed when the root finder is calculating the Jacobian 

as indicated by a J following the iteration number. 
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3.17 GDFTRANS 

gdftrans [-hHv] [-s array] [-o outfile] [-a outfile] infile group_by arrays ... 

Transpose a GDF file to calculate trajectories as function of any parameter. 

 

-h Give short help and quit. 

-H Give long help and quit. 

-v Verbose mode. 

-s array Sort by array. Default set to array "ID". 

-o outfile Write output to outfile. 

-a outfile Append output to outfile. 

infile Name of the file to perform the calculations on. When GDFTRANS has to read from 

stdin, a dash (-) must be specified explicitly for infile. 

group_by The name of the variable used to group the data. 

arrays ... The name(s) of one or more arrays to convert. Typicaly these are x y z Bx By Bz and G. 

 

GDFTRANS can be used to obtain particle trajectories by transposing a GDF file. For example to obtain the 

arrays of the x- and z-coordinates for all individual particles as function of time, the following command can 

be specified: 

GDFTRANS -o outfile.gdf infile.gdf time x z 

 

By default the arrays are sorted by an additional array named ID, containing the actual numbering. GPT 

writes the particle number in array ID to allow trajectory plots to be created. An alternative array can be 

specified using the -s option and the array index is used when the ID array is not present. 

 

Apart from the group_by variable, the hierarchy in the GDF File is preserved by GDFTRANS. 
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3.18 MR 

mr [-hHvn] [-j nCPU] [-o outfile] [-a outfile] mrfile gpt [–j 1] [options] 

or 

mpirun [options] mr [-hHvn] [-o outfile] [-a outfile] mrfile program [options] 

Scan one or more parameters and concatenate the output in a single hierarchical file. 

 

-o outfile Write output to a file named outfile. 

-a outfile Append output to a file named outfile. 

-h Give short help and quit. 

-H Give long help and quit. 

-j nCPU Run simultaneously over nCPU cores. If not specified, all cores in the system are used. 

-v Verbose mode. Echo the commands to the terminal as they are run. 

-n Display commands but do not actually run them. 

mrfile Name of the file containing information about the parameter(s) that are to be set or varied. 

It must be an ASCII-file with one or more lines each with the following syntax: 
 param value 

 or 
 param from to step 

 Lines beginning with # are ignored. 

program [options] Command line of a program to be run that creates a GDF file. 

 

When the effect of one parameter in a simulation is to be studied, MR can be used to automate this process. 

The steps needed to use MR are: 

• Give the parameter of interest a symbolic name in the inputfile instead of a value. For example the phase 

of a prebuncher could be named phi. 

• Create a MR file containing information about the varying parameter. It consists of lines with the name 

of the varying parameter followed by either a value or a from to step specification. For example 

the following columns are equivalent and they can all be used to scan phi in the range from 0.4 to 0.7. 
phi 0.4 phi 0.4 0.7 0.1 phi 0.4 0.6 0.1 

phi 0.5  phi 0.7 

phi 0.6   

phi 0.7   

 

• Run MR using the syntax specified above. For example: 

mr -o result.gdf phi.mr gpt inputfile.in 

runs GPT with varying phi, where phi.mr is one of the files above and inputfile.in is a valid 

simulation inputfile containing phi. 

 

MR can be used to efficiently group all parameters of interest into a single file. If, for example, not only phi 

is a parameter of interest, but also len, amp and theta, the following scan.mr file sets these additional 

parameters for varying phi. 
1. # MR file for varying phi 

2. phi 0.4 0.7 0.1 

3.  

4. # Fixed len, amp and theta 

5. len 10 

6. amp 1 

7. theta 5 

 

Multidimensional scans are easily created by specifying a range of values for two (or more) parameters. To 

run the above scan for three different values of len, the following scan.mr file will start the required 12 

runs. 
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1. # MR file for varying phi and len 

2. phi 0.4 0.7 0.1 

3. len 10 

4. len 12 

5. len 15 

6.  

7. # Fixed amp and theta 

8. amp 1 

9. theta 5 

 

In the case of multidimensional scans, the group_by parameter of the GDFA program can be used to create 

plots with any varying parameter along the horizontal (or vertical) axis. For example: 
1. mr –o result.gdf scan.mr gpt infile.in 

2. gdfa –o avgs_as_function_of_phi.gdf result.gdf phi … 

3. gdfa –o avgs_as_function_of_len.gdf result.gdf len … 

3.18.1 Multi-core / MPI usage 

On a single system, MR runs as many parallel jobs as there are cores on the system. The MPI version of MR 

launches runs on different physical machines using mpirun. In both cases, the output of all jobs is stored in 

temporary files and subsequently concatenated into outfile in the correct order. Load balancing is achieved 

by initially feeding all cores/nodes one job and assigning new jobs when the previous run is finished. This 

allows different runs to use a different amount of CPU time to complete without degrading performance. 

However care should be taken that the running program does not spawn new threads in an attempt to increase 

calculation speed. This will work counter-productively in almost all cases because the course-grain 

multithreading by MR will typically outperform fine-grain multithreading of the running program. 

Consequently, when MR is used to run GPT and when the total number of MR runs far exceeds the number 

of cores/nodes we strongly recommend including –j 1 in the GPT commandline. For example: 

[mpirun –n N] mr –o result.gdf huge_scan.mr gpt –j 1 file.in 

 

The MPI version of MR reserves the first node for communication, spawning new processes and 

concatenating the temporary outputfiles. As these tasks consume virtually no CPU time, one usually also 

wants to also run an extra simulation job on the first machine. For example, to run on apple, pear and 

berry, where each machine runs six copies of GPT in parallel, the following command may be used: 

mpirun –hosts 3 apple 7 pear 6 berry 6 mr –o result.gdf scan.mr gpt –j 1 

file.in 

 

To be able to use the MPI version of MR all executables must be in the search path of all machines. On large 

clusters we found that this is often a nightmare with PATH environment variables. As a simple alternative, 

specifying full pathnames seems to work almost everywhere. 
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3.19 RAW2GDF 

raw2gdf [-hHved] [-o outfile] [-a outfile] infile arr1 fac1 [arr2 fac2] ... 

Raw binary file to GDF converter. 

 

-h Give short help and quit. 

-H Give long help and quit. 

-v Verbose mode. Progress and file statistics are shown. 

-e Convert endian format. This is typically needed when RAW2GDF is run on a non-intel 

Linux machine and infile was generated on a PC, or vice versa. 

-d Specify when data is given in double-precision numbers. 

-o outfile Write output to outfile. 

-a outfile Append output to outfile. 

infile Name of the binary file to be converted. 

arr1 Name of the array as it is to be specified in the outputfile. 

fac1 Multiplication factor for arr1. 

… Specify all arrays present in infile with their conversion factor. 

 

RAW2GDF converts a binary file to a GDF file. The resulting GDF file can be read by the field map elements 

and all GPT utility programs capable of handling GDF files. For example, to test if the resulting file is correct 

GDF2A can be used. 

 

RAW2GDF writes the columns in the outputfile specified by the arr parameters. These column names 

should be specified in all subsequent handling of the GDF file. To allow conversion to SI units, the arrays 

are multiplied by their corresponding multiplication factors: fac. A fac of 1 must be specified if the array 

is already in SI units. When fac is specified to be 0, the corresponding column is not written in the outputfile. 

 

When a raw data file is generated on a PC, but converted using RAW2GDF on a big-endian (typically a non-

intel Linux) machine, the -e option must be specified. This is also the case when a raw data file generated 

on a big-endian machine must be converted on a PC. Because GDF files are machine independent, a GDF 

file from any Linux machine can be used without conversion on a PC and vice versa (if transferred in binary 

format). 

 

Note: All arrays present in the binary file must be specified on the RAW2GDF commandline, whether they 

are relevant or not. 

 





 

4 GPT Reference 
This chapter serves as a reference of the simulation variables, keywords and elements. It is not recommended 

for first reading. The inputfile syntax, operator precedence and predefined constants are provided in section 

4.1. 

 

4.1 Inputfile syntax ......................................................................................................................... 120 
4.2 Initial particle distribution ........................................................................................................ 123 
4.3 Timestep and output control ..................................................................................................... 139 
4.4 Accelerating structures ............................................................................................................. 147 
4.5 Static electric fields .................................................................................................................. 155 
4.6 Static magnetic fields ............................................................................................................... 159 
4.7 Field maps ................................................................................................................................ 174 
4.8 Spacecharge .............................................................................................................................. 188 
4.9 Scattering .................................................................................................................................. 203 
4.10 Remove particles ...................................................................................................................... 210 
4.11 Miscellaneous ........................................................................................................................... 212 
4.12 Free Electron Laser (FEL), Wakefields, and CSR ................................................................... 216 
4.13 Obsolete elements..................................................................................................................... 223 
 

If necessary, you can also write your own element or modify an existing one. How this is done is explained 

in the GPT Programmer’s Reference. 
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4.1 Inputfile syntax 

A GPT inputfile is an ASCII file describing the set up that is to be simulated. This section is a reference for 

the inputfile language. For information on how to write your own GPT inputfiles, we refer to the tutorial 

(chapter 2). 

 

A YACC generated parser is used to handle the expressions, if-statements, functions and variables that can 

be used in the GPT inputfile. YACC uses a specified grammar and operator precedence and generates code 

to parse the inputfile accordingly. The grammar is chosen to be very close to the standard C expression 

language with the addition of string concatenation  using the + operator. Tables of built-in constants, operator 

precedence and built-in functions are given at the end of this section. 

 

A GPT inputfile is defined as follows: 

inputfile An ASCII file containing a statementlist. 

 All blanks, tabs, new lines and everything following the character # till the end of the line 

are ignored. 

statementlist One or or more statements. 

statement One of the following: 
 variable = value ; 

 variable = string ; 
 keyword( parameters ) ; 

 if(condition) statement [else statement]  
 { statementlist } 

variable Sequence of letters and digits, not starting with a digit. 

 Built-in and previously assigned constants can be set to a new value. This is generally not 

advisable and a warning is printed. 

value A floating point number, a built-in constant or a formula in standard notation. The formula 

may contain floating point numbers, built-in constants, user-defined variables and 

functions. 

keyword Any of the keywords listed in chapter 3. 

parameters One or more values or strings separated by commas. 

string Anything enclosed by double quotation marks. 

 

Table 4-A: Operators in decreasing order of precedence. Their associativity indicates in what order operators of equal 

precedence in an expression are applied.  

Symbol Description Associativity 
() Parenthesis (grouping) Left-to-right 
! Factorial Right-to-left 

+, - Unary plus, minus  
^ Exponential, right associative Right-to-left 

*, / Multiplication, division Left-to-right 

+, - Value: Addition, subtraction Left-to-right 
<, <= Relational less than/less than or equal to Left-to-right 
>, >= Relational greater than/greater than or equal to  
!=, == Relational is not equal to/is equal to Left-to-right 

and, && Logical AND Left-to-right 

or, || Logical OR Left-to-right 
? : Ternary conditional Right-to-left 
= Assignment Right-to-left 
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Table 4-B: Built-in constants. 

Name Value Description 
c 299792458 Speed of light 
deg 180/π  Conversion factor from radians to degrees 
e 2.71828182845904523536 e 
eps0 1/𝜇0𝑐

2  Permittivity of vacuum: 휀0 
m Default: me Mass of an elementary particle 
ma 1.66057·10–27 Unified mass constant 
me 9.10953·10–31 Mass of an electron 
mp 1.67265·10–27 Mass of a proton 
mu0 4π ∙ 10−7  Permeability of vacuum: 𝜇0 
pi 3.14159265358979323846 π  
q Default: qe Charge of an elementary particle 
qe –1.6021892·10–19 Charge of an electron 

 

Table 4-C: Built-in functions. 

Name Description 
defined(x) TRUE if x is defined, FALSE otherwise 
sin(x) sine of x 
cos(x) cosine of x 
tan(x) tangent of x 
asin(x) sin–1(x) in range [−π 2, π 2⁄⁄ ], x  [–1,1] 
acos(x) cos–1(x) in range [0, π], x [–1, 1] 
atan(x) tan–1(x) in range [−π 2, π 2⁄⁄ ] 
sinh(x) hyperbolic sine of x 
cosh(x) hyperbolic cosine of x 
tanh(x) hyperbolic tangent of x 
asinh(x) Area (inverse) hyperbolic sine of x 
acosh(x) Area (inverse) hyperbolic cosine of x 
atanh(x) Area (inverse) hyperbolic tangent of x 
log(x) Natural (base-e) logarithm of x. 
log10(x) Common (base 10) logarithm of x. 
log2(x) Binary (base-2) logarithm of x 
log1p(x) High precision version of log(1+x) for small x 
exp(x) Base-e exponential of x 
exp2(x) Base-2 exponential of x 
expm1(x) High precision version of exp(x)-1 for small x 
sqrt(x) x , x0 
cbrt(x) x1/3 
abs(x), |x| |x| 
ceil(x) Smallest integer2 not less than x 
floor(x) Largest integer2 not greater than x 
round(x)  Integer nearest to x 
trunc(x)  Round x towards zero 

erf(x)  Error function 
−

x
t dte

0

1
2


 

erfc(x)  Complimentary error function 1-erf(x)  
tgamma(x)  Gamma function of x 
lgamma(x)  Natural logarithm of the absolute value of the Gamma function of x 
random(…)  Pseudorandom number number with parameters given in Table 1-C. 

 

Pseudorandom number support is provided thorught the random function, where available paramters are 

given in the 1D column of Table 1-C on page 19. For example random("u",0,1) creates a pseudorandom 

number from a uniform distribution centerd around 0 having a total width of 1. 

 

 
2  Please note that ceil(-pi)=-3 and floor(-pi)=-4 
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The GPT inputfile parser has limited support for string operations. The table below gives the basic 

functionality. 

Table 4-D: String functions 

Name Description 
getenv(s) Returns the environment variable s as a string. An error is printed when environment 

variable s does not exist. 
(a + b) Concatenate string a and b 
string(n) Returns number n as a string. 
string(n,f) Returns number n as a string in specified format f. The format is interpreted as C-style 

printf notation, for example "%.15e" will return a number in exponential notation with 

15 digits precision. 
number(s) Convert string s to a number. An error is printed when s is not a number. 
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4.2 Initial particle distribution 

The following elements can be used to specify the initial particle distribution. More information can be found 

in the corresponding tutorial sections 2.9 and 2.10. 

 

4.2.1 Set manipulation ....................................................................................................................... 123 
4.2.1.1 SetParticles .......................................................................................................................... 123 
4.2.1.2 SetFile ................................................................................................................................. 124 
4.2.1.3 SetScale ............................................................................................................................... 125 
4.2.1.4 SetTransform ....................................................................................................................... 125 
4.2.1.5 SetExtrapolate ..................................................................................................................... 125 
4.2.1.6 SetMove .............................................................................................................................. 126 
4.2.1.7 SetCopy ............................................................................................................................... 126 
4.2.1.8 SetCurvature........................................................................................................................ 126 
4.2.1.9 SetTCopy ............................................................................................................................ 127 
4.2.1.10 SetShuffle ............................................................................................................................ 128 
4.2.1.11 SetReduce............................................................................................................................ 128 
4.2.1.12 SetRmacrodist ..................................................................................................................... 129 
4.2.1.13 SetStartPar ........................................................................................................................... 129 
4.2.1.14 SetStartLine ......................................................................................................................... 129 
4.2.1.15 SetStartxyzGrid ................................................................................................................... 130 

4.2.2 X, Y and Z manipulators .......................................................................................................... 130 
4.2.2.1 AddZoscillation ................................................................................................................... 130 
4.2.2.2 SetXdist ............................................................................................................................... 131 
4.2.2.3 SetXYdistbmp ..................................................................................................................... 131 
4.2.2.4 SetYdist ............................................................................................................................... 132 
4.2.2.5 SetZdist ............................................................................................................................... 133 
4.2.2.6 SetRxydist (2D)................................................................................................................... 133 
4.2.2.7 SetPhidist ............................................................................................................................ 133 
4.2.2.8 SetEllipse ............................................................................................................................ 133 

4.2.3 GBx, GBy and GBz manipulators ............................................................................................ 133 
4.2.3.1 AddGoscillation .................................................................................................................. 133 
4.2.3.2 SetGBxdist .......................................................................................................................... 134 
4.2.3.3 SetGBydist .......................................................................................................................... 134 
4.2.3.4 SetGBzdist .......................................................................................................................... 134 
4.2.3.5 SetGBrxydist (2D) .............................................................................................................. 134 
4.2.3.6 SetGBphidist ....................................................................................................................... 135 
4.2.3.7 SetGBthetadist (2D spherical) ............................................................................................ 135 
4.2.3.8 SetGdist ............................................................................................................................... 135 
4.2.3.9 SetGBxemittance ................................................................................................................ 135 
4.2.3.10 SetGByemittance ................................................................................................................ 136 

4.2.4 X–GBx, Y–GBy and Z–G manipulators .................................................................................. 136 
4.2.4.1 AddGzoscillation ................................................................................................................ 136 
4.2.4.2 AddXDiv ............................................................................................................................. 137 
4.2.4.3 AddYDiv ............................................................................................................................. 137 
4.2.4.4 AddZDiv ............................................................................................................................. 137 

4.2.5 Time-dependent particle distributions ...................................................................................... 138 
4.2.5.1 SetTdist ............................................................................................................................... 138 

 

4.2.1 Set manipulation 

The following keywords perform an action on an entire particle set. 

4.2.1.1 SetParticles 

setparticles(set,N,m,q,Qtot); 

Create a particle set with a specified number of particles. 

 

set Name of particle set to create. 

N Number of particles in this set. 

m Mass of elementary particle in this set [kg]. 

q Charge of elementary particle in this set [C]. 

Qtot Total charge of all particles in this set [C]. 

 



124 GPT Reference 

 

The total charge Qtot is uniformly distributed among the particles: The number of elementary particles every 

macro-particle represents is given by: 

qN

Qtot
=n  

One of the space-charge elements as described in section 4.8 must be used to include space-charge 

calculations. Otherwise, the Qtot parameter is ignored. 

4.2.1.2 SetFile 

setfile(set,filename) ; 

Read a complete particle distribution from a GDF file. 

 

set Name of particle set to generate. 

filename Name of the GDF file containing the particle coordinates. 

 

This element reads a macro-particle distribution from filename into the specified particle set. All particles 

are set relative to ‘wcs’. The file can be created using asci2gdf or an outputfile of a previous GPT run can 

be specified. The GDF File must contain at least the following arrays: 

x Particle x-coordinates [m] 

y Particle y-coordinates [m] 

z Particle z-coordinates [m] 

GBx Particle normalized x-momentum: px/mc. 

GBy Particle normalized y-momentum: py/mc. 

GBz Particle normalized z-momentum: pz/mc. 

 

Instead of the momentum coordinates, it is also possible to specify the velocity components: 

Bx Particle normalized x-velocity: vx/c. 

By Particle normalized y-velocity: vy/c. 

Bz Particle normalized z-velocity: vz/c. 

 

Optionally, the following arrays can be present: 

t Release time of the particle [s]. Use this column to set the initial temporal distribution. If 

this column is not present, all particles start at t=0. 

G Particle Lorentz factor. If not specified, the Lorentz factor is calculated from: 

( )2221/1 BzByBxG ++−= . Explicitly specifying G slightly improves the numerical 

accuracy of the calculations, but this effect is only noticeable when G > 106. 

m Mass of the elementary particles this macro-particle represents. Default: See below. 

q Charge of the elementary particles this macro-particle represents. Default: See below. 

nmacro Number of elementary particles this macro-particle represents. Default: 0. 

rmacro Typical radius of this macro-particle. See the space-charge elements for a detailed 

description of this parameter. Default: 0. 

 

The mass and charge of the elementary particles can be specified as separate arrays. When these are not 

present, the user-defined variables m and q are read from the inputfile. When also these are  not specified, 

the mass and charge of an electron are used. To start protons, without specifying their mass and charge in m 

and q columns, the following lines could be used: 
1. m =  mp ; 

2. q = -qe ; 

3. setfile("protons","file.gdf") ; 

 

If the file is a GPT outputfile created with a tout(t); statement, this group must be specified by a time=t; 

statement above setfile. Outputfiles created by MR can also be used. Either use MR again with exactly 

the same parameter sweep or specify var=value above setfile to specify which group has to be used. 

Listing 4-3 and Listing 4-2 show an example how to start particles from a previous GPT run. 
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Listing 4-1: file1.in: First inputfile writing output at t=1 ns to file1.gdf 

1. setparticles("beam",1000,10*me,10*qe,Qtot) ; 

2. setrxydist("beam","u",1,2) ; 

3. setphidist("beam","u",0,2*pi) ; 

4. ... 

5. tout(1e-9) ; 

Listing 4-2: file2.in: Second inputfile, reading the particle coordinates from file1.gdf 

1. time=1e-9 ; 

2. setfile( "beam", "file1.gdf" ) ; 

3. ... 

4. tout(2e-9) ; 

4.2.1.3 SetScale 

setscale(set,x,y,z,GBx,GBy,GBz,[t,[nmacro,rmacro]] ; 

Multiplies all initial particle coordinates by a specified constant 

 

set Particle set 

x Scale factor for the x-coordinates 

y Scale factor for the y-coordinates 

z Scale factor for the z-coordinates 

GBx Scale factor for the γβx -coordinates 

GBy Scale factor for the γβy -coordinates 

GBz Scale factor for the γβz -coordinates 

t Optional scale factor for the release times 

nmacro Optional scale factor for the number of elementary particles 

rmacro Optional scale factor for the macro particle radius 

 

This element multiplies all initial particle coordinates in a set by a specified constant. It is particularly useful 

to scale the initial coordinates read from an external file with setfile. 

 

Example: If, for example, the file particles.gdf has x, y and z-coordinates in [mm], they can be converted 

to [m] as follows: 

1. mm=1e-3 ; 

2. setfile("beam","particles.gdf") ; 

3. setscale("beam",mm,mm,mm,1,1,1) ; 

4.2.1.4 SetTransform 

settransform(ecs,set); 

Apply a coordinate transform on the particles in a set. 

 

ECS Transform specifiction. 

set Name of particle set. 

 

The particle coordinates are modified according to the specified ECS. When the ECS specification transform 

does not start with "wcs", all particles are moved to the specified CCS. In that case only local and global 

elements specified relative to the same CCS will affect the particle trajectories. 

 

Example: settransform("wcs","z",2, "set") ; 

–2 0 2 –2 0 2

z [m] z [m]  

4.2.1.5 SetExtrapolate 

setextrapolate(set,time) ; 

Linearly extrapolate the initial particle distribution to a given time 
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set Name of the particle set 

time Desired time [s] 

 

This element modifies the position coordinate of all particles in the specified set by linearly extrapolating 

them to the specified time. The equations applied are: 

time

time

=

−+=

t

t vrr )(oldnew  

where v is the velocity of the particle. This element does not affect the momentum coordinates. 

4.2.1.6 SetMove 

setmove(setfrom,setto); 

Move all particles in a set to a different set. 

 

setfrom Original particle set. 

setto Set to add particles to. 

 

All particles in setfrom will be moved to the particles in setto. 

4.2.1.7 SetCopy 

setcopy(set,N,dz) ; 

Multi-Copy a particle set in the z-direction 

 

set Particle set. 

N Number of copies (including original). 

dz Distance between copies in z-direction [m], may be negative. 

 

The setcopy element makes N duplicates of all particles in a specific set in the z-direction. The spacing 

between the different bunches is dz, as shown below. 

dz

N copies

 
 

To copy a particle set in time domain, please use settcopy. 

4.2.1.8 SetCurvature 

setcurvature(set, Ra, Rc, Lc) ; 

Model photo-emission from a curved cathode. 

 

set Particle set. 

Ra Aperture [m]. 

Rc Cathode curvature radius [m]. Specify zero for a flat surface. 

Lc Laser curvature radius [m]. Specify zero for a flat laser front. 

 

This element changes the position and release time coordinates of all particles in the specified set to model 

photo-emission from a curved cathode. 

 

As illustrated in Figure 4-24, a hollow cathode is simulated with a negative value for Rc. This moves all 

initial particle coordinates in the negative z-direction; the ones nearest to the axis the most. Combined with 

a flat laser front, a hollow cathode releases particles furthest away from the axis first. 
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A curved laser front is simulated with a non-zero value for Lc. The sign of Lc is chosen identical to the sign 

of Rc. Combined with a flat cathode surface, Rc=0, a negative value for Lc releases particles near the axis 

first. When Lc is equal to Rc (with identical sign), the release time of the particles is not affected. 

 

 

Rc<0 

Ra 

Z=0 

Rc=0 Rc>0 

Ra 

Z=0 Z=0  
Figure 4-1: Spherical cathode for negative, zero and positive Rc. 

All particles i with ri>Ra or ri>Lc are removed and a warning is printed. 

 

The initial position coordinates are changed as function of particle radius ri, cathode aperture Ra and cathode 

curvature Rc: 
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The release time coordinates are changed as function of particle radius ri, the initial position offset zi and 

the laser curvature Lc. 
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where La is the minimum of Ra and |Lc|. 

4.2.1.9 SetTCopy 

settcopy(set,N,dt) ; 

Multi-Copy a particle set in time domain. 

 

set Particle set. 

N Number of copies (including original). 

dt Distance between copies [s], may be negative. 

 

The settcopy element makes N duplicates of all particles in a set, equidistantly spaced in time domain. The 

spacing between the different bunches is dt, as shown below. 

 

dt 

N copies 

 
 

settcopy is typically used to start a number of identical bunches as function of time. The example below 

starts five identical 1 ps bunches with 5 ps separation. Divergence was added to better show the effect of the 

element. 
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Figure: Five identical 1 ps bunches, started one after the other with, 5 ps separation. The plot shows a snapshot at 

t=23 ps. 

1. # Bunch Parameters 

2. G   =    10  ; # Lorentz factor Gamma=10 

3. len =  1e-12 ; # Bunch length 1 [ps] 

4. R   =  1e-3  ; # Initial bunch radius 1 [mm] 

5. div =  1e+3  ; # Divergence of 100 [rad/m] 

6.  

7. # Multi-bunch parameters 

8. dt  =  5e-12 ; # Bunch spacing 5 [ns] ; 

9. Nb  =  5     ; # 5 Bunches total 

10.  

11. # Create initial cylindrical bunch 

12. setparticles("beam",250,me,qe,0.0) ; 

13. settdist("beam","u",0,len) ; 

14. setrxydist("beam","u",R/2,R) ; 

15. setphidist("beam","u",0,2*pi) ; 

16. setGdist("beam","u",G,0) ; 

17. addxdiv("beam",0,div) ; 

18. addydiv("beam",0,div) ; 

19.  

20. # Copy particle set 

21. settcopy("beam",Nb,dt) ; 

22.  

23. # Output from 0 to 30 [ps] 

24. tout(0,30e-12,1e-12) ; 

 

4.2.1.10 SetShuffle 

setshuffle(set); 

Randomize the order of all particles in the set. 

 

The location of the particles in the specified set is randomized. Because this will not affect the actual particle 

coordinates,  none of the distributions is affected. 

4.2.1.11 SetReduce 

setreduce(set,N); 

Reduce the number of particles in a set. 

 

set Selected particle set 

N Final number of particles in the set. 

 

This element randomly removes all but N particles in the specified set. As shown in Figure 4-2, this operation 

affects the smoothness and accuracy of the original distribution considerably. Therefore it should never be 

used without a verification that the resulting particle set is as desired. 

 

time=2.3e-011

0 1 2 3 4 5 6 7 8 9 10

z [mm]

-2

-1

0

1

2
x
 [

m
m

]



 Initial particle distribution 129 

 

 
Figure 4-2: Uniform distribution containing 1000 particles (top left), reduced to 500, 200 and 100 particles. 

4.2.1.12 SetRmacrodist 

setrmacrodist(set,distribution); 

Sets the distribution for the particle radii. 

 

The radius of all particles in the set is modified according to the specified distribution. The distribution 

is interpreted as a 1D distribution. 

 

This element can be used to specify the radius of the particles in a set. This radius is used by 

spacecharge3D, spacecharge2Dline and related elements to assign a volume to the individual macro-

particles. spacecharge2Dcircle ignores setrmacrodist due to the complexity of the equations. 

 

Example: The following line sets the radius of all particles in set "beam" to R: 

setrmacrodist("beam","u",R,0) ; 

4.2.1.13 SetStartPar 

setstartpar(set,x,y,z,GBx,GBy,GBz,[m,q,n]) 

Add one macro-particle to a particle set. 

 

set Name of particle set. 

x Particle x-coordinate [m]. 

y Particle y-coordinate [m]. 

z Particle z-coordinate [m]. 

GBx Particle normalized x-momentum: vx/c. 

GBy Particle normalized y-momentum: vy/c. 

GBz Particle normalized z-momentum: vz/c. 

m Mass [kg] of the elementary particles this macro-particle represents, typically me. 

q Charge [C] of the elementary particles this macro-particle represents, typically qe. 

n Number of elementary particles this macro-particle represents. 

 

Use this function to start one particle with a specified position and momentum. The mass and charge 

parameters are optional. When not specified, the inputfile variables m and q are used. An empty particle set 

is created before the particle is added if the specified set does not exist. 

4.2.1.14 SetStartLine 

setstartline(set,N,x1,y1,z1,x2,y2,z2,[GBx,Gby,GBz,[m,q,n]]) 

Start a number of particles on a line. 

 

set Name of particle set. 
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N Number of particles to generate, minimum 2. 

x1 Start x-position of line [m]. 

y1 Start y-position of line [m]. 

z1 Start z-position of line [m]. 

x2 End x-position of line [m]. 

y2 End y-position of line [m]. 

z2 End z-position of line [m]. 

GBx Particle normalized x-momentum: vx/c. 

GBy Particle normalized y-momentum: vy/c. 

GBz Particle normalized z-momentum: vz/c. 

m Mass [kg] of the elementary particles this macro-particle represents, typically me. 

q Charge [C] of the elementary particles this macro-particle represents, typically qe. 

n Number of elementary particles this macro-particle represents. 

 

Use this function to start N particles equidistantly spaced on a straight line, optionally with a specified 

momentum. The endpoints are always included. 

 

The mass and charge parameters are optional, but can only be specified when the momentum is given. When 

not specified, the inputfile variables m and q are used. An empty particle set is created before the particle is 

added if the specified set does not exist. 

 

Example: Start 101 particles between 0 and 10 m on the z-axis. 
1. setstartline("beam",101, 0,0,0, 0,0,10 ) ; 

4.2.1.15 SetStartxyzGrid 

setstartxyzgrid(set,Lx,dx,Ly,dy,Lz,dz,[GBx,GBy,GBz]) ; 

Starts the macro-particles in a rectangular grid with equal velocity. 

 

set Name of particle set. 

Lx Length of array in x-direction. This length may be zero. 

dx  Spacing in x-direction. 

Ly Length of array in y-direction. This length may be zero. 

dy  Spacing in y-direction. 

Lz Length of array in z-direction. This length may be zero. 

dz  Spacing in z-direction. 

GBx Particle normalized x-momentum: vx/c. 

GBy Particle normalized y-momentum: vy/c. 

GBz Particle normalized z-momentum: vz/c. 

 

The particles start in a rectangular grid centered around the origin. The grid extends from –Lx/2,–Ly/2, –

Lz/2 to Lx/2,Ly/2,Lz/2 with spacing dx,dy,dz. 

 

It is simple to instruct GPT to initialize billions of particles using this keyword. Since GPT has no built-in 

limit for the number of particles, it must rely on the operating system to indicate an ‘out of memory’ 

condition. On some virtual-memory machines, this error message may come too late, causing either GPT or 

the complete system to crash. 

4.2.2 X, Y and Z manipulators 

The following keywords modify the x-, y- and z-coordinates of the particles. The distribution syntax is listed 

in section 1.6.1. 

4.2.2.1 AddZoscillation 

addzoscillation(set,alpha,kz) ; 

Add a periodic longitudinal density modulation 

 

set Name of the particle set 

alpha Amplitude of the oscillation [] 

kz Wavenumber [m−1] 
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This element modifies the longitudinal coordinate of all particles in the specified set according the following 

equation: 

)sin( oldoldnew zzz kz
kz


+=  

 

Example: Add a modulation in z. 

 

1. setparticles("beam",1e6,me,qe,0) ; 

2. setzdist("beam","u",0,1e-3) ; 

3. setGdist("beam","u",100,1) ; 

4. addzoscillation("beam",0.2,20000) ; 

5. tout(0) ; 

 

25.  

26.  

 

The amplitude of an oscillation is often expressed in terms of the bunching factor b(k) defined as: 
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After running addzoscillatoin, the new distribution has a bunching factor of: 
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4.2.2.2 SetXdist 

setxdist(set,distribution); 

Set x coordinate distribution. 

 

Modifies x [m] such that 
iix ondistributi=  

 

The x-coordinate of all particles in the set is modified according to the specified distribution. The 

distribution is interpreted as a 1D distribution. To specify a uniform distribution between –1 and 1 centered 

around zero, the following line can be used: 

setxdist("beam","u",0,2) ; 

4.2.2.3 SetXYdistbmp 

setxydistbmp(set,filename,[xres,yres]) ; 

Sets the xy-projection of the initial particle distribution based on a grayscale bitmap image 

 

set Particle set. 

filename Name of the grayscale bitmap file. 

xres Horizontal resolution [pixels/meter]. 

yres  Vertical resolution [pixels/meter]. 

 

This element sets the xy-projection of the initial particle distribution according to the specified grayscale 

bitmap image. Each pixel of the image is treated as a rectangular surface area with a uniformly distributed 

chance of emitting particles, given by the pixel color. Black pixels have zero chance of emitting particles, 
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white pixels have maximum chance and grayscale values are linearly interpolated in between. This element 

is very convenient for the simulation of photoemission in for example an rf-photogun, where an actual image 

of the laser focus on the cathode plane can be used to set the initial particle distribution. 

 

The filename must be a grayscale, 8-bit per pixel, uncompressed MS-Windows bitmap file, typically having 

extension bmp or dib. Reverse row order is supported, but RLE compression is not. A variety of other image 

formats such as TIFF can easily be converted to grayscale MS-Windows bitmaps with image processing 

software such as Adobe® Photoshop®. 

 

The pixel size, as stored in the bitmap file, can be overruled with the xres and yres parameters. The bitmap 

is placed with its center in the origin. The horizontal and vertical axes of the image are aligned with the x- 

and y-axis respectively. To move the center and/or change the alignment, please use the settransform 

element after setxydistbmp. 

 

Example: 

We used Adobe® Photoshop® to create a 1000x1000 test bitmap of an elliptical hard-edge bunch with 

checkerboard modulation, as shown in the left plot of Figure 4-3: The following GPT inputfile sets the xy-

projection of the initial particle distribution with 100k electrons based on this bitmap. 

4. setparticles("beam",100000,me,qe,0) ; 

5. setxydistbmp("beam","test.bmp") ; 

6. tout(0) ; 

 

   
Figure 4-3: Left: Original test.bmp grayscale bitmap of an elliptical bunch with checkerboard modulation. Right: 

Corresponding GPTwin plot of the initial particle distribution with 100k particles. Because white pixels emit most 

particles while particles are shown in black in the right plot, the plots look like color-reversed versions of each other. 

 

Technical notes: 

Grayscale bitmap files are essentially indexed-color images with 256 or less grayscale color entries. 

setxydistbmp does not use the 8-bit color-index to determine the particle density, but actually looks up 

the corresponding RGB pixel color from the color table. This ensures correct results even in  case  the color 

table is not filled with 256 monotonically increasing grayscale colors. An error message is produced if the 

red, green and blue values of any pixel in the image are not identical. 

 

The newer V4 and V5 BITMAPINFOHEADER structures are recognized, but the added functionality is 

ignored because this only concerns color information. 

4.2.2.4 SetYdist 

setydist(set,distribution); 

Set y-coordinate distribution. 

 

Modifies y [m] such that 
iiy ondistributi=  
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The y-coordinate of all particles in the set is modified according to the specified distribution. The 

distribution is interpreted as a 1D distribution. 

4.2.2.5 SetZdist 

setzdist(set,distribution); 

Set longitudinal particle distribution. 

 

Modifies z [m] such that 
iiz ondistributi=  

 

The z-coordinate of all particles in the set is modified according to the specified distribution. The 

distribution is interpreted as a 1D distribution. 

4.2.2.6 SetRxydist (2D) 

setrxydist(set,distribution); 

Set radial distribution in x-coordinate. 

 

Modifies x [m] such that Dx ii 2|ondistributi=  

 

The x-coordinate of all particles in the set is modified according to the specified distribution. The 

distribution is interpreted as a 2D distribution. This keyword is typically followed by: 

setphidist(set,"u",0,2*pi) ; 

4.2.2.7 SetPhidist 

setphidist(set,distribution); 

Set phi distribution. 

 

Modifies: x and, y such that: 
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The angle in the xy–plane of all particles in the set is modified according to the specified distribution. The 

distribution is interpreted as a 1D distribution. The z-distribution of the particles will not be affected. 

4.2.2.8 SetEllipse 

setellipse(set,a,b,c); 

Set the xyz distribution as a uniformly filled ellipsoid. 

 

set Name of particle set. 

a Size in x-dimension [m]. 

b  Size in y-dimension [m]. 

c Size in z-dimension [m]. 

 

The ellipsoid is aligned with the primary axes where a, b and c specify the maximum x, y and z coordinate 

respectively. 

4.2.3 GBx, GBy and GBz manipulators 

The following keywords modify the x-, y- and z-coordinates of the particles. In many cases, the Lorentz 

factor  is modified simultaneously. The distribution syntax is listed in section 1.6.1. 

4.2.3.1 AddGoscillation 

addGoscillation(set,alpha,kz) ; 

Add a periodic density modulation in energy 

 

set Name of the particle set 

alpha Amplitude of the oscillation [] 
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kG Wavenumber [] 

 

This element modifies the longitudinal momentum coordinates of all particles in the specified set according 

the following equation: 
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Example: Add a modulation in energy  

 

1. setparticles("beam",1e6,me,qe,0) ; 

2. setzdist("beam","u",0,1e-3) ; 

3. setGdist("beam","u",100,1) ; 

4. addGoscillation_fix("beam",0.2,20) ; 

5. tout(0) ; 

 

27.  

28.  

4.2.3.2 SetGBxdist 

setGBxdist(set,distribution); 

Sets the momentum distribution in x-direction. 

 

Modifies: x such that 
iix ondistributi=  

 

The x-coordinates of the particles in the set are modified according to the specified distribution. The 

distribution is interpreted as a 1D distribution. 

4.2.3.3 SetGBydist 

setGBydist(set,distribution); 

Sets the momentum distribution in y-direction. 

 

Modifies y such that 
iiy ondistributi=  

 

The y-coordinates of the particles in the set are modified according to the specified distribution. The 

distribution is interpreted as a 1D distribution. 

4.2.3.4 SetGBzdist 

setGBzdist(set,distribution); 

Sets the momentum distribution in z-direction. 

 

Modifies z such that 
iiz ondistributi=  

 

The z-coordinates of the particles in the set are modified according to the specified distribution. The 

distribution is interpreted as a 1D distribution. 

4.2.3.5 SetGBrxydist (2D) 

setGBrxydist(set,distribution); 

Sets radial distribution in x-coordinate. 

 

Modifies x such that Dx ii 2|ondistributi=  
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The x-coordinate of all particles in the set is modified according to the specified distribution. 

Although the distribution is interpreted as a 2D distribution, the x coordinate is left unchanged. This 

keyword is therefore typically followed by: 

setGBphidist(set,"u",0,2*pi) ; 

4.2.3.6 SetGBphidist 

setGBphidist(set,distribution); 

Set phi distribution. 

 

Modifies x and  y such that: 
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The angle in the xy–plane of all particles in the set is modified according to the specified distribution. 

The distribution is interpreted as a 1D distribution. The theta distribution of the particles will not be affected. 

4.2.3.7 SetGBthetadist (2D spherical) 

setGBthetadist(set,distribution); 

Set the -θ distribution. 

 

Modifies x y and z such that: 
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The x-, y- and z-coordinates of the particles in the set are modified to create the specified -θ 

distribution. The distribution is interpreted as a 2D spherical distribution. The - and -φ distribution of the 

particles will not be affected. When x and y are both zero, a phi angle of zero is assumed. 

4.2.3.8 SetGdist 

setGdist(set,distribution); 

Set the  distribution. 

 

Modifies z such that: 
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The z-coordinates of the particles in the set are modified to create the specified -distribution. The 

distribution is interpreted as a 1D distribution.  

 

Useful equations: 

eqmceVE /)1(][energy Kinetic

11factor Lorentz
2
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4.2.3.9 SetGBxemittance 

setGBxemittance(set,emittance); 

Sets the emittance in xx-space. Modifies: x. 

 

set Selected particle set 
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emittance Requested emittance in xx-space in [m-rad] 

 

This element sets the emittance in xx-space by scaling all x-coordinates linearly using: 
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Because this element modifies the x-coordinates, it should not be used after setGdist. A warning is 

printed when over one order of magnitude or more needs to be scaled. 

 

This element sets the emittance in transverse position and momentum space. Therefore, the results can be 

slightly different from the results calculated by the nemixrms routines, especially in the presence of a large 

energy spread. 

 

The element assumes all particles in the set to represent an equal amount of elementary particles. 

4.2.3.10 SetGByemittance 

setGByemittance(set,emittance); 

Sets the emittance in yy-space. Modifies: y. 

 

set Selected particle set 

emittance Requested emittance in yy-space in [m-rad] 

 

This element sets the emittance in yy-space by scaling all y-coordinates linearly using: 
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Because this element modifies the y-coordinates, it should not be used after setGdist. A warning is 

printed when over one order of magnitude or more needs to be scaled. 

 

This element sets the emittance in transverse position and momentum space. Therefore, the results can be 

slightly different from the results calculated by the nemiyrms routines, especially in the presence of a large 

energy spread. 

 

The element assumes all particles in the set to represent an equal amount of elementary particles. 

4.2.4 X–GBx, Y–GBy and Z–G manipulators 

The following keywords skew the phase-space areas. They will not affect the transverse or longitudinal 

emittance, nor will they affect the x-, y- and z-distributions. The distribution syntax is listed in section 1.6.1. 

4.2.4.1 AddGzoscillation 

addGzoscillation(set,alpha,kz) ; 

Add a periodic energy modulation correlated with the z-coordinate 

 

set Name of the particle set 

alpha Amplitude of the oscillation [] 

kz Wavenumber [m−1] 

 

This element modifies the longitudinal momentum coordinates of all particles in the specified set by adding 

an oscillatory energy modulation with respect to the z-coordinate. The equations applied are: 
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Example: Add a modulation in energy 

correlated with z. 

 

1. setparticles("beam",1e6,me,qe,0) ; 

2. setzdist("beam","u",0,1e-3) ; 

3. setGdist("beam","u",100,1) ; 

4. addGzoscillation("beam",0.2,20000)  

5. tout(0) ; 

 

29.  

30.  

4.2.4.2 AddXDiv 

addxdiv(set,xc,div); 

Add divergence in the x-x plane. 

 

set Selected particle set. 

xc Center of x-distribution [m], typically 0. 

div Divergence, see equations below. 

 

The x-coordinate is modified by: 
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A linear x-x-dependence is added, keeping the transverse emittance constant. To keep the particle energy 

and the longitudinal emittance constant, the z-coordinte is modified accordingly. 

 

Please note that although a bunch is typically characterized by a radius R and a divergence angle , this 

element does not have  as its divergence parameter. The reason for that is that it would give unintuitive 

results for hard-edges beams. 

4.2.4.3 AddYDiv 

addydiv(set,yc,div); 

Add divergence in the y-y-plane 

 

set Selected particle set. 

yc Center of y-distribution [m], typically 0. 

div Divergence, see equations below. 

 

The y-coordinate is modified by: 
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A linear y-y dependence is added, keeping the transverse emittance constant. To keep the particle energy 

and the longitudinal emittance constant, the GBz-coordinte is modified accordingly. 

4.2.4.4 AddZDiv 

addzdiv(set,zc, div1,[div2,[div3,[...]]]); 

Add divergence in the z--plane. 

 

set Selected particle set. 

zc Center of z-distribution [m]. 

div1 Divergence in [eV/m]. 

div2 Second order term in [eV/m2]. 
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div3 Third order term in [eV/m3]. 

 

The z-coordinate is modified by: 
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A z--dependance is added to the initial particle distribution. When only a linear term is added, the 

longitudinal emittance remains constant. This element has no effect on the transverse emittance or transverse 

particle distribution. 

4.2.5 Time-dependent particle distributions 

Default, all particles are emitted at once at t=0 in the simulation. This can be changed using the elements 

presented in this section to start particles at any time in the simulation. 

4.2.5.1 SetTdist 

settdist(set,distribution); 

Set particle-release time distribution. 

 

Modifies t [s] such that 
iit ondistributi=  

 

The release time of the particles in the set is modified according to the specified distribution. The 

distribution is interpreted as a 1D distribution. To specify a uniform distribution between –1 ns and 1 ns 

centered around zero, the following line can be used: 

settdist("beam","u",0,2e-9) ; 
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4.3 Timestep and output control 

This section contains the elements controlling the Runge-Kutta solver and output generation. Using 

accuracy, the calculation accuracy can be specified. The tout and screen keywords specify the time and 

position when output is written. The other elements can be used to have more control over the timestep 

mechanism or provide additional or diagnostic output. 

 

4.3.1 Acceptance ............................................................................................................................... 139 
4.3.2 Accuracy ................................................................................................................................... 140 
4.3.3 dtmax ........................................................................................................................................ 141 
4.3.4 dtmaxt ....................................................................................................................................... 141 
4.3.5 dtmin ......................................................................................................................................... 141 
4.3.6 dtstart ........................................................................................................................................ 141 
4.3.7 Outputvalue .............................................................................................................................. 141 
4.3.8 Pp .............................................................................................................................................. 141 
4.3.9 safety ........................................................................................................................................ 142 
4.3.10 Screen ....................................................................................................................................... 142 
4.3.11 Snapshot ................................................................................................................................... 142 
4.3.12 Tcontinue .................................................................................................................................. 143 
4.3.13 time ........................................................................................................................................... 143 
4.3.14 tmax .......................................................................................................................................... 143 
4.3.15 Tout .......................................................................................................................................... 144 
4.3.16 Writeelegant ............................................................................................................................. 144 
4.3.17 Writefloorplan .......................................................................................................................... 144 
4.3.18 Writesteps ................................................................................................................................. 145 
 

4.3.1 Acceptance 

acceptance(ECS) ; 

Write acceptance information to the GPT outputfile. 

 

ECS All output is written relative to the Element Coordinate System specified here. 

 

When beam-pipes and other obstacles are introduced in a GPT simulation not all particles necessarily make 

it through. To investigate which part of the initial phase space is (not) removed downstream the acceptance 

keyword can be used. Furthermore, this element can be very helpful in debugging GPT inputfiles when 

particles are lost by an unknown element. The following arrays are written to the GPT outputfile. 

 

Particles that make it through: 

OK_x_start x-position [m] where the particle is started 

OK_y_start y-position [m] where the particle is started 

OK_z_start z-position [m] where the particle is started 

OK_Bx_start x-velocity/c when the particle is started 

OK_By_start y-velocity/c when the particle is started 

OK_Bz_start z-velocity/c when the particle is started 

OK_G_start Lorentz factor when the particle is started 

OK_t_start Simulation time [s] when the particle is started 

 

Particles that are removed from the simulation: 

NOK_x_start x-position [m] where the particle is started 

NOK_y_start y-position [m] where the particle is started 

NOK_z_start z-position [m] where the particle is started 

NOK_Bx_start x-velocity/c when the particle is started 

NOK_By_start y-velocity/c when the particle is started 

NOK_Bz_start z-velocity/c when the particle is started 

NOK_G_start Lorentz factor when the particle is started 

NOK_t_start Simulation time [s] when the particle is started 

 

NOK_x_end x-position [m] where the particle is removed 
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NOK_y_end y-position [m] where the particle is removed 

NOK_z_end z-position [m] where the particle is removed 

NOK_Bx_end x-velocity/c when the particle is removed 

NOK_By_end y-velocity/c when the particle is removed 

NOK_Bz_end z-velocity/c when the particle is removed 

NOK_G_end Lorentz factor when the particle is removed 

NOK_t_end Simulation time [s] when the particle is removed 

 

A simple example is shown below: A rectangular beam is sent into a pipe. 
1. # Start 1000 particles, square distribution in xy-space 

2. setparticles("beam",1000,me,qe,0.0) ; 

3. setxdist("beam","u",0,2) ; 

4. setydist("beam","u",0,2) ; 

5. setGdist("beam","u",200,0) ; 

6.  

7. # Beam pipe with R=0.75 m, between z=1 and z=2 m 

8. rmax("wcs","z",1.5, 0.75,1 ) ; 

9.  

10. # Acceptance output 

11. acceptance("wcs","I") ; 

12. tcontinue(4/c) ; 

 

 
The accepted (left) and not accepted (right) part of the initial beam. 

4.3.2 Accuracy 

accuracy(GBacc,[xacc]) ; 

Specifies the calculation accuracy. 

 

GBacc Negative base 10 logarithm of the simulation accuracy for . If not specified, 4 is 

assumed. 

xacc Negative base 10 logarithm for the simulation accuracy for position. If not specified, 6 is 

assumed. It is rarely needed to change this value. Increasing GBacc usually increases the 

accuracy for the position simultaneously. 

 

The simulation accuracy is calculated as follows: 
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The requested accuracy is the minimal accuracy per step. For very long runs with over 104 steps, the final 

accuracy should be checked by increasing the accuracy and verifying that the result does not change 

significantly. 

 

For more information about accuracy and timesteps see section 1.8. 
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4.3.3 dtmax 

dtmax=expression ; 

Specifies the maximum timestep size. 

 

expression Maximum timestep. If the automatic timestep mechanism suggests a timestep larger than 

dtmax, dtmax is used. dtmax can be used to avoid particles ‘jumping over’ small global 

elements. Default . 

4.3.4 dtmaxt 

dtmaxt(tstart,tend,dtmax) ; 

Enforce a maximum timestep within a specified interval. 

 

tstart Start time. 

tend End time. 

dtmax Maximum timestep when tstart<t<tend 

 

Forces the timesteps to remain less than dtmax when the simulation time is within tstart and tend. This 

element should only be used when the adaptive stepsize control mechanism doesn’t perform satisfactory. 

 

Example: 100 timesteps are enforced between 85 and 95 ns. 
1. startpar( "wcs","I", 0,0,0, 0,0,0.5 ) ; 

2. tout( 0, 100e-9, 20e-9 ) ; 

3. dtmaxt( 85e-9, 95e-9, 0.1e-9 ) ; 

4.3.5 dtmin 

dtmin=expression ; 

Specifies the minimum timestep size. 

 

expression Minimum timestep. If the automatic timestep mechanism suggests a timestep smaller than 

dtmin, dtmin is used. Please note that in this case the required accuracy cannot be 

guaranteed. Before using dtmin consider lowering your accuracy. Default 0. 

4.3.6 dtstart 

dtstart=expression ; 

Specifies the initial timestep. 

 

expression This is the initial value for h as described in section 1.8. Subsequent values for h are 

calculated automatically. Default: Twice the separation between the initial two particles, 

or c1000
1

 if all particles are started simultaneously. 

4.3.7 Outputvalue 

outputvalue(name,expr) ; 

Writes a value in the outputfile. 

 

name Name of the value as it will be written in the outputfile. 

expr Value to be written in the outputfile. Any expression can be entered. 

 

Example: 
1. w = 240e6 ; 

2. outputvalue("freq", 2*pi*w) ; 

4.3.8 Pp 

pp(param1,param2,...) ; 

Print parameters for diagnostic purposes. 
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This line instructs GPT to print the values of the parameters to stderr. Checking the results of intermediate 

calculations in an inputfile is a useful debug aid. 

4.3.9 safety 

safety=expression ; 

Specifies the safety parameter. 

 

expression The safety parameter S as described in section 1.8. Default 0.85. 
 

Reducing the safety parameter can save a small amount of CPU time when tracking particle trajectories 

through fast changing fields. 

4.3.10 Screen 

screen(ECS,at,[CCSname]) ; 

screen(ECS,from,to,step,[CCSname]) ; 

Writes particle coordinates when the particles pass through a nondestructive screen to the outputfile. 

 

ECS Element Coordinate System of the screen. Using the ECS, the screen(s) can be located 

anywhere in space with any orientation. 

at The screen is positioned at z=at with respect to the specified ECS. 

from,to,step The screens are positioned at z=from+Nstep if fromtto, where N[0,1,2,...]. 

CCSname The name of the CCS relative to which the coordinates of the particles will be written. If 

not specified, the screens ECS is used. 

 

The typical use to position a screen at for example the z=5 meter plane is: 

screen("wcs", "I", 5) ; 

 

For every screen a separate group in the GPT outputfile, named position with value at is created. The 

coordinates written in the outputfile are listed in Table 4-E. When positioning multiple screens in 

combination with GDFA, you can group by position to create useful plots. Particles in rings can 'hit' the 

same screen several times. In that case multiple recordings of the same particle, with different t, will be 

present in the outputfile. 

 
Table 4-E: Coordinates in the position group written by the screen element. 

ID Particle identification numbers. 

x,y,z Positions of the particles. 
rxy Particle distances from the z-axis. 

Bx,By,Bz Velocities of the particles normalized to the speed of light. 
G Lorentz factors of the particles. 
t Time when the particles pass the screen. 

 

The equation for the screen is: 

( ) 0ˆ1 =−−
zorM WCSEW

 

where 
zMoo ˆ+= CWEW at  

 

For information about the used notation and coordinate systems in general, see section 1.4. 

 

The coordinates are calculated via 'perfect' interpolation between two consecutive timesteps, where the 

interpolation error is always below or equal to the tracking error. Screens need to buffer particle coordinates 

and involve complex interpolations. They are slower and consume more resources compared to snapshots. 

4.3.11 Snapshot 

snapshot(time,[CCSname]) ; 

snapshot(from,to,step,[CCSname]) ;  

Writes the coordinates of the particles at the given simulation time to the outputfile. 

 

time Simulation time when the coordinates of the particles are to be written in the outputfile. 



 Timestep and output control 143 

 

from,to,step The coordinates of the particles are to be written in the outputfile at t=from+Nstep if 

from  t  to, where N[0,1,2,...]. 

CCSname The name of the CCS relative to which the coordinates of the particles are to be written. If 

not specified, WCS is assumed. 

 

The coordinates of the particles are written in the outputfile when the simulation time is the specified time. 

When from to step is specified, output is written periodically. 

 

For every time output a separate group in the outputfile, named time with value time, is created containing 

the following coordinates: 

Table 4-F: Coordinates in the time group written by the tout element. 

ID Particle identification numbers. 

x,y,z Positions of the particles. 
rxy Particle distances from the z-axis. 

Bx,By,Bz Velocities of the particles normalized to the speed of light. 
G Lorentz factors of the particles. 

 

The automatic timestep algorithm is not affected by the snapshots. This allows the ODE solver to take the 

largest possible step, given the current accuracy setting, making snapshots the fastest output mechanism. 

Please see the tout keyword when the electromagnetic fiels output is required. 

4.3.12 Tcontinue 

tcontinue(t) ; 

Continue the simulation till the specified time 

 

t Minimum simulation time [s]. 

 

Normally, GPT stops execution after the last tout or screen. To overrule this behavior, the tcontinue 

element forces GPT to continue until the specified time t. This element is useful when solving additional 

differential equations with custom output routines. When scattering statistics are to be obtained it is typically 

used with all tout statements removed. 

 

Stopping GPT takes precedence over tcontinue. In other words, when an element actively signals to stop 

GPT, the simulation will always be stopped. 

4.3.13 time 

time=expression ; 

Specifies the simulation starting time. 

 

expression Starting time of the simulation. Default: Release time of first particles to be started. 

 

Usually used to continue a simulation using a different inputfile. See setfile for more documentation. 

4.3.14 tmax 

tmax=expression ; 

Forces the simulation to stop at the specified simulation time. 

 

expression Maximum simulation time [s]. Default: ∞. 

 

A GPT simulation typically continues to run until all particles pass all screens. However, when particles go 

back due to for example a decelerating rf-phase, they never hit the last screen. This potentially results in a 

simulation that continues to run forever. Ideally this situation is prevented by removing all backstreaming 

particles with for example zminmax and rmax. A very effective alternative is setting a maximum simulation 

time with tmax. 

 

Please note that tmax does not set the maximum CPU time. 
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4.3.15 Tout 

tout(time,[CCSname]) ; 

tout(from,to,step,[CCSname]) ;  

Writes the electromagnetic fields at the position of all particle coordinates at the given simulation time to the 

GPT outputfile. 

 

time Simulation time when the coordinates of the particles are to be written in the outputfile. 

from,to,step The coordinates of the particles are to be written in the outputfile at t=from+Nstep if 

from  t  to, where N[0,1,2,...]. 

CCSname The name of the CCS relative to which the coordinates of the particles are to be written. If 

not specified, WCS is assumed. 

 

The coordinates of the particles are written in the outputfile when the simulation time is the specified time. 

When from to step is specified, output is written periodically. 

 

For every time output a separate group in the outputfile, named time with value time, is created containing 

the following coordinates: 

Table 4-G: Coordinates in the time group written by the tout element. 

ID Particle identification numbers. 

x,y,z Positions of the particles. 
rxy Particle distances from the z-axis. 

Bx,By,Bz Velocities of the particles normalized to the speed of light. 
G Lorentz factors of the particles. 

fEx,fEy,fEz Electric fields at particle positions. 

fBx,fBy,fBz Magnetic fields at particle positions. 

 

To obtain field information, the automatic timestep algorithm generates its timesteps in such a way that the 

particle coordinates are calculated at exactly the requested time. This slows down the ODE solver. If 

electromagnetic field information is not required, please use the snapshot keyword. 

 

e relative to maximum acceleration. 

4.3.16 Writeelegant 

writeelegant() ; 

Adds additional information to GPT screen output such that it can be used 1:1 as an Elegant inputfile 

 

Adding this line to the GPT inputfile instructs GPT to write additional information to the GPT outputfile for 

all screens. More specifically, the following data is written: 

xp Vector given by GBx/GBz 

yp Vector given by GBy/GBz 

p Vector given by sqrt(G2-1) 

Particles Number of particles 

pCentral Average of p 

Charge Total charge 

where GBx, GBy, GBz and G and the normalized momenta and the Lorentz factor respectively. 

 

To use the written GDF output as Elegant inputfile, it still has to be converted to SDDS format using the 

GDF2SDDS program using: 

gdf2sdds –o output.sdds output.gdf 

4.3.17 Writefloorplan 

writefloorplan(filename) ; 

Writes all center coordinates and orientations of all beamline components to a file. 

 

filename Name of the file to write information to [gdf]. 
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This elements writes positional information of all coordinate systems and all beamline components defined 

in the GPT inputfile to the speficified filename. Both the center coordinates and the orientation are 

transformed back to World Coordinate System (WCS) to ease comparison with CAD programs and other 

simulations codes. Despite the name writefloorplan, the element does not project 3D information onto a 

2D plane.  

 

The specified filename is written in gdf format and has the following structure: 

For the built-in WCS and for each CCS a separate group is created with the name of the Coordinate System. 

Each group contains the positional information of the Coordinate System itself, the positional information of 

all local elements and the positional information of all global elements. The encoding is as follows: 

type Flag to indicate the type of information: 

 0: CCS definition 

 1: Local element 

 2: Global element 

xcenter, ycenter, zcenter Center position, measured in WCS [m,m,m] 

xx, xy, xz Normalized direction of the x-axis, measured in WCS [] 

yx, yy, yz Normalized Direction of the y-axis, measured in WCS [] 

zx, zy, zz Normalized Direction of the z-axis, measured in WCS [] 

 

Modeling large accelerator facilities with many bend magnets is possible in GPT using Custom Coordinate 

Systems. These additional coordinate systems ease the positioning of downstream beamline components, 

while simultaneously providing a performance increase. However, especially when many coordinate systems 

are all defined relative to each other, it can be challenging to figure out where beamline components are 

positioned relative to World Coordinate System (WCS). This writefloorplan element can be used to 

debug such situations by cross-checking the WCS  coordinates with CAD drawings or other simulations 

codes. 

 

If desired, the output of writefloorplan can be converted to ASCII using the GDF2A program 

GDF2A –w 16 –o filename.txt filename.gdf 

4.3.18 Writesteps 

writesteps([filename.gdf]) 

Write timestep information to the outputfile for performance debugging 

 

filename.gdf Optional external filename for output 

 

The writesteps command stores all timestep information of the entire simulation to either the usual GPT 

outputfile or in the specified outputfile.gdf. The following information is recorded: 

t Simulation time [s]. 

dt Timestep taken [s]. 

fail Number of failed steps at t. 

avgx Average x-coordinate [m] of all particles at t. 

avgy Average y-coordinate [m] of all particles at t. 

avgz Average z-coordinate [m] of all particles at t. 

 

The automatic stepsize algorithm in GPT does not aim for the highest possible accuracy. It aims for the 

largest allowed stepsize. The algorithm that dynamically adjusts the stepsizes for each beamline component 

is written such that once in a while a timestep fails. This is by design because recovering from a few failures 

once in a while gives far better overall performance than ‘playing it safe’. After a timestep fails the dynamic 

timestep algorithm estimates the best size of a smaller timestep based on the assumption that the fields are 

differentiable to 5th order. And this is where performance can suffer dramatically. Even small discontinuities 

in the fields, such as a beamline component with a fringe-field that is cut too soon can cause many failed 

steps. 

 

To show where CPU time is spent during the simulation, one can make various plots of the output of 

writesteps. A good starting point is observing if the fail rate is at or below about 4 everywhere. This value 

is a arguably arbitrary, but in our experience discontinuous fields give very high fail rates and are easily 

detectable. Plotting avgx,avgy,avgz at high fail counts gives an immediate indication where performance can 
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be improved. Often it is simple changes, such as extending the fringes a bit further, that make dramatic 

differences in performance. 
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4.4 Accelerating structures 

This section contains the build-in accelerating structures with time-varying electromagnetic fields. Please 

note that only the TE110gauss and TMx10gauss elements have proper transverse fringe fields for the 

entrance and exit fields. If these models can not be applied, and if transverse fringes are required, please see 

the fieldmaps section 4.7. 
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4.4.1 TE011cylcavity 

TE011cylcavity(ECS,L,R,A,phi) ; 

Cylindrically symmetric pillbox cavity in TE011 mode. 

 

ECS  Element coordinate system. 

L  Total cavity length in z direction [m]. 

R  Radius of the cavity [m]. 

A  Multiplication factor for all fields [T]. 

phi  Phase factor:  in radians. 

 

The fields are calculated by [6]: 
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where –L<2 z<L and where x11≈3.8317 is the first zero of J1. The resonance frequency is given by: 
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where c is the speed of light. Please note that this element does not model fringe fields. To model a cavity 

with fringe fields, please use the TE011gauss element. 

4.4.2 TE011gauss 

TE110gauss(ECS,A,sigma,phi,omega) ; 

Cylindrically symmetric rf cavity in TE011 mode with Gaussion on-axis Bz field profile. 

 

ECS Element coordinate system. 

A Maximum amplitude [T] 

sigma Width of the Gaussian profile [m] 

phi Phase offset [rad] 

omega Angular frequency [rad/s] 

 

This element models a standing wave rf cavity in TE011 mode. The on-axis longitudinal magnetic profile is 

assumed to be Gaussian with maximum amplitude A and width sigma: 
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The off-axis fields are derived from a 5th order expansion. Consequently, this element can only be used for 

particles relatively close to the z-axis. 

4.4.3 TE110gauss 

TE110gauss(ECS,A,sigma,phi,omega) ; 

Cylindrically symmetric rf cavity in TE110 mode with Gaussion on-axis Ex field profile. 

 

ECS Element coordinate system. 

A Maximum amplitude [V/m] 

sigma Width of the Gaussian profile [m] 

phi Phase offset [rad] 

omega Angular frequency [rad/s] 

 

This element models a standing wave rf cavity in TE110 mode. The on-axis deflection profile is assumed to 

be Gaussian with maximum amplitude A and width sigma: 
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The off-axis fields are derived from a 5th order expansion. Consequently, this element can only be used for 

particles relatively close to the z-axis. 

4.4.4 TErectcavity 

TErectcavity(ECS,a,b,L,m,n,p,const,phi); 

Rectangular TEmnp mode resonant cavity. 

 

ECS  Element coordinate system. 

a  Total cavity length in x-direction [m]. 

b  Total cavity length in y-direction [m]. 

L  Total cavity length in z-direction [m]. 

m  Mode index in x-direction. 

n  Mode index in y-direction. 

p  Mode index in z-direction. 

Bo  Multiplication factor for all fields. 

phi  Phase factor:  in radians. 

 

The fields generated by this element are given by [6]: 
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4.4.5 TM010cylcavity 

TM010cylcavity(ECS,L,R,A,phi) ; 

Cylindrically symmetric pillbox cavity in TM010 mode. 

 

ECS  Element coordinate system. 

L  Total cavity length in z direction [m]. 

R  Radius of the cavity. 

A  Multiplication factor for all fields [V/m]. 

phi  Phase factor:  in radians. 

 

The fields are calculated by [6]: 
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where c is the speed of light, x01≈2.4048 is the first zero of J0 and the resonance frequency is 
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Please note that this element does not model fringe fields and consequently can only be used to study 

longitudinal dynamics. To model a cavity with fringe fields, please use TM010gauss or for example 

map1D_TM or map25D_TM. 

4.4.6 TM110gauss 

TM110gauss(ECS,A,sigma,phi,omega) ; 

Cylindrically symmetric rf cavity in TM010 mode with Gaussion on-axis field profile. 

 

ECS Element coordinate system. 

A Maximum amplitude [T] 

sigma With of the Gaussian profile [m] 

phi Phase offset [rad] 

omega Angular frequency [rad/s] 

 

This element models a standing wave rf cavity in TM110 mode. The on-axis acceleration profile is assumed 

to be Gaussian with maximum amplitude A and width sigma: 
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The off-axis fields are derived from a 5th order expansion. Consequently, this element can only be used for 

particles relatively close to the z-axis. 

4.4.7 TM110cylcavity 

TM110cylcavity(ECS,L,R,A,phi) ; 

Cylindrically symmetric pillbox cavity in TM110 mode. 
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ECS Element Coordinate System. 

L Total cavity length in z direction [m]. 

R Outer radius of the cavity. 

A Multiplcations factor for all fields. 

phi  Phase factor in radians. 

 

The electromagnetic fields of this element are in cylindrical coordinates given by: 
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where x110≈3.8317 is the first zero of J1 and ω110=c·x110/R with c the speed of light. To avoid the singularities 

at r=0, the following Taylor expansion of the fields is used for all r<10–6: 
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where x’=x110 x/R and y’=x110 y/R are the dimensionless position variables. 

 

Example: Idealized cylindrically symmetric 1 mT, 5 cm, 3 Ghz TM110 cavity at z=10 cm. 

1. freq=2998e6 ; # European 3 GHz 

2. x110=3.8317 ; # First zero of J1 

3. R   =c*x110 / (2*pi*freq) ; # Calculate Radius based on frequency 

4. Bmax=1e-3 ; # Maximum field: 1 mT 

5. TM110cylcavity("wcs", "z",0.1, 0.05,R,2*c*Bmax,phi) ; 

4.4.8 TM010gauss 

TM010gauss(ECS,A,sigma,phi,omega) ; 

Standing wave cylindrically symmetric TM010 cavity with Gaussian acceleration profile 

 

ECS Element coordinate system 

A Maximum amplitude [V/m] 

sigma With of the Gaussian profile [m] 

phi Phase offset [rad] 

omega Angular frequency [rad/s] 

 

This element models a standing wave rf cavity in TM010 mode. The on-axis acceleration profile is assumed 

to be Gaussian with maximum amplitude A and width sigma: 
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The off-axis fields are derived from a 5th order expansion. Consequently, this element can only be used for 

particles relatively close to the z-axis. 

 

A particle entering this cavity, such that its z=0 position corresponds to t=0, encounters an integrated field 

ΔV given by: 
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where it is assumed that the cavity does not introduce significant velocity differences. Under that condition, 

a given energy gain/loss ΔV corresponds to an A to use for gaussTM010 given by: 
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where φ specifies the phase relative to maximum acceleration. 

4.4.9 TMrectcavity 

TMrectcavity(ECS,a,b,L,m,n,p,const,phi); 

Rectangular TMmnp mode resonant cavity. 

 

ECS  Element coordinate system. 

a  Total cavity length in x-direction [m]. 

b  Total cavity length in y-direction [m]. 

L  Total cavity length in z-direction [m]. 

m  Mode index in x-direction. 

n  Mode index in y-direction. 

p  Mode index in z-direction. 

Eo  Multiplication factor for all fields. 

phi  Phase factor:  in radians. 

 

The fields generated by this element are given by [6]: 
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4.4.10 Trwcell 

trwcell(ECS,Ezef,phi,w,L) ; 

Resonant cavity of a 
3
2

traveling wave buncher or linac. 

 

ECS Element Coordinate System. 

Ezef Effective E field [V/m]. 

phi Phase factor:  in radians. 

w Angular frequency: .in [s-1]. 

L Cell length [m]. 

 

The fields generated by this element are given in cylindrical coordinates by: 
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The factor in front of Ezef is the average of a sine in range 
6

5

6

1 − . It converts peak field to average field 

and is introduced for compatibility. 

 

The formulas are proposed by G. Saxon [7]. 

4.4.11 Trwlinac 

trwlinac(ECS,ao,Rs,Po,P,Go,thetao,phi,w,L) ; 

Constant gradient 
3
2

 traveling wave buncher or linac without beamloading. 

 

ECS Element Coordinate System. 

ao Initial attenuation constant: 0. 

Rs Shunt impedance: Rs. 

Po Input power, design value: P0 [W]. 

P Input power, actual power used: P [W]. 

Go Design gamma at entrance: 0. 

thetao Bunch phase with respect to wave, design value: 0. 

phi RF phase offset: . 

w Angular frequency: .in [s-1]. 

L Length of the structure: L [m]. 

 

An rf–wave with constant amplitude travels through the structure. The phase velocity of the wave increases 

along the structure in such a way that an electron entering the linac with initial energy 0mc2 is accelerated 

but remains in the same position relative to the wave. For this to take place, the linac needs to be operated at 

its design power Po and the particle must be input at the design phase 0 with respect to the ‘crest’ of the 

wave. It is possible however to operate the linac at a different power than the design power and the particles 

can enter at any phase. 

 

According to the design values the amplitude and phase of the field that accelerates the particles is: 
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where z is the longitudinal position of the particle relative to the beginning of the structure. 

 

To calculate the integral, we first calculate the particle velocity using the linear increase in energy from 0mc2 

to 0mc2+E0qez: 
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where F is the normalized design acceleration: 
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The longitudinal and transverse wavenumbers are given by: 
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Yielding: 
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The amplitude and phase of the actual accelerating field are due to the rf input power P and the rf phase . 

They are given by: 
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P may differ from Po and  does not need to be chosen such that the particles enter the linac at phase 0. 

 

The fields produced in cylindrical coordinates are: 
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This element is shaped using an erf function at the entrance and exit of the structure. The characteristic length 

is 1 mm. The shaping does not affect the numerical results but improves the simulation speed considerably 

because it reduces the sudden turn on and off of the fields. 

4.4.12 Trwlinbm 

trwlinbm(ECS,ao,Rs,Po,P,Ib,Go,thetao,phi,w,L) ; 

Constant gradient 
3
2

 traveling wave buncher or linac with selfconsistent beamloading. 

 

ECS Element Coordinate System. 

ao Initial attenuation constant: 0. 

Rs Shunt impedance: Rs. 

Po Input power, design value: P0 [W]. 

P Input power, actual power used: P [W]. 

Ib Beam current: Ib. 

Go Design gamma at entrance: 0. 

thetao Bunch phase with respect to wave, design value: 0. 

phi RF phase offset: . 

w Angular frequency: .in [s-1]. 

L Length of the structure: L [m]. 

 

The electromagnetic fields generated by this element are separated into two independent waves: 

• The accelerating rf-wave. 

• The beam induced beamloading wave. 

 

The accelerating wave is calculated in precisely the same way as in trwlinac, described in section 4.4.11. The 

beamloading wave has the same structure, i.e. the same wavenumbers, but different amplitude and phase. 

When the linac is run at its design values, the beamloading field opposes the accelerating field and the field’s 

amplitude increases along the structure. When the linac is used far off its nominal settings, analytical 

expressions or correct approximations for the beamloading wave can not be derived. To allow this model to 

be used for all input settings, differential equations for the beamloading amplitude and phase are solved while 

tracing the particles. 

 

The accelerating rf-wave has amplitude E1 and  as defined in section 4.4.11. The beamloading wave has 

amplitude Eb and phase +b. Because the structure of both waves is similar, the total fields are: 
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Both the amplitude and phase of the beamloading wave are calculated from the particle trajectories. However, 

an amplitude and phase representation is not very efficient computationally. Therefore the beamloading wave 

is internally characterized by the amplitudes u and v of two independent waves, 90 out of phase. 
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The differential equations for u and v to be solved are then given by: 
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The u and v representation is transformed back using: 
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The amplitude and the phase of the beamloading wave are written in the outputfile as Eb and phib. 
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4.5 Static electric fields 

This section contains the elements generating static electric fields. 

 

4.5.1 Circlecharge.............................................................................................................................. 155 
4.5.2 Ecyl ........................................................................................................................................... 155 
4.5.3 Ehole ......................................................................................................................................... 156 
4.5.4 Erect.......................................................................................................................................... 157 
4.5.5 Linecharge ................................................................................................................................ 157 
4.5.6 Platecharge ............................................................................................................................... 157 
4.5.7 Pointcharge ............................................................................................................................... 157 
4.5.8 pointchargeset ........................................................................................................................... 158 
 

4.5.1 Circlecharge 

circlecharge(ECS,R,lambda) ; 

Circle with homogeneous charge density. 

 

ECS Element Coordinate System. 

R Radius of the ring [m]. 

lambda Charge density [C/m]. 

 

 
Figure 4-4: Electric field in the xz-plane and corresponding potential. 

The circle with radius R having a homogeneous charge density lambda in [C/m] is located in the xy-plane 

centered around the origin. The potential of the electric field is given in spherical coordinates by: 
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The electric field is calculated from V−=E . The integral and gradient are calculated analytically. 

4.5.2 Ecyl 

ecyl(ECS,R,L,E) ; 

Constant E field bounded by cylinder. 

 

ECS Element Coordinate System. 

R Radius of the cylinder [m]. 

L Cylinder length [m]. 

E Electric field strength [V/m]. 

 

The E field generated by this element is given by: 
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4.5.3 Ehole 

ehole(ECS,R,E1,E0) ; 

Two regions with uniform electric field, separated by a conducting plate with circular hole. 

 

ECS Element Coordinate System. 

R Radius of the hole. 

E1 Uniform field strength at negative z. 

E0 Uniform field strength at positive z. 

 

 
 

This element models two regions of uniform electric field in the z-direction, separated by an infinitely thin 

conducting plate with a circular hole. The electromagnetic field is fully analytic, where the effect of the hole 

is given by [8]: 
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with ( ) 1/ 222 −+= Rrz  and 222 /4 Rz+=  . In case R is specified as zero, this element reduces to two 

regions of uniform electric field in the z-direction. 

 

To remove particles crossing the plate, ehole can be combined with scatteriris as shown below: 

; Plate at z=1 m, with 1 mm hole. 

zplate = 1 ; 

radius = 1e-3 ; 

ehole("wcs","z",zplate, radius, E1, E0) ; 

; Remove particles crossing the plate 

forwardscatter("wcs","I","remove", 0) ; 

scatteriris("wcs","z",zplate, radius,1 ) scatter="remove" ; 

 

Example: Einzel lens 

The ehole element is not particularly useful itself, as it stretches from –∞ to +∞. However, it can be used 

as building block to construct all kinds of electrostatic focusing systems. For example an Einzel lens can 

easily be constructed by combining three ehole elements: 

zcenter = 1 ; 

separation = 0.1 ; 

radius = 10e-3 

ehole("wcs","z",zcenter-separation, radius, -Efield/2, Efield/2 ) ; 

ehole("wcs","z",zcenter           , radius,  Efield  ,-Efield ) ; 

ehole("wcs","z",zcenter+separation, radius, -Efield/2, Efield/2 ) ; 

rmax("wcs","z",zcenter, radius,2*separation) ; 

 

Note: The above summation of three ehole elements is only correct if radius is much smaller than 

separation. If this assumption is violated an external Poisson solver, such as present in the Superfish set 
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of codes, must be used to obtain the electrostatic fields. The resulting field can subsequently be imported 

into GPT with the map2D_E element. 

4.5.4 Erect 

erect(ECS,a,b,L,E) ; 

Constant E field bounded by a rectangular box. 

 

ECS Element Coordinate System. 

a Total box length in x-direction [m]. 

b Total box length in y-direction [m]. 

L Total box length in z-direction [m]. 

E Electric field strength [V/m]. 

 

The E field generated by this element is given by: 
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4.5.5 Linecharge 

linecharge(ECS,L,lambda) ; 

Line with homogeneous charge density. 

 

ECS Element Coordinate System. 

L Total line length [m]. 

lambda Line charge density [C/m]. 

 

The equation for the line is: 0== yx , L
2

1z  

 

The electric field generated by this element is given by: 
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where the integral and gradient are calculated analytically. 

4.5.6 Platecharge 

platecharge(ECS,a,b,sigma) ; 

Rectangular plate with homogeneous charge density. 

 

ECS Element Coordinate System. 

a Total plate length in x-direction [m]. 

b Total plate length in y-direction [m]. 

sigma Surface charge density [C/m2]. 

 

The equation for the plate is: 0=z , a
2

1x , b
2

1y  

 

The electric field generated by this element is given by: 
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where the integral and gradient are calculated analytically. 

4.5.7 Pointcharge 

pointcharge(ECS,Q) ; 

Pointcharge at the origin. 
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ECS Element Coordinate System. 

Q Charge in Coulomb. 

 

The electric field generated by this element in spherical coordinates is given by: 

3
04 r

r
E



Q
=   

4.5.8 pointchargeset 

pointchargeset(set,theta) ; 

Electrostatic field of a point charge distribution, calculated with the Barnes-Hut tree algorithm [9,10]. 

 

set Particle set 

theta Overall accuracy parameter. The typical range is from 0.3 (publication quality) to 1.0 

(quick and dirty). 

 

The main use of pointchargeset is to specify a fixed particle set, such as an ion background while tracking 

electrons. All particles in the specified set are removed from the tracking and internally stored as a fixed 

electrostatic field. 

 

For efficiency reasons, the Barnes&Hut hierarchical tree method is used to calculate the combined field. This 

method allows a tradeoff between speed and accuracy, governed by the theta parameter. Please see the 

analogous element spacecharge3Dtree in section 4.8.2 for a more detailed description. 

 

To avoid singularities, it is important to set the smoothing length R of the particles. The current 

implementation only allows identical radii: 

setrmacrodist(set,"u",R,0) 
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4.6 Static magnetic fields 

This section contains elements that model static magnetic fields. 

 

4.6.1 Barmagnet ................................................................................................................................ 159 
4.6.2 Bmultipole ................................................................................................................................ 160 
4.6.3 Bzsolenoid ................................................................................................................................ 162 
4.6.4 Isectormagnet ........................................................................................................................... 162 
4.6.5 Linecurrent ............................................................................................................................... 164 
4.6.6 Magline ..................................................................................................................................... 165 
4.6.7 Magplate ................................................................................................................................... 165 
4.6.8 Magdipole ................................................................................................................................. 165 
4.6.9 Magpoint .................................................................................................................................. 166 
4.6.10 Quadrupole ............................................................................................................................... 166 
4.6.11 Rectcoil ..................................................................................................................................... 167 
4.6.12 Rectmagnet ............................................................................................................................... 168 
4.6.13 Sectormagnet ............................................................................................................................ 168 
4.6.14 Sextupole .................................................................................................................................. 171 
4.6.15 Solenoid .................................................................................................................................... 172 
 

The elements magpoint, magline and magplate calculate a B field as if magnetic charge were present. 

They can be convenient in a simulation, but should be used with caution because magnetic charge does not 

exist. The B field generated by a monopole is assumed to be [11]: 

3

0

4 r

r
B



 P
=   

with P the magnetic pole strength. The fields of the magnetic line charge m and surface charge m are 

derived analogue to the electrical case. 

 

The magnetic scalar potential  is defined such that B=–grad() analogous to the electrical case. 

4.6.1 Barmagnet 

barmagnet(ECS,a,b,L,B) ; 

Rectangular magnet modeled as two plates with opposite magnetic charge density. 

 

ECS Element Coordinate System. 

a Magnet length in x-direction [m]. 

b Magnet length in y-direction [m]. 

L Magnet length in z-direction [m]. 

B Nominal magnetic field [T]. 

 

 
Figure 4-5: Typical B field in the x-z- and y-z-plane. 

The B field generated by this element can be written as the field of two identical plates with opposite 

magnetic surface charge density. The plates are located at: 

a
2

1x , b
2

1y , L
2

1=z . 

with corresponding surface charge density: 
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Within the magnet {0,0,B} is added to the magnetic field to convert the H field to a B field. 

 

For the magnetic field generated by a rectangular plate with homogeneous magnetic surface charge density 

see magplate, section 4.6.7. 

4.6.2 Bmultipole 

Bmultipole(ECS,zlen, Bdipole,Bdl,Bb1, Gquadrupole,Gdl,Gb1, 

  Hsextupole,Hdl,Hb1, Ooctupole,Odl,Ob1) ; 

Generic magnetic multipole with fringe fields 

 

ECS Element Coordinate System 

zlen Length of element 

Bdipole Nominal dipole field [T]. Normally this is mc/qR. 

Bdl Dipole fringe field offset for the entry and exit planes [m] to change the effective length. 

Bb1 First coefficient of the dipole fringe Enge function [m–1]. Must be nonzero. 

Gquadrupole Nominal quadrupole gradient [T/m]. 

Gdl Quadrupole fringe field offset for the entry and exit planes [m]. 

Gb1 First coefficient of the quadrupole fringe Enge function [m–1]. 

Hsextupole Nominal sextupole gradient [T/m2]. 

Hdl Sextupole fringe field offset for the entry and exit planes [m]. 

Hb1 First coefficient of the sextupole fringe Enge function [m–1]. 

Ooctupole Nominal octupole gradient [T/m3]. 

Odl Sextupole fringe field offset for the entry and exit planes [m]. 

Ob1 First coefficient of the sextupole fringe Enge function [m–1]. 

 

This element models a generic magnetic multipole based on 7th order expansion around the z-axis, including 

fringe fields. The field-profile on-axis for each of the multipole-components is assumed to be a first-order 

Enge function as function of z of the form: 
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where A is the overall amplitude, L the length of the element, dl a correction tem for the length and b1 a 

measure for the inverse steepness of the fringes. The amplitude, length correction and steepness can be 
individually specified for each multipole-component, as documented in the parameter list. For example, the 

quadrupole component has an on-axis gradient in [T/m] given by f(z,L,Gquadrupole,Gdl,gb1). 

 

Implemented is a 7th order expansion for the magnetic potential V given by: 
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and where VB = . 

 

Maxwell equation requiring )( 62 rOB =  and the given parameters are used to uniquely construct the cnm(z) 

coefficients. This yields: 
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A graphical representation of the fields, in the fringe region at z=L/2, is shown in the figures below. The 

color-scale ranges from blue, via green and yellow, to red. This scale is set individually for each plot, so the 

plots cannot be compared in absolute value. 

 

 
Figure 4-6: Dipole fields for the Bx, By and Bz components respectively in the fringe region. 

 
Figure 4-7: Quadrupole fields for the Bx, By and Bz components respectively in the fringe region. 

 
Figure 4-8: Sextupole fields for the Bx, By and Bz components respectively in the fringe region. 
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Figure 4-9: Octupole fields for the Bx, By and Bz components respectively in the fringe region. 

 

4.6.3 Bzsolenoid 

bzsolenoid(ECS,R,L,nI) ; 

A homogeneous solenoid without thickness approximated as circular current sheet. 

 

ECS Element Coordinate System. 

R Radius of the solenoid [m]. 

L Solenoid length [m]. 

nI Ampere turns per meter [A]. 

 

The fields generated by this element in cylindrical coordinates are: 
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The fields generated are only correct near the z-axis of the element. 

4.6.4 Isectormagnet 

isectormagnet(fromCCS,toCCS,[finalCCS],R,Bfield,Bdl,Bb1,Gquadrupole,Gdl,Gb1, 

  Hsextupole,Hdl,Hb1) ; 

A sectormagnet with optional quadrupole and sextupole components, including fringe fields. 

 

fromCCS Name of the CCS the particles start on. 

toCCS Name of the CCS the particles are bended to. 

finalCCS Optional name of the CCS where to position the magnet. 

R Radius of the bend [m]. 

Bfield Nominal dipole field [T]. Normally this is mc/qR. 

Bdl Dipole fringe field offset for the entry and exit planes [m] to change the effective length. 

Bb1 First coefficient of the dipole fringe Enge function [m–1]. Must be nonzero. 

Gquadrupole Nominal quadrupole gradient [T/m]. 

Gdl Quadrupole fringe field offset for the entry and exit planes [m]. 

Gb1 First coefficient of the quadrupole fringe Enge function [m–1]. 

Hsextupole Nominal sextupole gradient [T/m2]. 

Hdl Sextupole fringe field offset for the entry and exit planes [m]. 

Hb1 First coefficient of the sextupole fringe Enge function [m–1]. 

 

This element models a sectormagnet based on 7th order multipole expansion along a curved trajectory. The 

position of the magnet is given by the intersection of fromCCS and toCCS, fully analogous to a normal 

sectormagnet element. The radius of curvature for the nominal Bfield is assumed to be R. The inverse 

steepness of the fringe fields can be adjusted with the Bb1 parameter, and an offset of the entry and exit 

planes can be specified using Bdl. Independent on the dipole component, a quadrupole and sextupole 
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component can be specified using using Gquadrupole, Gb1 and Gdl for the quadrupole and Hsextupole, 

Hb1 and Hdl for the sextupole component. 

 

To describe the fields of this element, a toroidal coordinate system is used where a circle in the xz-plane, 
represented as (r,θ) is centered at offset R and rotated around the z-axis over toroidal angle φ. Consequently: 
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This specific coordinate system is chosen because it can be positioned in 3D space such that particles 

travelling through a curved trajectory with radius R will always have very small r coordinates. This allows a 

multipole expansion in r to approximate off-axis fields. 

 

The field-profile on-axis for the dipole, quadrupole and sextupole components of this element is assumed to 

be a first-order Enge function as function of φ of the form: 
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where A is the overall amplitude, L the length of the element in radians, dl a correction tem for the length 

and b1 a measure for the inverse steepness of the fringes. The amplitude, length correction and steepness can 

be individually specified for each multipole-component, as documented in the parameter list. For example 

for the quadrupole component has an on-axis gradient in [T/m] given by f(φ,L,Gquadrupole,Gdl,gb1). 

 

The fields are implemented is a 7th order expansion for the magnetic potential V given by: 
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and )cos( rR += . 

 

The dipole, quadrupole and sextupole components, c11, c22 and c33 respectively, are defined by the following 

expressions as function of toroidal angle φ: 
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These expressions are identical the on-axis fringe fields of a normal sectormagnet, and also identical to the 

on-axis gradient of a quadrupole with analytical fringes. The other multipole components along the curved 

trajectory are uniquely defined up to nth order by requiring that the Laplacian of the magnetic potential is 

zero up-to nth order in r. Consequently: 
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must vanish up-to nth order for all θ. This yields: 
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The remaining c46, c17, c37 and c77 coefficients are not particularly illuminating apart from the fact that 

derivatives of increasing order are used, that n<m and that n+m is always even. 

 

Particles are removed from the simulations when they are far outside the convergence range of the power 

series. This happens when r b1>π. 

4.6.4.1 Example 

The following example visualizes a 90° indexed sectormagnet with and without field-index: 

1. Rbend = 1 ; 

2. beta = 0.99 ; 

3. gamma = 1/sqrt(1-beta^2) ; 

4. Bfield = -me*c*gamma*beta/(qe*Rbend) ; 

5.  

6. angle = pi/2 ; 

7. ccs("wcs",0,0,2, cos(angle),0,-sin(angle),0,1,0, "ccs") ; 

8. sectormagnet_indexed("wcs","ccs","wcs",Rbend, Bfield,0.0,30, .05,0,30, 0,0,0) ; 

9.  

10. setparticles("beam",100000,me,qe,0) ; 

11. setxdist("beam","u",0.5,1.5) ; 

12. setzdist("beam","u",1.5,1.5) ; 

13. tout(0) ; 

 
By component of the field, without (left) and with (right) field-index. 

4.6.5 Linecurrent 

linecurrent(ECS, x1,y1,z1, x2,y2,z2, I) ; 

Straight line segment. 

 

ECS Element Coordinate System. 

x1,y1,z1 Start position of the line [m]. 

x2,y2,z2 End position of the line [m]. 

I Current through the line [A]. 
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The line runs from (x1,y1,z1) to (x2,y2,z2). The current flows from the starting point of the line to the endpoint. 

 

The field of this element is calculated in a frame in which the z-direction is parallel to the line segment and 

the origin is chosen to be the center point of the line. In this new coordinate system, the magnetic field 

generated by this element is given by: 
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where the integral and curl are calculated analytically. 

4.6.6 Magline 

magline(ECS,L,lambda) ; 

Line with homogeneous magnetic charge density. 

 

ECS Element Coordinate System. 

L Total line length [m]. 

lambda Magnetic line charge density [A]. 

 

The equation for the line is: 0== yx , L
2

1z  

 

The magnetic field generated by this element is given by: 
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where the integral and gradient are calculated analytically. 

4.6.7 Magplate 

magplate(ECS,a,b,sigma) ; 

Rectangular plate with homogeneous magnetic charge density. 
 

ECS Element Coordinate System. 

a Total plate length in x-direction [m]. 

b Total plate length in y-direction [m]. 

sigma Magnetic surface charge density [A/m]. 

 

The equation for the plate is: 0=z , a
2

1x , b
2

1y  

 

The magnetic field generated by this element is given by: 
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where the integrals and gradient are calculated analytically. 

4.6.8 Magdipole 

magdipole(ECS, m) ; 

Magnetic mathematical dipole. 

 

ECS Element Coordinate System. 

m Magnetic dipole moment [A m2]. 

 

This element models a mathematical magnetic dipole, located at the origin and aligned with the z-axis. The 

magnetostatic field is given by: 
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4.6.9 Magpoint 

magpoint(ECS,P) ; 

Magnetic pointcharge at the origin. 

 

ECS Element Coordinate System 

P Magnetic charge [Am]. 

 

The magnetic field generated by this element in spherical coordinates is given by: 

34 r

r
B



 P
0=   

4.6.10 Quadrupole 

quadrupole(ECS,L,Go,[b1]) ; 

Magnetostatic quadrupole with optional 3D fringe fields  

 

ECS Element coordinate system. 

L Effective length of the quadrupole [m]. 

Go Nominal magnetic field gradient [T/m]. 

b1 First coefficient of the fringe fields Enge function [1/m], roughly π/rbore. 

 

 
Figure 4-10: Magnetic field in the xy-plane and corresponding scalar potential. 

This element models a magnetostatic quadrupole with effective length L, gradient Go, and a transverse size 

of approximately π/b1. The field equations are fully 3D and Maxwell compatible, as described by Bruno 

Muratori and coworkers 12. Because the fields are continuously differentiable they allow for much faster 

tracking compared to a hard-edged approximation. 

 

The fields close to the axis are a normal quadrupole field: 
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where the gradient G(z) is given by the superposition of two Enge functions: 
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The shape of G(z) is a flat-top distribution in the range LL
2
1

2
1 − z  with amplitude Go, smoothed by 

convolution such that a) the effective length remains the same, b) the fields drops exponentially to zero 

outside the magnet and c) the final 3D expressions for the fields can be implemented efficiently. The 
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steepness of the edges is defined by the b1 parameter, in units of [1/m]. The larger b1, the smaller the 

transverse size of the magnet and the steeper the edges. 

 

The best way to obtain b1 is by fitting the above equation to measured or simulated field data. However, 

from the 3D-case described below it will be seen that there is a field-singularity at the entrance and at the 

exit of the magnet at r=π/b1. This corresponds to the physical size of the magnet and a good approximation 

for b1 is therefore b1≈π/rbore with rbore the inner size of the magnet. If a level of precision is required that 

makes it impossible to select an appropriate b1 we recommend switching to the map3D_B element. 

 

Particles further off-axis than π /b1 are removed from the simulation to prevent numerical problems near the 

field singularities. This should not pose any problems because this is within the physical magnet and particles 

should not be there. Furthermore, we choose to implement the equations such that the field-singularity is as 

far off-axis as theoretically possible given the chosen shape of G(z). 

 

A quadrupole with a transverse size larger than its longitudinal length can also be simulated: All equations 

remain the same, but the gradient just never reaches Go. Nevertheless, the focusing strength remains the same 

because 




−
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regardless of the choice of L and b1. This is not surprising once we realize that G(z) can be written as the 

convolution of a flat-top distribution and hyperbolic-secant-like distribution with unit area: 

( )
)cosh(22

)H()H()(
2
1

2
1

z
zzzG

b1

b1
LLGo

+
+−=  
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The full 3D Maxwell compatible field of quad_fringe are given by: 
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To maintain backward compatibility with GPT version 3.2 it is possible to omit the b1 parameter. In that 

case an unrealistic hard-edged quadrupole is created with fields given by: 
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Despite the fact that these fields might look much easier to calculate, they are not: The discontinuous fields 

stall the 5th order Runge Kutta solver of GPT resulting in much longer tracking times. For simulations where 

a high accuracy is required the difference can easily exceed an order of magnitude. 

4.6.11 Rectcoil 

rectcoil(ECS,r1,r2,L,I) ; 

Homogeneous solenoid with length and thickness. 

 

ECS Element Coordinate System. 

r1 Inner radius of the coil [m]. 

r2 Outer radius of the coil [m]. 

L Length of the coil [m]. 
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I Total current through the coil [A]. 

 

To calculate the field on-axis the field of a single current loop is integrated in both the z- and r-direction: 
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where a=L/2. 

 

The field off-axis is approximated using a 4th-order power series expansion [13]. 
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The fields are only correct near the z-axis of the element. 

4.6.12 Rectmagnet 

rectmagnet(ECS,a,b,Bfield,dl,b1,b2); 

Rectangular magnet with fringe fields. 

 

ECS Element Coordinate System 

a Length of the magnet in x-direction [m]. 

b Length of the magnet in z-direction [m]. 

Bfield Maximum magnetic field [T]. 

dl Fringe field offset for the magnet’s entry and exit planes [m] to change the effective length. 

b1 First coefficient of the fringe fields Enge function [m–1]. A value of 0 disables fringe fields. 

b2 Second order coefficient of the fringe fields Enge function [m–2]. Typically 0. 

 

This element models a rectangular magnet with a magnetic field-component Bfield in the y-direction in the 

region –½a<x<½a and –½b<z<–½b, see Figure 4-11. 

 

b 

a z 

x 

 
Figure 4-11: Geometry of rectmagnet. 

The entrance and exit sides, assuming the z-direction as propagation direction of the particles, have fringe 

fields analogous to the fringe fields of the sectormagnet element. A reasonable estimate for b1 is 2/gap, 

and we recommend a zero value for both dl and b2. Please see the documentation of the sectormagnet 

element for a detailed description of the fringe fields. 

4.6.13 Sectormagnet 

sectormagnet(fromCCS,[finalCCS],toCCS,R,Bfield,[phiin,phiout,dl,b1,b2]); 

Sector magnet with options for rotated pole faces and fringe fields. 

 

fromCCS Name of the CCS the particles start on. 

finalCCS Name of the CCS where to position the magnet. 

toCCS Name of the CCS the particles are bended to. 

R Radius of the bend [m]. 

Bfield Maximum magnetic field [T] in the negative y-direction. Normally this is mc/qR. 
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phiin Angle of incident pole face [rad]. Specify 0 for normal incidence. 

phiout Angle of exit pole face [rad]. Specify 0 for normal incidence. 

dl Fringe field offset for the magnet’s entry and exit planes [m] to change the effective length. 

b1 First coefficient of the fringe fields Enge function [m–1]. A value of 0 disables fringe fields. 

b2 Second order coefficient of the fringe fields Enge function [m–2]. Typically 0. 

 

This element models a bending magnet with a B field perpendicular to the z-directions of both the fromCCS 

and toCCS coordinate systems. The geometry is that of a wedge with the two straight sides perpendicular to 

the z-directions of the specified coordinate systems. When the z-axes do not intersect, or when they are 

parallel, this element can not be used. Please use the isectorbent element to model an indexed sectorbend, 

i.e. a sectorbent with a quadrupole component. 

 

The optional phiin and phiout parameters can be used to specify the angle (with respect to normal 

incidence) of the input and output pole faces in the bending plane. A positive angle means that the total angle 

of the ‘wedge’ will decrease. This is shown schematically in Figure 4-12. 

 

 

fromCCS 

toCCS 

R 

phiin 

phiout 

 
Figure 4-12:  Geometry of the sectormagnet, with positive values for phiin and phiout. 

The fringe fields are modeled as a second order Enge function, given on-axis by [14] 
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in the coordinate system shown in Figure 4-13. The parameter dl changes the effective length of the magnet, 

while b1 affects the steepness of the drop-off of the magnetic field. The second order correction, given by 

parameter b2, is implemented but should be used with care as it can reverse the field drop-off at a distance 

far away from the magnet. 

 

 

Typical By field on-axis 

Particles are removed here 

Particles are removed here 
dl 

y 

z 

z=0 

gap 

 
Figure 4-13: Fringe fields of the sectormagnet. 

GPT removes all particles outside the gap region from the simulation. This is at a distance 
1

b/y . 

There are a number of ways to obtain the parameters dl, b1 and b2. Arguably the best method is to fit equation 

(1) to a measured field-profile of the magnet to be simulated. Second best is to use the ‘field integral’ FINT, 

such as used in MAD, and given by: 



170 GPT Reference 

 

( )


−
== ds

B

sBBsB
g

yy

2

0

0

1

)()(
FINT

1

b

  

where B0 is the nominal field inside the magnet in [T] and g the gap of the dipole in [m]. If everything else 

fails, a reasonable average value for b1 is 2/gap. As mentioned before, we recommend a zero value for b2. 

 

The normal use of the sectormagnet element is that the specified radius of the bend is the ‘effective 

radius’, based on the magnetic properties of the magnet. In that case, the dl parameter is (almost) zero and 

in any case far smaller than the size of the gap. To ease interpretation of the simulation results, dl can be 

used to fine-tune the magnet such that the particles exist the magnet exactly on-axis. 

If on the other hand the radius parameter is based on the physical dimensions of the magnet, than the dl 

parameter should be used to specify how far the fringe fields extend out of the magnet. This is typically in 

the order of the size of the gap. In that case, the correct value for dl is approximated by: 
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where H(s) is the Heaviside unit step function. 

 

To disable fringe-field calculations, both b parameters must be specified as 0. This is not recommended, as 

it slows down simulation speed considerably due to the resulting discontinuous field, especially in 

combination with space-chare calculations. 

 

The full expression for the magnetic field used in this element are given by [15]. 

( )

( )
ff

f

z

ff

f

y

ehe

heB
B

ehe

heB
B

2

2

)cos(21

)sin(

)cos(21

)cos(1

++
=

++

+−
=

  

with )( 22 yzzf −+=
21

bb  and )2( zyh
21

bb += . 

 

We realize that fringe fields exist in all kinds of shapes and forms, and that these expressions model only  a 

limited number of actual fields. On the other hand, it is our experience that the exact shape of the fringe fields 

does in many cases not affect the overall simulation results significantly. If needed, accurate modeling of all 

different shapes is possible with the map3D_B element in combination with an external field solver. In that 

case, the CCSflip element might be needed to ‘manually’ move the particles from one coordinate system to 

the other. 

4.6.13.1 Coordinate systems 

Apart from position and momentum coordinates, particles in a GPT simulations also hold a reference to a 

coordinate system. By default this starts at "wcs", the so-called World Coordinate System. Only beamline 

components specified relative to the particle’s coordinate system are visible to the particles and all other 

beamline components are ignored. Only two elements can transfer particles from one coordinate system to 

another coordinate system: sectormagnet and ccsflip. Usually the built-in coordinate system transfer of 

a sectormagnet is exactly what is desired, but there are use-cases where it is conceptually easier to run the 

whole simulations in wcs. In that case finalCCS is an elegant way to accomplish this. 

 

If finalCCS is not specified, half a bending magnet is constructed on the fromCCS and the other half on the 

toCCS. When a particle leaves one half of the bending magnet it is placed on the other coordinate system to 

go through the remaining part of the bend. Both half magnets are local elements and are not allowed to 

overlap other local elements. 

 

In case finalCCS is specified, the fields remain the same but the entire magnet is positioned in the given 

coosrinate system, typically "wcs". 

4.6.13.2 Example 

An example inputfile sector.in with two sectormagnets in a half-chicane configuration is given below. 

Particles start in the origin of the "wcs"coordinate system. They are subsequently bent in the zx-plane onto 

the "bend" coordinate system using the first sectormagnet. The downstream second sectormagnet bends the 

particles in the opposite direction onto coordinate system "straight", causing a total offset d=0.1 m. It is 
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crucial to get the sign of the B-field correct, as otherwise particles are -without warning- deflected in the 

wrong direction. 

 

This example does not contain any additional elements, but these can easily be placed with respect to the 

"wcs", "bend" or "straight" coordinate systems. Spacecharge effects can be added using the 

spacecharge3Dmesh element. Output is provided as snapshots, 20 ns apart in this case, and such output works 

well for plotting trajectories. In a later stage it is more useful to work with screen output, and the last line 

shows this as an example. Output is written when particles pass the z=1 m plane, as measured in the 

"straight" coordinate system. Without the last parameter, output is written relative to the default "wcs" 

coordinate system. This implies that the center of the bunch would be at x=0.1 m. Although technically 

correct, in most cases this is not desired. The extra "straight" as last parameter forces GPT to write output 

relative to the coordinate system after the last bend, having an average x of zero. 
1. # GPT example inputfile for a half chicane 

2.  

3. # --beam parameters-- 

4.   N=100 ;   # Number of particles 

5.   zlen=0.5e-3 ;  # bunch length [m] 

6.   R=1.0e-3 ;  # Bunch readius [m] 

7.   gamma=30 ;  # Bunch energy [] 

8.  

9. # --position particles using particle sets-- 

10.   setparticles( "beam", N, me, qe, 0) ; 

11.   setzdist("beam","g", 0, zlen,3,3 ) ;  # Gaussian longitudinal distribution 

12.   setrxydist( "beam", "u", R/2,R ) ;  # Uniform radial distribution 

13.   setphidist( "beam", "u", 0,2*pi ) ;  # Fill xy phase space 

14.   setGdist( "beam", "g", gamma, 0,3,3) ;  # Fixed energy, no energy spread 

15.  

16. # --sectormagnet parameters-- 

17.   Bfield=0.085 ;  # Magnetic field [T] 

18.   angle=17 ;  # Bend angle [degrees] 

19.   d=0.1 ;   # Parallel translation [m] 

20.   phiin=4.3 ;  # Entrance pole face [degrees] 

21.   phiout=4.34 ;  # Exit pole face [degrees] 

22.   dl=-0.7e-3 ;  # Field extends 

23.   b1=44 ;   # b1=2/gap, gap=45 mm 

24.   b2=0 ;   # No second order effects 

25.  

26. # --half chicane consisting of 2 sectormagnets-- 

27.   beta = sqrt(gamma*gamma-1)/gamma ; 

28.   Rbend = -me*c*gamma*beta/(qe*Bfield) ; # Mind the SIGN! 

29.   Lbend = d/sin(angle/deg) ; 

30.  

31.   ccs("wcs" , 0,0,1,     cos(angle/deg),0,-sin(angle/deg), 0,1,0, "bend") ; 

32.   ccs("bend", 0,0,Lbend, cos(angle/deg),0, sin(angle/deg), 0,1,0, "straight") ; 

33.   sectormagnet("wcs" ,"bend"    , Rbend, Bfield, phiin/deg,phiout/deg, dl, b1, b2); 

34.   sectormagnet("bend","straight", Rbend, Bfield, phiin/deg,phiout/deg, dl, b1, b2); 

35.  

36. # --output-- 

37.   accuracy(6) ; 

38.   ns = 1e-9 ; 

39.   tout( 0*ns,20*ns,0.05*ns ); 

40. # screen("straight","I", 1, "straight") ; 

 

Typical lines to run the above example are: 
1. gpt -o sector.gdf sector.in 

2. gdfa -o avgs.gdf sector.gdf time avgx avgy avgz avgG stdx stdy stdz stdG avgfBy 

3. gdftrans -o traj.gdf sector.gdf time x y z 

4.6.14 Sextupole 

sextupole(ECS,L,G) ; 

Hard edged sextupole lens. 
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ECS Element Coordinate System. 

L Length of the sextupole [m]. 

G Magnetic field gradient in [T/m2]. Please see the field-equations carefully, as our definition 

gives magnetic fields a factor of 2 stronger compared to other codes and analytical theory3.  

 

 
Figure 4-14: Magnetic field in the xy-plane and corresponding scalar potential. 

The B field and scalar potential generated by this element are given: 
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4.6.15 Solenoid 

solenoid(ECS,R,I) ; 

Single turn solenoid. 

 

ECS Element Coordinate System. 

R Radius of the solenoid [m] 

I Current through the solenoid [A]. 

 

 
Figure 4-15: Magnetic field in the xz-plane. 

The solenoid is modeled as a circle centered around the origin in the xy-plane with radius R carrying a current 

I. The resulting magnetic field is directed in the positive z-direction, within the current loop. The vector 

potential of the magnetic field is given in spherical coordinates by [16, pp. 117]: 
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3  As was brought to our attention by Dr. D. Dowell. For reasons of backward compatibility we can not change this 

element, but we advice to specify the gradient in the GPT inputfile as 0.5*Gsextupole to emphase the missing 

prefactor. We apologise for the inconvenience. 
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The magnetic field is calculated from AB = . The integral and rotation are calculated analytically. 

 

As the field is defined everywhere and no approximations are made, this element is very useful to study 

aberrations in solenoid lens systems. 
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4.7 Field maps 

This section describes the built-in elements capable of handling external field maps created by external 

software. The 1D models use 2nd order splines, all other elements use 1st order interpolation and require a 

rectangular grid aligned with the axes. Before use, the output of the external software much be converted to 

GDF format using the utility programs ASCI2GDF and RAW2GDF, see sections 3.2 and 3.19 respectively. 

Output created by one of the SUPERFISH [4] set of codes can be converted using FISH2GDF, see see section 

3.4. 
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The zero position for z in the GDF file containing the field map is always placed at the ECS specified in the 

field map element syntax. Therefore, map3D_E("wcs","z",position, ... ) sets the z=0 position in 

the field map at z=position in GPT. 

 

If a binary file named outbin consists of four arrays, the r- and z- coordinates and the radial and longitudinal 

electric field, and is located in the current directory then 

raw2gdf -o outbin.gdf outbin r 1 z 1 Er 1 Ez 1 

converts the file to the GDF format. Because GPT uses SI units, any non-SI parameter must be converted 

using the multiplication factors. For example, if the coordinates are specified in cm and the electric field is 

in V/cm, the following line can be used to convert all units to SI: 

raw2gdf -o outbin.gdf outbin r 0.01 z 0.01 Er 100 Ez 100 

 

Analogously, an ASCII file named outfile.txt can be converted using: 

asci2gdf -o outbin.gdf outfile.txt r 0.01 z 0.01 Er 100 Ez 100 

 

A file created by SF7 of the SUPERFISH codes can be directly converted using: 

fish2gdf –o outbin.gdf outsf7 

 

Once the file has been converted, the field map can be used in a GPT inputfile as demonstrated in the 

following example: 
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1. # GPT Inputfile demonstrating the use of map2D_E 

2.  

3. # Start a particle at 0,0,0 with v=0.5 c 

4. startpar( "wcs", "I", 0,0,0, 0,0,0.5) ; 

5.  

6. position = 1 ; 

7.  

8. map2D_E("wcs","z",position,  # Position field map around z=1 

9.                "outbin.gdf", # Read data from file outbin.gdf 

10.                "r","z",      # r and z coordinates 

11.                "Er","Ez",1   # Er and Ez are multiplied by 1 

12.         ) ; 

13.  

14. tout(0,4/c,0.1/c) ;          # Output every 0.1/c till t=4/c 

4.7.1 map1D_B 

map1D_B(ECS,filename,z,Bz,Bfac); 

Reads a 1D table of Bz samples on-axis from the specified GDF file and extrapolates these to a cylindrical 

symmetric field map for the magnetic field. 

 

ECS Element Coordinate System. 

filename Filename of GDF file containing the Bz-samples along the z-axis. 

z Name of array in the file specifying the z-coordinates. 

Bz Name of array in the file specifying the longitudinal magnetic field on-axis. 

Bfac Multiplication factor for the magnetic field. 

 

The fields generated by this element are derived from [13]: 
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These fields are only correct near the z-axis of the element. The map25D_B and map3D_B elements can be 

used to specify off-axis field information. 

 

A so-called ‘natural cubic spline’ is calculated from the given (z,Bz) points. It is recommended to specify 

more points at those positions where the first derivative fluctuates significantly. 

 

To keep map1D_B as versatile as possible, no assumptions are made as to the names of the columns in the 

GDF file specifying the data. The names of the columns in the GDF-file have thus to be specified on the 

commandline. 

 

The data points specified in the GDF file filename need to be sorted in ascending z-order. Specifically for 

this 1D element the z-samples do not need to be equidistant. 

 

Example: 

map1D_B("wcs","z",1, "Bfield.gdf","z","Bz",5) ; 

 

Where the file bfield.gdf is created from the ASCII file bfield.txt: 

1. # Example Bfield. z in [mm] and Bz in [Gauss] 

2.  z  Bz 

3.  0   0 

4.  1  10 

5.  2  21 

6.  3  33 

7.  4  46 

8.  5  60 

9.  6  75 

10.  7  91 

11.  8 108 

12. … … 
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Conversion from ASCII to GDF format and conversion of the units to the MKS system used by GPT are 

done simultaneously by ASCI2GDF with the following command: 

asci2gdf –o bfield.gdf bfield.txt z 1e-3 Bz 1e-4 

4.7.2 map1D_E 

map1D_E(ECS,filename,z,Ez,Efac); 

Reads a 1D table of Ez samples on-axis from the specified GDF file and extrapolates these to a cylindrical 

symmetric field map for the electric field. 

 

ECS Element Coordinate System. 

filename Filename of GDF file containing the Ez samples along the z-axis. 

z Name of array in the file specifying the z-coordinates. 

Ez Name of array in the file specifying the longitudinal electric field on-axis. 

Efac Multiplication factor for the electric field. 

 

The fields generated by this element are derived from [13]: 
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These fields are only correct near the z-axis of the element. The map25D_E and map3D_E elements can be 

used to specify off-axis field information. 

 

A so-called ‘natural cubic spline’ is calculated from the given (z,Ez) points. It is recommended to specify 

more points at those positions where the first derivative fluctuates significantly. 

 

To keep map1D_E as versatile as possible, no assumptions are made as to the names of the columns in the 

GDF file specifying the data. The names of the columns in the GDF file have thus to be specified on the 

commandline. 

 

The data points specified in the GDF file filename need to be sorted in ascending z-order, but do not need 

to be equidistant. 

 

4.7.3 map1D_TM 

map1D_TM(ECS,filename,z,Ez,fac,phi,w); 

Reads a 1D table of Ez samples on-axis from the specified GDF file and extrapolates these to a cylindrical 

symmetric field map for a TM mode cavity. 

 

ECS Element Coordinate System. 

filename Filename of GDF file containing the Ez-samples along the z-axis. 

z Name of array in the file specifying the z-coordinates. 

Ez Name of array in the file specifying the longitudinal electric field on-axis. 

fac Multiplication factor for all fields. 

phi Phase factor:  in radians. 

w Angular frequency: . 

 

The fields generated by this element are derived from: 
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These fields are only correct near the z-axis of the element. The map25D_TM element can be used to specify 

off-axis field information. 

 

A so-called ‘natural cubic spline’ is calculated from the given (z,Ez) points. It is recommended to specify 

more points at those positions where the first derivative fluctuates significantly. 
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To keep map1D_TM as versatile as possible, no assumptions are made as to the names of the columns in the 

GDF file specifying the data. The names of the columns in the GDF file have thus to be specified on the 

commandline. 

 

The datapoints specified in the GDF file filename need to be sorted in ascending z-order, but do not need 

to be equidistant. 

4.7.4 Map2D_B 

map2D_B(ECS,mapfile.gdf,r,z,Br,Bz,Bfac) ; 

Reads a 2D cylindrical symmetric field map for the magnetic field from the specified GDF file. 

 

ECS Element Coordinate System. 

mapfile Filename of GDF file containing the fields. 

r Name of array in the file with the r-coordinates [m]. 

z  Name of array in the file with the z-coordinates.[m] 

Br Name of array in the file with the radial magnetic field [T]. 

Bz Name of array in the file with the longitudinal magnetic field [T]. 

Bfac Multiplication factor for the magnetic field. 

 

To keep map2D_B as versatile as possible, no assumptions are made as to the names of the columns in the 

GDF file specifying the data. The names of the columns in the GDF file have thus to be specified on the 

commandline. 

 

The rows specified in the GDF file filename don’t need to be in any particular order, because the complete 

set is first sorted in the r- and z-directions for convenient internal use. From this sorted data the grid 

characteristics, i.e. rmin, rmax, and rdelta, are calculated. It is verified that all the grid points are present and 

lie within a range of  10–3 off their optimal position, where  is the grid spacing in the corresponding 

direction. 

 

To calculate the fields, first the four datapoints around the particle position are determined. They are 

numbered 1 to 4 as shown in Figure 4-16. 
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Figure 4-16: Datapoints around the particle position (R,z). 

The relative distances t and u are calculated using: 
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Bilinear interpolation of the magnetic field yields: 
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Within the element, the magnetic field is continuous in all directions. 

4.7.5 Map2D_E 

map2D_E(ECS,mapfile.gdf,r,z,Er,Ez,Efac) ; 

Reads a 2D cylindrical symmetric field map for the electric field from the specified GDF file. 
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ECS Element Coordinate System. 

mapfile Filename of GDF file containing the fields. 

r Name of array in the file with the r-coordinates [m] 

z  Name of array in the file with the z-coordinates [m]. 

Er Name of array in the file with the radial electric field [V/m]. 

Ez Name of array in the file with the longitudinal electric field [V/m]. 

Efac Multiplication factor for the electric field. 

 

To keep map2D_E as versatile as possible, no assumptions are made as to the names of the columns in the 

GDF file specifying the data. The names of the columns in the GDFfile thus have to be specified on the 

commandline. 

 

The rows specified in the GDF file filename don’t need to be in any particular order, because the complete 

set is first sorted in the r-and z-directions for convenient internal use. From this sorted data the grid 

characteristics, i.e. rmin, rmax, and rdelta, are calculated. It is verified that all the grid points are present and 

lie within a range of  10–3 off their optimal position, where  is the grid spacing in the corresponding 

direction. 

 

Bilinear interpolation of the electric field yields: 
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Within the element, the electric field is continuous in all directions. 

4.7.6 Map2D_Et 

Map2D_Et(ECS,mapfile.gdf,r,z,Er,Ez,fac,tau) ; 

Reads a 2D electrostatic field-profile assuming linearly increasing amplitude as function of time. 

 

ECS Element Coordinate System. 

mapfile Filename of GDF file containing the fields. 

r Name of array in the file specifying the r-coordinates. 

z  Name of array in the file specifying the z-coordinates. 

Er Name of array in the file specifying the electric field in the r-direction. 

Ez Name of array in the file specifying the electric field in the z-direction. 

fac Multiplication factor for the fields. 

tau Inverse slope [s]. 

 

The electromagnetic fields of this element are given by: 
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where Ez,r(z,r) is read from mapfile and interpolated analogous to the map2D_E element. To prevent 

efficiency degradation, the magnetostatic field is pre-computed only once and stored in memory at the very 

beginning of the simulation. 

 

Please note that a linear slope as function of time is the only time-dependent function that can be used as 

multiplication factor for an electrostatic field map. 

 

The datapoints specified in the GDF file filename don’t need to be in any particular order, because the 

complete set is first sorted in the r- and z-directions for convenient internal use. From this sorted data the 

grid characteristics, i.e zmin, zmax, and zdelta, are extracted. It is verified that all the grid points are present 

and lie within a range of  10–3 off their optimal position, where  is the grid spacing in the corresponding 

direction. 
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4.7.7 Map2Dr_E 

map2Dr_E(ECS,mapfile.gdf,x,z,Ex,Ez,L,Efac) ; 

Reads a 2D field map in the zx-plane for the electric field from the specified GDF file. 

 

ECS Element Coordinate System. 

mapfile Filename of GDF file containing the fields. 

x Name of array in the file with the x-coordinates [m]. 

z  Name of array in the file with the z-coordinates [m] 

Ex Name of array in the file with the electric field in x-direction [V/m]. 

Ez Name of array in the file with the electric field in z-direction [V/m]. 

L ‘Thickness’ of field map [m] in y-direction. 

Efac Multiplication factor for the electric field. 

 

To keep map2Dr_E as versatile as possible, no assumptions are made as to the names of the columns in the 

GDF file specifying the data. The names of the columns in the GDF file have to be specified on the 

commandline. 

 

The rows specified in the GDF file filename don’t need to be in any particular order, because the complete 

set is first sorted in the z- and x-directions for convenient internal use. From this sorted data the grid 

characteristics, i.e. zmin, zmax, and zdelta. are calculated. It is verified that all the grid points are present and 

lie within a range of  10–3 off their optimal position, where  is the grid spacing in the corresponding 

direction. 

 

The field map is only active when |y|<L/2. In that case, bilinear interpolation of the electric field yields: 
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Within the element, the electric field is continuous in all directions. 

 

4.7.8 Map2D_V 

map2D_V(ECS,mapfile.gdf,r,z,V,Vfac,[Vtype]) ; 

Reads a 2D cylindrical symmetric field map for the electric potential from the specified GDF file. 

 

ECS Element Coordinate System. 

mapfile Filename of GDF file containing the fields. 

r Name of array in the file with the r-coordinates [m] 

z  Name of array in the file with the z-coordinates [m] 

V Name of array in the file with the electric potential [V]. 

Vfac Multiplication factor for the electric potential. 

Vtype Interpolation method for V. Must be lin. 

 

To keep map2D_V as versatile as possible, no assumptions are made as to the names of the columns in the 

GDF file specifying the data. The names of the columns in the GDF file have to be specified on the 

commandline. 

 

The rows specified in the GDF file filename don’t need to be in any particular order, because the complete 

set is first sorted in the r- and z-directions for convenient internal use. From this sorted data the grid 

characteristics, i.e. rmin, rmax, and rdelta, are calculated. It is verified that all the grid points are present and 

lie within a range of  10–3 off their optimal position, where  is the grid spacing in the corresponding 

direction. 

 

When the interpolation type for the electric potential is ‘Lin’, a bilinear interpolation is performed. The 

source code allows other interpolation types to be implemented, but currently the only available interpolation 

type is ‘Lin’. 

 

When the electric potential is specified, the electric field is calculated using 
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which yields the following using the bilinear interpolation method for potential V: 
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Please note that because the potential is interpolated linearly, its derivative E is constant between the 

gridpoints. This results in discontinuities in the electric field. A higher-order interpolation is needed to 

produce a continuous electric field. Therefore it is currently more accurate to use the electric field in a 

simulation than the potential. 

4.7.9 Map25D_E 

map25D_E(ECS,mapfile.gdf,r,z,Er,Ephi,Ez,Efac) ; 

Reads a 2.5D cylindrical symmetric field map for the electric field from the specified GDF file. 

 

ECS Element Coordinate System. 

mapfile Filename of GDF file containing the fields. 

r Name of array in the file with the r -oordinates [m]. 

z  Name of array in the file with the z-coordinates [m]. 

Er Name of array in the file with the radial electric field [V/m]. 

Ephi Name of array in the file with the azimutal electric field [V/m]. 

Ez Name of array in the file with the longitudinal electric field [V/m]. 

Efac Multiplication factor for the electric field. 

 

To keep map25D_E as versatile as possible, no assumptions are made as to the names of the columns in the 

GDF file specifying the data. The names of the columns in the GDF file have to be specified on the 

commandline. 

 

The rows specified in the GDF file filename don’t need to be in any particular order, because the complete 

set is first sorted in the r- and z-directions for convenient internal use. From this sorted data the grid 

characteristics, i.e. rmin, rmax, and rdelta, are calculated. It is verified  that all the grid points are present and 

lie within a range of  10–3 off their optimal position, where  is the grid spacing in the corresponding 

direction. 

 

Bilinear interpolation of the electric field yields: 
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The electric field is continuous in all directions. The angular electric field is not chosen to be zero, as is the 

case when using map2D_E. 

4.7.10 Map25D_B 

map25D_B(ECS,mapfile.gdf,r,z,Br,Bphi,Bz,Bfac) ; 

Reads a 2.5D cylindrical symmetric field map for the magnetic field from the specified GDF file. 

 

ECS Element Coordinate System. 

mapfile Filename of GDF file containing the fields. 

r Name of array in the file with the r-coordinates [m] 

z  Name of array in the file with the z-coordinates [m] 

Br Name of array in the file with the radial magnetic field [T]. 

Bphi Name of array in the file with the angular magnetic field [T]. 

Bz Name of array in the file with the longitudinal magnetic field [T]. 

Bfac Multiplication factor for the magnetic field. 
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To keep map25D_B as versatile as possible, no assumptions are made as to the names of the columns in the 

GDF file specifying the data. The names of the columns in the GDF file have to be specified on the 

commandline. 

 

The rows specified in the GDF file filename don’t need to be in any particular order, because the complete 

set is first sorted in the r- and z-directions for convenient internal use. From this sorted data the grid 

characteristics, i.e. rmin, rmax, and rdelta, are calculated. It is verified that all the grid points are present and 

lie within a range of  10–3 off their optimal position, where  is the grid spacing in the corresponding 

direction. 

 

Very similar, bilinear interpolation of the magnetic field yields: 
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The magnetic field is continuous in all directions, but please note that if B0 in the original datafile, the 

effect of magnetic monopoles is simulated. 

4.7.11 map25D_TM 

map25D_TM(ECS,mapfile.gdf,r,z,Er,Ez,Bphi,ffac,k,phi,w) 

Reads a 2.5D cylindrical symmetric field map of a cavity in TM-mode from the specified GDF file. 

 

ECS Element Coordinate System. 

mapfile Filename of GDF file containing the fields. 

r Name of array in the file with the r-coordinates [m]. 

z  Name of array in the file with the z-coordinates [m]. 

Er Name of array in the file with the radial electric field [V/m]. 

Ez Name of array in the file with the longitudinal electric field [V/m]. 

Bphi Name of array in the file with the angular magnetic field [T]. 

ffac Multiplication factor for the electromagnetic field. 

k Longitudinal wavenumber k in [m-1]. Must be zero for the simulation of a standing wave 

cavity. 

phi RF phase offset: . 

w Angular frequency: .in [s-1]. 

 

To keep map25D_TM as versatile as possible, no assumptions are made as to the names of the columns in 

the GDF file specifying the data. The names of the columns in the GDF file have to be specified on the 

commandline. 

 

The rows specified in the GDF file mapfile don’t need to be in any particular order, because the complete 

set is first sorted in the r- and z-directions for convenient internal use. From this sorted data the grid 

characteristics, i.e. rmin, rmax, and rdelta, are calculated. It is verified that all the grid points are present and 

lie within a range of  10–3 off their optimal position, where  is the grid spacing in the corresponding 

direction. 

 

Very similar to map25D_B, bilinear interpolation of the electromagnetic field yields: 
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FISH2GDF can be used to import fieldmaps created by the SUPERFISH set of codes. The converted file can 

subsequently be read using: 

map25D_TM("wcs","I","fieldmap.gdf","R","Z","Er","Ez","H", 1,0, phi,2*pi*freq) ; 

4.7.12 Map3D_E 

map3D_E(ECS,mapfile.gdf,x,y,z,Ex,Ey,Ez,Efac) ; 

Reads a 3D rectangular field map for the electric field from the specified GDF file. 
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ECS Element Coordinate System. 

mapfile Filename of GDF file containing the fields. 

x Name of array in the file with the x-coordinates [m]. 

y Name of array in the file with the y-coordinates [m]. 

z  Name of array in the file with the z-coordinates [m]. 

Ex Name of array in the file with the electric field in the x-direction [V/m]. 

Ey Name of array in the file with the electric field in the y-direction [V/m]. 

Ez Name of array in the file with the electric field in the z-direction [V/m]. 

Efac Multiplication factor for the electric field. 

 

To keep map3D_E as versatile as possible, no assumptions are made as to the names of the columns in the 

GDF file specifying the data. The names of the columns in the GDF file have to be specified on the 

commandline. 

 

The rows specified in the GDF file filename don’t need to be in any particular order, because the complete 

set is first sorted in the x-, y- and z-directions for convenient internal use. From this sorted data the grid 

characteristics, i.e. xmin, xmax, and xdelta, are calculated. It is verified that all the grid points are present 

and lie within a range of  10–3 off their optimal position, where  is the grid spacing in the corresponding 

direction. 

 

To calculate the fields, first the eight datapoints around the particle position are determined. They are 

numbered 1 to 8 as shown in Figure 4-17. 

 
 

z 

(x,y,z) t 

v 
u 

 y 
 x 

 6 5 

 2 1 

 7 8 

 3 4 

 
Figure 4-17: Datapoints around the particle position (x,y,z). 

The relative distances t, u and v are calculated using: 
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Bilinear interpolation of the electric field yields: 
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The electric field is continuous in all directions. 

 

4.7.13 Map3D_TM 

map3D_TM(ECS,mapfile.gdf,x,y,z,Ex,Ey,Ez,Bx,By,Bz,ffac,phi,w) ; 

Reads a 3D rectangular field map for a standing electromagnetic wave pattern from the specified GDF-file. 

 

ECS Element Coordinate System. 
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mapfile Filename of GDF-file containing the fields. 

x Name of array in the file specifying the x coordinates. 

y Name of array in the file specifying the y coordinates. 

z  Name of array in the file specifying the z coordinates. 

Ex Name of array in the file specifying the electric field in the x direction. 

Ey Name of array in the file specifying the electric field in the y direction. 

Ez Name of array in the file specifying the electric field in the z direction. 

Bx Name of array in the file specifying the magnetic field in the x direction. 

By Name of array in the file specifying the magnetic field in the y direction. 

Bz Name of array in the file specifying the magnetic field in the z direction. 

ffac Multiplication factor for the field. 

phi Phase offset: . 

w Angular frequency: . 

 

The electromagnetic fields of this element are given by: 

int

int

)sin(

)cos(

BB

EE





+−=

+=

tw

tw  

Where Eint and Bint are obtained by trilinear interpolation of the fields specified in mapfile. Pleaase see 

map3D_E and map3D_B for a description of the interpolation equations. 

 

To keep map3D_TM as versatile as possible, no assumptions are made as to the names of the columns in the 

GDF-file specifying the data. Therefore the names of the columns in the GDF-file have to be specified on 
the commandline. 

 

The datapoints specified in the GDF-file filename don’t need to be in any particular order, because the 

complete set is first sorted in the x, y and z directions for convenient internal use. From this sorted data the 

grid characteristics, i.e. minimum, maximum and spacing are extracted. Then it is made sure that all the grid 

points are present and lie within a range of  10–3 off their optimal position, where  is the grid spacing in 

the corresponding direction. 

 

Example: 

Map3D_TM("wcs","z",1, "EBmap.gdf", 

"x","y","z","Ex","Ey","Ez","Bx","By","Bz", 

1.0, 0.0, 2998e6) ; 

 

Where the file EBmap.gdf is created from the ASCII file EBfield.txt: 

13. # Example EBfield. r in [mm], E in [V/m] and B in [Gauss] 

14. x y z Ex Ey Ez Bx By Bz 

15. … … … … … … … … … 

16. … … … … … … … … … 

 

Conversion from ASCII to GDF format and conversion of the units to the MKS system used by GPT are 

done simultaneously by ASCI2GDF with the following command: 

ASCI2GDF –o EBmap.gdf EBfield.txt x 1e-3 y 1e-3 z 1e-3 Ex 1 Ey 1 Ez 1 Bx 1e-4 

By 1e-4 Bz 1e-4 

4.7.14 Map3D_Ecomplex 

map3D_Ecomplex(ECS,mapfile.gdf,x,y,z,Exre,Eyre,Ezre,Exim,Eyim,Ezim,ffac,phi,w) 

; 

Reads a 3D rectangular field map for an oscillating electric field from the specified GDF-file. 

 

ECS Element Coordinate System. 

mapfile Filename of GDF-file containing the fields. 

x Name of array in the file specifying the x coordinates. 

y Name of array in the file specifying the y coordinates. 

z  Name of array in the file specifying the z coordinates. 

Exre Name of array in the file specifying the real part of the electric field in the x direction. 

Eyre Name of array in the file specifying the real part of the electric field in the y direction. 
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Ezre Name of array in the file specifying the real part of the electric field in the z direction. 

Exim Name of array in the file specifying the imaginary part of the electric field in the x 

direction. 

Eyim Name of array in the file specifying the imaginary part of the electric field in the y 

direction. 

Ezim Name of array in the file specifying the imaginary part of the electric field in the z direction. 

ffac Multiplication factor for the field. 

phi Phase offset: . 

w Angular frequency: . 

 

The electric fields of this element are given by: 

re imcos( ) sin( )w t w t = + − +E E E  

Where Ere and Eim are obtained by trilinear interpolation of the fields specified in mapfile. Pleaase see 

map3D_E and map3D_B for a description of the interpolation equations. 

 

To keep map3D_Ecomplex as versatile as possible, no assumptions are made as to the names of the columns 

in the GDF-file specifying the data. Therefore the names of the columns in the GDF-file have to be specified 

on the commandline. 

 

The datapoints specified in the GDF-file filename don’t need to be in any particular order, because the 

complete set is first sorted in the x, y and z directions for convenient internal use. From this sorted data the 

grid characteristics, i.e. minimum, maximum and spacing are extracted. Then it is made sure that all the grid 

points are present and lie within a range of  10–3 off their optimal position, where  is the grid spacing in 

the corresponding direction. 

4.7.14.1 CST MW-Studio 

Fields calculated by the Eigenmode solver of CST Microwave Studio can be imported in GPT with a trivial 

modification. The procedure for the E field is as follows: 

 

In CST MW-Studio: 

• Select the desired eigenmode in the Navigation Tree, under 2D/3D Results/Mode n. 

• Typically, only a small part of the calculation domain is relevant for tracking. The desired subvolume 

to be exported can be defined under Properties…/Specials…/Subvolume… 

• Export the fields in the subvolume with File/Export/Plot data (ASCII). The step width must be fixed, 

but it does not need to be equal in all directions. 

 

With an ASCII editor capable of handling large files: 

• The first two lines of the ASCII file produced by MW-Studio are typically 

     x [mm]         y [mm]         z [mm]     ExRe [V/m]     EyRe [V/m]     EzRe [V/m]     ExIm [V/m]     … 

---------------------------------------------------------------------------------------------------------

-… 

• These two lines must be changed into the following single line, where spacing is irrelevant 

x y z ExRe EyRe EzRe ExIm Eyim Ezim 

 

In GPT: 

• Before this ASCII file can be used as a field-map in a GPT inputfile, it must be converted to the GDF 

format. Assuming the ASCII filename is mapE.txt, and assuming the dimensions are in mm, this can 

be done in a (GPT) batch file with 

asci2gdf –o mapE.gdf mapE.txt x 1e-3 y 1e-3 z 1e-3 

• It is good practice to check the produced field map by opening it in GPTwin and just plotting a few 2D 

projections, such as z-Ezre, x-y, etc. 

• The field map can subsequently be positioned in a GPT inputfile with: 

Zpos=1.3 ; # z-position of z=0 in the field-map 

fac=1 ; 

w=2*pi*2998e6 ; 

phi=0 ; 

map3D_Ecomplex("wcs", "z",zpos, "mapE.gdf", "x","y","z", 

"Exre","Eyre","Ezre", "Exim","Eyim","Ezim", fac,phi,w) ; 
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The procedure for importing the H field is fully analogous, where it is noted that the two field-map elements 

are imported on top of each other in the GPT inputfile. This is by design; GPT automatically adds all fields, 

and the combination of the E and B fields is the desired total field. 

4.7.15 Map3D_Hcomplex 

map3D_Hcomplex(ECS,mapfile.gdf,x,y,z,Hxre,Hyre,Hzre,Hxim,Hyim,Hzim,ffac,phi,w) 

; 

Reads a 3D rectangular field map for an oscillating magnetic field from the specified GDF-file. 

 

ECS Element Coordinate System. 

mapfile Filename of GDF-file containing the fields. 

x Name of array in the file specifying the x coordinates. 

y Name of array in the file specifying the y coordinates. 

z  Name of array in the file specifying the z coordinates. 

Hxre Name of array in the file specifying the real part of the electric field in the x direction. 

Hyre Name of array in the file specifying the real part of the electric field in the y direction. 

Hzre Name of array in the file specifying the real part of the electric field in the z direction. 

Hxim Name of array in the file specifying the imaginary part of the electric field in the x 

direction. 

Hyim Name of array in the file specifying the imaginary part of the electric field in the y 

direction. 

Hzim Name of array in the file specifying the imaginary part of the electric field in the z direction. 

ffac Multiplication factor for the field. 

phi Phase offset: . 

w Angular frequency: . 

 

The electromagnetic fields of this element are given by: 

0 re 0 imcos( ) sin( )w t w t   = + − +B H H  

Where Hre and Him are obtained by trilinear interpolation of the fields specified in mapfile. Pleaase see 

map3D_E and map3D_B for a description of the interpolation equations. 

 

To keep map3D_Hcomplex as versatile as possible, no assumptions are made as to the names of the columns 

in the GDF-file specifying the data. Therefore the names of the columns in the GDF-file have to be specified 

on the commandline. 

 

The datapoints specified in the GDF-file filename don’t need to be in any particular order, because the 

complete set is first sorted in the x, y and z directions for convenient internal use. From this sorted data the 

grid characteristics, i.e. minimum, maximum and spacing are extracted. Then it is made sure that all the grid 

points are present and lie within a range of  10–3 off their optimal position, where  is the grid spacing in 

the corresponding direction. 

4.7.16 Map3D_V 

map3D_V(ECS,mapfile.gdf,x,y,z,V,Vfac,[Vtype]) ; 

Reads a 3D rectangular field map for the electric potential from the specified GDF file. 

 

ECS Element Coordinate System. 

mapfile Filename of GDF file containing the fields. 

x Name of array in the file with the x-coordinates. 

y Name of array in the file with the y-coordinates. 

z  Name of array in the file with the z-coordinates. 

V Name of array in the file with the electric potential. 

Vfac Multiplication factor for the electric potential. 

Vtype Interpolation method for V. Must be "lin". 

 

To keep map3D_V as versatile as possible, no assumptions are made as to the names of the columns in the 

GDF file specifying the data. The names of the columns in the GDF file have to be specified on the 

commandline. 
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The rows specified in the GDF file filename don’t need to be in any particular order, because the complete 

set is first sorted in the x-, y- and z-directions for convenient internal use. From this sorted data the grid 

characteristics, i.e. xmin, xmax, and xdelta, are calculated. It is verified that all the grid points are present 

and lie within a range of  10–3 off their optimal position, where  is the grid spacing in the corresponding 

direction. 
 

When the interpolation type for the electric potential is "lin", a bilinear interpolation is performed. The 

source code allows other interpolation types to be implemented, but currently the only available interpolation 

type is "lin".  

 

When the electric potential is specified, the electric field is calculated using 
VV grad−=−=E  

which yields the following using the bilinear interpolation method for potential V: 
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Please note that because the potential is interpolated linearly, its derivative E is constant between the 

gridpoints. This results in discontinuities in the electric field. A higher-order interpolation is needed to 

produce a continuous electric field. Therefore it is currently more accurate to use the electric field in a 

simulation than the potential. 

4.7.17 Map3D_B 

map3D_B(ECS,mapfile.gdf,x,y,z,Bx,By,Bz,Bfac) ; 

Reads a 3D rectangular field map for the magnetic field from the specified GDF file. 

 

ECS Element Coordinate System. 

mapfile Filename of GDF file containing the fields. 

x Name of array in the file with the x-coordinates. 

y Name of array in the file with the y-coordinates. 

z  Name of array in the file with the z-coordinates. 

Bx Name of array in the file with the magnetic field in the x-direction. 

By Name of array in the file with the magnetic field in the y-direction. 

Bz Name of array in the file with the magnetic field in the z-direction. 

Bfac Multiplication factor for the magnetic field. 

 

To keep map3D_B as versatile as possible, no assumptions are made as to the names of the columns in the 

GDF file specifying the data. The names of the columns in the GDF file have to be specified on the 

commandline. 

 

The rows specified in the GDF file filename don’t need to be in any particular order, because the complete 

set is first sorted in the x-, y- and z-directions for convenient internal use. From this sorted data the grid 

characteristics, i.e. xmin, xmax, and xdelta, are calculated. It is verified that all the grid points are present 

and lie within a range of  10–3 off their optimal position, where  is the grid spacing in the corresponding 

direction. 

 

Very similar, bilinear interpolation of the magnetic field yields: 
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The magnetic field is continuous in all directions, but please note that if B0 in the original datafile, the 

effect of magnetic monopoles is simulated. 

4.7.18 Map3D_remove 

map3D_remove(ECS,mapfile.gdf,x,y,z,R) ; 

Reads a 3D rectangular map indicating if a particle must be removed or not. 

 

ECS Element Coordinate System. 

mapfile Filename of GDF file containing the fields. 

x Name of array in the file with the x-coordinates. 

y Name of array in the file with the y-coordinates. 

z Name of array in the file with the z-coordinates. 

R Name of array in the file containing either 1 or 0, where 1 indicates that all particles at that 

location must be removed. 

 

To keep map3D_remove as versatile as possible, no assumptions are made as to the names of the columns 

in the GDF file specifying the data. The names of the columns in the GDF file have to be specified on the 

commandline. 

 

The rows specified in the GDF file filename don’t need to be in any particular order, because the complete 

set is first sorted in the x-, y- and z-directions for convenient internal use. From this sorted data the grid 

characteristics, i.e. xmin, xmax, and xdelta, are calculated. It is verified that all the grid points are present 

and lie within a range of  10–3 off their optimal position, where  is the grid spacing in the corresponding 

direction. 

 

Particles are removed if the bilinar interpolated value of all corners of the enclosing box is larger than 0.5. 
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4.8 Spacecharge 

This section describes the built-in space-charge routines of GPT. Please see section 1.5 for a brief comparison 

between the different routines. 

 

4.8.1 Spacecharge3Dmesh ................................................................................................................. 188 
4.8.2 spacecharge3Dtree .................................................................................................................... 196 
4.8.3 Spacecharge3D ......................................................................................................................... 198 
4.8.4 Spacecharge3Dclassic............................................................................................................... 199 
4.8.5 SetTotalCharge ......................................................................................................................... 199 
4.8.6 Spacecharge2Dcircle ................................................................................................................ 199 
4.8.7 Setcharge2Dcircle ..................................................................................................................... 201 
4.8.8 Spacecharge2Dline ................................................................................................................... 201 
 

It is possible to write new and/or more efficient space-charge models for specific situations. The procedure 

to develop such custom space-charge models is given in the GPT Programmer’s Reference. 

 

GPT uses the concept of macro-particles: Every particle in the simulations represents a (large) number of 

elementary particles. In the case of simulations of granularity/stochastic effects, every particle in the 

simulations must represent exactly one elementary particle. In other words, Qtot=N·q, where Qtot is the total 

charge, N the number of particles and q the charge of an elementary particle. The simplest method is to set 

the total charge based on the number of particles (assuming electrons, and assuming N is defined elsewhere): 

Qtot = N*qe ; 

setparticles("beam",N,me,qe,Qtot) 

 

Alternatively, it is possible to calculate the number of particles based on the total charge Qtot (assuming 

electrons, and assuming Qtot is defined elsewhere): 

N = round(|Qtot/q|) ; 

setparticles("beam",N,me,qe,Qtot) 

where the round() function rounds towards the nearest integer and where || indicates the absolute value. 

4.8.1 Spacecharge3Dmesh 

spacecharge3Dmesh([option,parameter(s)],...) ; 

Mesh-based 3D space-charge routine. 

 

We would like to express our thanks to Dr Gisela Pöplau from Rostock University, Germany for the 

development of the non-equidistant 3D multi-grid Poisson solver, tailor-made for this application. 

4.8.1.1 Syntax and options 

The sc3dmesh element calculates 3D space-charge fields by solving Poisson’s equations on a non-

equidistant mesh adapted to the beam geometry. The model is very fast, allowing over a million particles to 

be tracked on a normal PC. The element scales almost linear with the number of particles in terms of CPU 

time. This element is not suitable for the simulation of the effect of short-range Coulomb interactions such 

as disorder induced heating. Please see section 4.8.2 for the correct approach for calculating point-to-point 

interactions. 

 

The charge density is determined on a mesh in the rest frame of the bunch where no self-magnetic fields are 

present. A non-equidistant multi-grid technique is used to solve Poisson’s equation to obtain the electrostatic 

potential. Interpolations and Lorentz transformations are used to transform the particle coordinates to the rest 

frame and to transform the calculated fields back to the laboratory frame. 

 

Note: This element gives a poor estimate of the space-charge forces in bunches with a large energy spread, 

because particles still have relatively large velocities in the rest frame of the bunch. A warning is printed to 

inform the users when this is the case. 

 

Option Parameter(s) Default Description 
"RestMaxGamma" Gmax 2.0 Triggers a warning when particles have a Lorentz 

factor larger than Gmax in the zero-momentum 

frame of the bunch. 
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Option Parameter(s) Default Description 

    
"MeshNtotal" [Nx,Ny,Nz] 

 
 Use a total of Nx, Ny and Nz meshlines in the x-, y- 

and z-direction respectively to fill the bounding box. 
    
"MeshNbunch" Nx,Ny,Nz  Slice the particle bunch in Nx, Ny and Nz meshlines 

in the x-, y- and z-direction respectively. Additional 

meshlines are added in all directions to fill the 

bounding box. 
    
"MeshNfac" Alpha 1 Automatically determine the total number of 

meshlines in the bunch using the following 

equation: 
"MeshNpow" mpow 1/3 Nx=Ny=Nz=alpha*Nparticles^mpow. 

Can be used in combination with MeshNtotal 

without parameters to specify the total number of 

meshlines in the bounding box instead of in the 

bunch. 
    

"MeshAdapt" Fn 0.5 Sets the mesh adaptivity. The meshing algorithm 

ensures that the maximum difference in distance 

between neighboring meshlines is always kept less 

than the specified fn. 
    
"MemOvershoot" n 10 Percentage of memory overhead consumed by the 

memory management scheme. If set to 0, all block 

memory management is disabled resulting in the 

lowest memory consumption at the cost of a 

significant increase in page faults and CPU time. 
    
"MeshBoxSize" Nstd 5 Sets the minimum size of the bounding box in units 

of standard deviation for each dimension. 
"MeshBoxAccuracy" macc 0.3 Sets the minimum size of the bounding box, as a 

fraction of the effect of image charges in the walls 

of the box. 
"MeshMaxAspect" A  Enforces the maximum ratio between the largest and 

smallest mesh-spacing in each dimension to be less 

than A. Because this restriction is enforced by 

reducing the mesh adaptivity, using this option can 

result in a dramatic increase in the number of 

meshlines. 
    
"SolverAcc" Verror 0.01 Sets the accuracy of the multigrid Poisson solver. 
"SolverMethod"  "MGCG" Sets the method of the Poisson solver to any of the 

options listed below.  
 "MG"  Multigrid algorithm. 
 "MGCG"  Multigrid preconditioned cg-algorithm. 
 "CG"  Preconditioned cg-algorithm. 
 "SOR"  Use SOR procedure, for comparisons only. 
"SolverStartZero"   Start from zero potential. If not specified, the solver 

starts from the previously obtained solution if the 

mesh size equal to mesh size of previous step. 
    
"Cathode"   Simulates a flat cathode plane by setting a dirichlet 

boundary condition at z=0. Truncates the bounding 

box at all negative z-coordinates. 
"BoundaryOpen"   Use open boundary conditions. 
"BoundaryXperiodic" Xsize  Use periodic boundary conditions in X. Not 

implemented yet. 
"BoundaryYperiodic" Ysize  Idem in Y. 
"BoundaryZperiodic" Zsize  Idem in Z. 
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Option Parameter(s) Default Description 
"BoundaryXYpipe" Xsise,Ysize  Use Dirichlet boundary conditions on a beam-pipe 

with elliptical cross section in the xy-plane. Work in 

progress… 
"Boundaries" String "DDD 

DDD" 
Specify boundary conditions for each boundary 

individually, as a string in the following order: 

xmin, xmax, ymin, ymax, zmin, zmax. Options are several 

combinations of ‘DAOPEN’, see section 4.8.1.8. 
"BeamScale" small, 

large 
10–4 

10+4 

Enforces the bunch aspect-ratio between small and 

large using a linear coordinate transform. The 

electromagnetic fields are adapted accordingly, but 

results will be incorrect when feature sizes in the 

bunch with an aspect ratio outside the specified 

range are present. 
"Fieldfactor" scale 1 Multiplication factor for all fields. 
"MeshBoxXYmax" size  Limits the transverse size of the mesh to given size. 

 

The typical use of the sc3dmesh element is to use the default settings: 

sc3dmesh() ; 

 

To overwrite any of the default settings, the name of the option must be specified followed by one or more 

parameters. For example, to set a fixed number of 33 meshlines in all directions, the following line must be 

used: 

sc3dmesh("MeshNtotal",33,33,33) ; 

 

The order of independent options is irrelevant. As a result, to combine a fixed number of meshlines with the 

simulation of a cathode plane at z=0, either one of the following lines can be used: 

sc3dmesh("Cathode","MeshNtotal",33,33,33) ; 

sc3dmesh("MeshNtotal",33,33,33, "Cathode") ; 

4.8.1.2 Introduction to the algorithms 

The chosen algorithm for this space-charge model in GPT is a mesh-based Poisson solver in the rest frame 

of the bunch. First the bunch is transformed to the frame with no average momentum. In this rest frame, only 

electrostatic forces are present as long as the velocities in this frame are non-relativistic. The bunch length 

in the rest frame is longer by the Lorentz factor . 

 

Subsequently, a Cartesian mesh is generated in a box around the bunch. The distribution of the meshlines is 

non-equidistant and adapted to the projected charge density. To reduce the number of meshlines needed, an 

adaptive meshing technique is used. The purpose of this scheme is to both reduce ‘wasted’ CPU time in 

empty volume and reduce numerical errors by choosing more meshlines in regions with higher charge 

density. 

 

The non-equidistant mesh is used to store an approximation of the charge density on the corners of the mesh. 

This information is obtained using a linear distribution of the charge of every particle over the eight corners 

of its enclosing meshbox. 

 

The charge density on the mesh is fed into a Poisson solver to obtain the potential. A state-of-the-art multigrid 

Poisson solver has been constructed for the non-equidistant meshes described in subsection 4.8.1.8. It scales 

linearly in CPU time with the number of meshnodes. Selectable Dirichlet or open boundary conditions allow 

the simulation of bunches within pipes with rectangular cross section, bunches near a cathode and a bunch 

in open space. 

 

The resulting potential is interpolated and differentiated using a 2nd order interpolation scheme to obtain the 

electric field in the rest frame of the bunch at all particle coordinates. This electric field is transformed back 

to the laboratory frame to obtain the electric and magnetic fields. The GPT kernel combines these fields with 

the external fields in the tracking engine. 

 

The chosen algorithm implies that the velocity in the rest frame of the bunch is non-relativistic. This 

assumption is not always true for long bunches in the first stages of acceleration. Therefore, it is possible 
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that new electrons are emitted with an energy in the eV level while the front of the bunch has already been 

accelerated to relativistic velocities. This is a known limitation of the routine reducing the applicability. 

4.8.1.3 Rest frame 

The first step in calculating the space-charge forces is the determination of a rest-frame velocity. This is the 

frame in which all particle velocities are (nearly) zero, resulting in an electrostatic field only. Because not all 

particles have equal velocity in a bunch with energy spread, a shared rest frame typically does not exist. The 

rest frame is then defined as the frame in which the total momentum is zero. The velocity o of this frame is 

defined by the average of all particle velocities, weighted by the Lorentz factor : 
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where ni is the number of elementary particles represented by the macro-particle i. The normalized 
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When there is energy spread, the velocity of the rest frame is identical to the average velocity only when all 

velocities are non-relativistic. 

 

The particle coordinates ri are different in the rest frame, denoted with a prime. They are a factor 0 expanded 

in the direction of the velocity of the frame: 
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The particle velocity ui hereby changes also: 
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It’s more convenient to use the Lorentz factor given by: 

)1( 00' uuu  −=   

 

Ideally, all velocities in the rest frame are well below the speed of light. If this is not the case, a warning is 

printed counting the number of particles with a Lorentz factor u’ larger than Gmax. The parameter Gmax can 

be set with the "RestMaxGamma" option. 

4.8.1.4 Bounding box 

To calculate the electromagnetic potential, a Cartesian 3D mesh is used to store an estimate of the charge in 

the rest frame of the bunch. To solve the potential in free space, an infinite mesh is required. Because this is 

impractical, the actual mesh is truncated at a bounding box where the potential is assumed to be zero. The 

center of this bounding box is chosen as the average particle coordinate in the rest frame of the bunch. The 

effect of a bounding box (with Dirichlet boundary conditions) is similar to the effect of image charges. 

 

Choosing a too large box is a waste of CPU time and memory, while choosing a too small box violates the 

assumption that the potential at the edges of the bounding box is zero. A combination of several options is 

available to set the correct size of the bounding box. The minimum size of the bounding box is always nstd 

times the standard deviation in each dimension, as can be set with the "MeshBoxSize" option. For low and 

high aspect ratio bunches this sets a too small box for the transverse and longitudinal dimensions respectively. 

The "MeshBoxAccuracy" option can be used to increase the box based on the maximum ratio of the actual 

fields divided by the fields produces by the image charges. This essentially makes the box sufficiently large 

to mimic a free space calculation. However, in extreme cases, this can set a mesh that is larger than the 

physical size of the beam pipe. This gives unphysical results and it is also a waste of CPU time to zero a 

large mesh. The "MeshBoxXYmax" option can be used to limit to maximum transverse size of the mesh that 
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is used for the space-charge calculations. The size should be set to the actual size of the beam pipe where it 

should be noted that the pipe is assumed to have square cross section. 

4.8.1.5 Number of meshlines 

The bounding box is divided by a number of Carthesian meshlines. The meshlines form the edges of 

rectangular boxes filling the calculation domain. As explained in subsequent sections, the corners of the 

boxes, the crossings of the meshlines, are used to store an estimate of the charge density and to calculate the 

electrostatic fields. 

 

Figure 4-18 shows a schematic of a typical meshline distribution in one dimension. A number of meshlines 

within the bunch dimension, Nbunch, are positioned more closely together where more charge is present. The 

lower and upper parts of the bounding box are filled with Nlow and Nupp meshlines repectively, where the 

spacing between the meshlines gradually increases near the edge of the bounding box. The total number of 

meshlines is Ntotal. 

 
 

Nbunch Nlow Nupp Ntotal + + = 

 
Figure 4-18: One-dimensional schematic of a typical meshline distribution. 

By default, the number of meshlines in the bunch, Nbunch, is equal in all directions and chosen as a function 

of the number of particles N: 
mpow

alpha NN bunch =  

where alpha and mpow can be set with the "MeshNfac" and "MeshNpow" options. 

 

Alternatively, the number of meshlines slicing the bunch can be specified with the "MeshNbunch" option. 

Then, the number of meshlines in the bunch is fixed at Nx, Ny and Nz in the x-, y- and z-direction respectively 

and set independent on the number of particles in the bunch. In both cases, the space between the bunch and 

the edges of the bounding box is filled with as few additional meshlines as possible to save CPU and memory 

usage, see section 4.8.1.6. 

 

A disadvantage of the options above is that an a-priori unknown number of meshlines are added to fill the 

bounding box. This can result in unpredictable memory usage and CPU time. To avoid this, the 

"MeshNtotal" option sets the total number of meshlines in the bounding box. When "MeshNtotal" is 

specified without further parameters, the total number of meshlines, Ntotal, is equal in all directions and given 

by: 
mpow

alpha NN total =   

With parameters, the total number of meshlines is Nx, Ny and Nz in the x-, y- and z-direction respectively. 

4.8.1.6 Meshline positions 

The positioning of the meshlines is an iterative process. To determine the position of the x’-lines, planes in 

the yz-plane, first a histogram of the x’-coordinates of the particles is created. To obtain a good trade-off 

between bin width and noise, the number of bins is taken equal to the square root of the number of particles, 

see Figure 4-19. 
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Figure 4-19: Particle positions in the xy-plane and a corresponding x-histogram for a Gaussian charge-density 

distribution. 10,000 sample particles are used for a Gaussian distribution with =1. 

The next step approximates the Cumulative Density Function (CDF) by integrating the histograms. To 

compensate for the fact that we use three projections to adapt the meshline spacing to the charge density, the 

cubic root of the height of the histograms is used. This typically broadens the distribution. The inverse of 

this CDF is used to map Nx equidistantly spaced points to Nx meshline positions following the beam density. 

 

The above procedure, however, cannot be used directly because it allows very large differences in 

neighboring mesh intervals, creating a non-optimal meshline distribution for the Poisson solver described in 

section 4.8.1.8. Therefore, the fn parameter is introduced to restrict the difference in spacing between 

neighboring meshlines. When fn is 0.25, this means that the difference in spacing between neighboring 

meshlines cannot vary by more than 25%. As an example, any mesh spacing of 1 mm with fn=0.25 enforces 

a spacing between 0.8 and 1.25 mm for its neighbours. The parameter fn can be set with the "MeshAdapt" 

option. 

 

To span the mesh over the bounding box defined in 

section 4.8.1.4, additional meshlines are added left 

and right of the bunch. The spacing of these 

additional meshlines is increased towards the 

boundary, restricted to fn, to add as few lines as 

possible. If a fixed number of meshlines is chosen, 

the number of meshlines in the bunch decreases 

proportionally with the increase of meshlines 

between the edge of the bunch and the edge of the 

bounding box. 

 

The addition of meshlines and the effect of fn is 

shown in Error! Reference source not found.H. W

hen fn=0, the spacing between all neighboring 

meshlines is allowed to vary by 0%, creating an 

equidistant mesh. Such a mesh is most stable to solve 

for the Poisson solver, but it will create many empty 

meshboxes. On the other extreme, setting fn=0.5 

results in dense sampling of the electron bunch and 

sparse sampling of the surrounding area. 

4.8.1.7 Charge on mesh 

After the meshlines are positioned, the charge of all 

particles is distributed over the corners of the 

meshboxes using a trilinear interpolation technique. 

For every particle, the corresponding meshbox index 

(nx,ny,nz) is found by three separate bisection 

searches for the three dimensions. Then the relative 

distances t, u and v to the lower, left, bottom corner 

of the box are calculated from the meshlines 

positions l: 
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Figure 4-20: xy-meshline positions for a Gaussian 

charge density with fn=0 (top), fn=0.2 (middle) and 

fn=0.5 (bottom), with a bounding box of 5 sigma. The 

vertical axis shows the total charge in each meshbox, 

where the height of the top has been normalized in all 

plots individually. 
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The charge Qi of each particle i is distributed over all eight corners Qmesh(nx,ny,nz) of the enclosing meshbox 

as follows: 
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4.8.1.8 Solve potential 

The electrostatic potential V in the rest frame of the bunch satisfies Poisson’s equation: 

0

2 / =− V  in  ,  

where  is the charge density given in units of [C/m3] and  denotes the bounding box explained in section 

4.8.1.4. 

 

Possible boundary conditions are: 

‘D’: Dirichlet boundary conditions with V=0 on  . 

‘A’: Dirichlet boundary conditions with an approximate value for the potential at the boundary based on the 

analytical expressions of a uniformly charged brick with equal RMS sizes. 

‘O’: Open boundary conditions, which describe the decay of the potential of the bunch and ensure that 

0lim =→ Vr
. 

‘P’: Periodic boundary condition. Not implemented yet. 

‘E’: Elliptical boundary condition. Work in progress… 

‘N’: Neumann boundary condition with 0/ = nV  on  . 

 

Poisson’s equation is discretized by means of second-order finite differences. The generation of the 

underlying mesh is described in section 4.8.1.6. The resulting linear system of equations 
meshmesh QAV =  is 

solved by means of a multigrid (MG) technique adapted to non-equidistant grids. A more detailed description 

of this solver can be found in [17, 18]. 

 

The input of the Poisson solver are the meshline positions and the charge on all meshnodes Qmesh(nx,ny,nz). 

The output is the potential on all meshnodes Vmesh(nx,ny,nz). 

 

Two multigrid schemes are implemented: The most stable algorithm is the multigrid preconditioned 

conjugate gradient method (MGCG) that is set as default. For saving CPU time it is possible to choose the 
plain MG algorithm for bunches with ‘good’ behavior: 

sc3dmesh("SolverMethod","MG") ; 

 

The number of multigrid iterations is determined by the option "SolverAcc" with the default setting 10–2. 

That means for the relative residual 

,10
||

|| 2

max

max

)(

−
−

mesh

mesh

n

mesh

Q

QAV   

where )(n

meshV  denotes the solution after n multigrid iterations. In our experience this solver accuracy suffices 

for most applications. A smaller number usually does not improve the result because all discretizations 

occurring in the simulation (this also applies to the tracking itself) restrict the accuracy that can be achieved. 

Furthermore the achievable accuracy is restricted by the noise that the charge density contains. 
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In cases the multigrid Poisson solver does not provide acceptable results, or does not even converge, several 

parameters can be changed: 

 

Change the size of the bounding box 

In several cases enlarging the bounding box helps. This leads  to a better approximation of the field near the 

surface of this bounding box (see section 4.8.1.4) in cases where the field of the bunch decays. 

If the potential of the bunch has a decay of at least as 1/r, the difference between simulations with Dirichlet 

or open boundaries is not essential. In case the stability of the algorithm turns out to be a problem Dirichlet 

boundary conditions should be preferred. 

 

Change the Poisson solver algoritnm 

Beside the multigrid algorithms two other Poisson solvers are implemented: A preconditioned conjugate 

gradient (CG) method with the diagonal of the matrix A as preconditioner and the SOR relaxation. The related 

commands are: 

sc3dmesh("SolverMethod","CG"); and sc3dmesh("SolverMethod","SOR"); respectively. 

Although both algorithms are much slower than the multigrid method (CG faster that SOR) they can be 

applied in order to verify that the problem is due to the solver (for instance no convergence). 

 

Change the discretization: 

Problems with the Poisson solver are mostly caused by the discretization. As already mentioned in section 

4.8.1.6 large differences in neighboring step sizes can be the underlying reason. Furthermore, the global 

aspect ratio hmax/hmin must not be too large. A smaller value for fn, which controls the step sizes of the mesh, 

therefore improves the discretization of Poisson’s equation, e.g. sc3dmesh("MeshAdapt",0.2); 

Another possibility to verify the mesh is to vary the number of meshlines (see section 4.8.1.5). A general 

advice cannot be given because an appropriate choice very much depends on the characteristics of the 

application. Note that a larger number of meshlines specified with "MeshNtotal" usually provides an 

undesired larger aspect ratio! 

4.8.1.9 Interpolate E’ from V’ 

The electric field in the rest frame of the bunch is given by the derivative of the potential: 

V−='E   

 

Centered differencing and a trilinear interpolation scheme are used to calculate this derivative at all particle 

positions. First, for every particle, the procedure described in 4.8.1.7 is again used to find the enclosing 

meshbox index (nx,ny,nz). To obtain the x-component of the electric field, first the electric fields interpolated 

at the left and at the right sides of the box, trilinear interpolated to the yz-position of the particle, are 

calculated using centered differencing: 
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The notation V(a,b,c) is used to represent the potential V at index (nx+a,ny+b,nz+c). 

 

Linear interpolation is used to obtain the final x-component of the electric field at the particle position: 

rightxleftxx EtleftEtE ,,)1( +−−=   

 

The equations for the y- and z-components of the electric field are fully analogous. 

4.8.1.10 Aspect-ratio scaling 

Very low and very high aspect ratio bunches are difficult to simulate with the described mesh-based space-

charge routine. For relatively uniform bunches, an option to increase the accuracy is to multiply the particle 

coordinates in one dimension such that the aspect ratio of the bunch falls in the range between 0.01 and 100. 

 

Very high aspect ratio bunches (A>100) have nearly identical fields when the total charge is constant. From 

a physical point of view this is clear, because in the ‘pancake’ regime the bunch behaves as a surface charge 
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and the precise thickness of this surface does not affect the fields. As a result, it is safe to scale the 

longitudinal coordinate of all particles in a pancake bunch as long as it stays sufficiently flat. Symbolically: 

If 
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/  where Slarge≈100  

Clearly, this scaling can only be used when the features of interest in the bunch are ‘pancake’. If a ‘hotspot’ 

near a cathode has a radius of one-tenth of the radius of the bunch, the Slarge parameter needs to be in the 

order of 1000 to allow scaling. 

 

Scaling is also possible for very low aspect ratio bunches (A<0.01). These ‘cigar’-shaped bunches have equal 

transverse fields as long as the charge density remains constant. The longitudinal fields, except at the very 

edges, however scale inverse linear with the length. Therefore, the scaling recipe becomes: 

If 
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/ where Ssmall≈0.01  

 

The parameters Ssmall and Slarge can be set with the "BeamScale" option. 

4.8.1.11 Transform to rest frame 

To obtain the actual electromagnetic 3D space-charge fields, the electric field E’i is transformed back to the 

laboratory frame. This is accomplished with the following Lorentz transformation: 
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4.8.2 spacecharge3Dtree 

spacecharge3Dtree(theta) ; 

3D space-charge routine based on the Barnes-Hut hierarchical tree algorithm [19,20]. 

 

theta Overall accuracy parameter. The typical range is from 0.3 (publication quality) to 1.0 

(quick and dirty). 

 

The main use of spacecharge3Dtree is to calculate stochastic/granularity effects such as disorder-induced 

heating and Boersh effect efficiently: spacecharge3Dtree covers all Coulomb interactions from first 

principles, and therefore includes both space charge and stochastic effects. 

 

The fields of relativistic bunches are calculated in a co-moving frame, fully analogous to the 

spcecharge3Dmesh element. This element is however substantially slower compared to the PIC method 

employed in spacecharge3Dmesh. Consequently, it is wise to use this element only when granularity 

effects are important. 

 

A Barnes-Hut algorithm is used to efficiently compute the fields of many interacting particles. This is an 

𝒪(𝑁 log𝑁)-scheme based on hierarchical grouping of distant particles. The interaction between near 

neighbours is calculated individually, but distant charges are grouped together into a single-charge or 

multipole expression, leading to substantial savings in the number of interactions necessary to calculate the 

fields compared to the point-to-point method employed in spacecharge3D. Only in the case of excessive 

energy spread, when there is no co-moving frame with all velocities far below the speed of light, the fully 

relativistic spacecharge3D element should be considdered. 

 

To avoid field-discontinuities that slow down the integration of the equations of motion, each particle is 

represented as a Plummer sphere with smoothing length R. The current implementation requires this radius 
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to be identical for all particles. It can be set with the setrmacrodist keyword as described in section 

4.2.1.12: 

setrmacrodist(set,"u",R,0) ; 

where set is the particle set, for example "beam". 

 

If each particle in the simulation represents one elementary particle, the smoothing length R must be chosen 

much smaller than the typical distance between the particles. In the case where each particle represents a 

large number of elementary particles, R is a tradeoff between unphysical disorder-induced heating and 

underestimation of space-charge forces. The ‘correct’ value for this case is in the order of the typical distance 

between the macro-particles. However, in that case we strongly recommend benchmarking against the PIC 

model of spacecharge3Dmesh. 

 

The charge density, electrostatic field and potential of the particles are respectively given by: 
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The integrated charge density equals the total charge q. The limiting cases for r≫R are the well-known 

equations for point charges: 
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The algorithm calculates near-neighbour interactions individually, and all other particles are grouped in 

increasingly larger clusters as function of distance. The dimensionless parameter theta sets the accuracy of 

the calculations by indirectly defining the number of particles that are grouped together. It is defined as the 

threshold for the ratio between the size of a distant cluster and its distance. For a detailed explanation of 

theta, see [21]. A smaller value for theta results in a higher accuracy at the expense of CPU time. Typical 

values are in the range 0.3 to 2.0, with a recommended range between 0.5 and 1.0. In the extreme case 

theta=0, the algorithm does not use any grouping and calculates all N2 interactions individually. 

 
Quadrupole moments of the charge distribution are taken into account in the calculation as it increases the 

accuracy at fairly modest computational costs. If the particle distribution contains both negative and positive 

charge also the dipole moment is taken into account. 

4.8.2.1 Lorentz transformations for relativistic bunches 

All particle interactions are calculated in the rest frame of the bunch, fully analogous to the 

spacecharge3Dmesh method. The rest frame is defined as the frame with zero total momentum. It has a 

velocity o and accompanying Lorentz factor o of respectively: 
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The particle coordinates ri are different in the rest frame, denoted with a prime. They are a factor 0 expanded 

in the direction of the velocity of the frame: 
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Ideally, all velocities in the rest frame are well below the speed of light. A warning is printed if the Lorentz 

factor of a particle as measured in the rest frame exceeds the value of 2. The calculated electric field E’i is 

Lorentz transformed back to the laboratory frame to get the required E and B fields for the tracking: 
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4.8.2.2 Image charges 

The spacecharge3Dtree model cannot be used directly to calculate the effect of image charges because 

the fields are singular at the cathode plane. Nevertheless, stochastic Coulomb interactions can be simulated 

while also taking into account the bulk effect of image charges. The recipe is combining three different 

spacecharge lines in the GPT inputfile as follows: 

 

spacecharge3Dtree(theta) ; 

spacecharge3Dmesh("Cathode") ; 

spacecharge3Dmesh("Fieldfactor",-1) ; 

 

This works because image charges are, by definition, the fields of the bunch including the (cathode) boundary 

condition, minus the fields of the bunch in free space. This can be simulated with two different 

spacecharge3Dmesh lines on top of the tree-based stochastic space charge model. 

4.8.3 Spacecharge3D 

spacecharge3D([zmin,zmax]) ; 

Instructs GPT to take 3D space-charge effects into account using a point-to-point method. 

 

zmin z-position [m] from where to calculate the space-charge fields. If not specified, – is 

assumed. 

zmax z-position [m] unto where to calculate the space-charge forces. If not specified,  is 

assumed. 

 

The fields generated by the spacecharge3D routine are calculated directly from relativistic particle-particle 

interaction. For each particle-particle contribution both particles have to be within the range zmin < z < 

zmax. Retardation and radiation effects are not taken into account. The advantage of this method is that no 

approximations are made; the disadvantage is the price in terms of CPU time. Particle-particle interactions 

are N2 processes, where N is the number of traced macro-particles. 

 

To calculate the fields generated by particle j at the position of particle i, first both particle coordinates are 

transformed to the rest frame of particle j. Due to Lorentz contraction, the distance between the two particles 

thereby changes: 
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where rji is the distance measured in the lab frame and r'ji is the distance in the rest frame. 

 

Within the rest frame of particle j, only an electric field is present. This coulomb field is given by 
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where R is the Plummer sphere radius. This extra term in the denominator is to prevent rare divisions by 

zero, and it slightly increases tracking speed. It can be set with the keyword setrmacrodist described in 

section 4.2.1.12. To prevent an unrealistic drop in field amplitude, the radius R should be set smaller than 

the typical distance between two particles. 

 

Transforming this electric field back to the lab frame and summing over all particles yields the 

electromagnetic fields at the position of particle i: 
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4.8.4 Spacecharge3Dclassic 

spacecharge3Dclassic([zmin,zmax]) ; 

Instructs GPT to take 3D non-relativistic space-charge effects into account using a point-to-point method. 

 

zmin z-position [m] from where to calculate the space-charge fields. If not specified, – is 

assumed. 

zmax z-position [m] unto where to calculate the space-charge forces. If not specified,  is 

assumed. 

 

The fields generated by the spacecharge3Dclassic routine are calculated directly from non-relativistic 

particle-particle interaction. For each particle-particle contribution both particles have to be within the range 

zmin < z < zmax. Retardation, relativistic and radiation effects are not taken into account. 

 

The coulomb field generated by particle j at the position of particle i is given by 
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where R is the Plummer sphere radius. This extra term in the denominator is to prevent rare divisions by 

zero, and it slightly increases tracking speed. It can be set with the keyword setrmacrodist described in 

section 4.2.1.12. To prevent an unrealistic drop in field amplitude, the radius R should be set smaller than 

the typical distance between two particles. 

4.8.5 SetTotalCharge 

settotalcharge(set,Q) ; 

Sets the total charge of all particles in a set. 

 

set Particle set. 

Q Total charge [C] of the set. 

 

This element can be used to specify the total charge of a set, analogue to the Q parameter of the 

setparticles function. It can only be used after all particles are added to the specified set. 

4.8.6 Spacecharge2Dcircle 

spacecharge2Dcircle([zmin,zmax]) ; 

Calculates 2D space-charge fields using charged circles. 

 

zmin z-position [m] from where to calculate the space-charge forces. If not specified, – is 

assumed. 

zmax z-position [m] upto where to calculate the space-charge forces. If not specified,  is 

assumed. 
 

The spacecharge2Dcircle element can be used to calculate the space-charge effect of cylinder-

symmetric beams by representing every particle as a homogeneously charged circle. Because every particle 

represents a complete circle, the amount of particles needed to obtain correct statistics is much less when 

compared to the point-to-point calculations. The influence of the transverse velocity on the space-charge 

field is neglected. 
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For the calculation of the total fields working on particle i due to the space 

charge, first the parameters of the circle representing particle j are 

obtained. The radius Rj, charge density j and center position Cj are 

defined by: 
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The velocity of the circle is the longitudinal velocity of particle j. 

Therefore, the Lorentz factor j of the circle must be: 

2
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In the rest frame of the circle, there is only an electrostatic field2F4. This 

field is derived from the electrostatic potential (in polar coordinates): 
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Using the definition3F5: 
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The resulting electric field in the rest frame is calculated from '' V−=E . Calculating the gradient and 

converting from polar to cylindrical coordinates yields 4F6: 
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where 
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0

)sin(1)E( dkk , 222 )( zrRd +−=  and )4(4 2 RrdRr += . Due to Lorentz contraction in the 

laboratory frame, )( jij zzz −=  . No relativistic effects occur in the transverse direction because the circle 

is assumed to have a longitudinal velocity component only. 

 

Transforming this field back to the lab frame and adding the contributions of all particles j yields: 
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Currently, it is not allowed to start particles at x=y=0 while using the spacecharge2Dcircle element. 

Because this element assumes cylindrical symmetry anyway, it is best to fill only the positive x-axis as shown 

in the following example. 

 

 
4 Actually, a ,j term could be interpreted as a rotation of the circle, and a dR/dt term as expansion and contraction. 

Both terms result in a magnetic field in the rest frame of the circle, but their contributions are neglected here. 
5 Please note that the argument k of the elliptic functions is sometimes written as k2 in the literature. 
6  Actually, we use the Carlson elliptic functions: )1(R)K( 2

F kk −=  and )1(R)1(R)E( 2

D

2

3
12

F kkkk −−−=  to avoid the 

singularity at r=0. 

Rj

r

z

Circlecharge j

Sample particle i

 



 Spacecharge 201 

 

Example: Start a 100 pC beam with a radius of 1 mm, optimally distributed for spacecharge2Dcircle. The 

optional setphidist can be specified after setxdist to fill the entire xy-plane. 
1. nps  = 1000 ; # Start 1000 particles 

2. Qtot = -100e-12 ; # Total charge 100 pC 

3. R    = 1e-3 ; # Beam radius of 1 mm 

4. setparticles( "beam", nps, me, qe, Qtot ) ; 

5. setxdist("beam","u",R/2,R) ; 

6. setphidist"beam","u",0,2*pi) ; 

7. setcharge2Dcircle("beam",Qtot) ; 

8. spacecharge2Dcircle() ; 

 

4.8.7 Setcharge2Dcircle 

setcharge2Dcircle(set,Q)  ; 

Sets the total charge of a particle set for the rz space-charge models. 

 

set Particle set. 

Q Total charge of the particle set [C]. 

 

The number of elementary particles represented by each macro-particle, ni, is calculated. In contrast to 

setparticles and settotalcharge, the ni’s are not constant but a linear function of the distance of the 

particle to the z-axis. The total charge of all the particles in the specified set sums to Q. 

 

When a point-to-point space-charge model is used, the optimal initial particle distribution is uniform in the 

xy-cross section for a uniform beam. This results in more particles at a larger radius, each representing the 

same number of elementary particles. However, when an rz space-charge model like 

spacecharge2Dcircle is used, it is better to distribute the particles equidistantly in r. This implies that 

particles further off-axis should carry more charge, linear with this distance. Thus each particle should 

represent n elementary particles as specified by: 
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where qi is the elementary charge of particle i. For a uniform distribution in x of identical particles, the 

equation reduces to: 
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4.8.8 Spacecharge2Dline 

spacecharge2Dline([zmin,zmax]) ; 

Calculates 2D space-charge fields using infinitely long line charges [22]. 

 

zmin z-position [m] from where to calculate the space-charge forces. If not specified, – is 

assumed. 

zmax z-position [m] unto where to calculate the space-charge forces. If not specified,  is 

assumed. 

 

The spacecharge2Dline element can be used to provide a quick estimate for space-charge forces in 

continuous beams or very long bunches. Every particle is represented as a moving line charge, directed in 

the particle’s velocity. Because every particle represents a complete line, the amount of particles needed to 

obtain correct statistics is much less when compared to the point-to-point calculations in spacecharge3D. 
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To calculate the fields at the position of particle i, generated by the 

moving line charge representing particle j, first the distance d between 

the point i and the line j is calculated by: 

  jjijijji vvrrrrd ˆˆ)()( −−−=   

 

The total charge (Qtot) parameter of setparticles is interpreted as 

the beam current [A] when spacecharge2Dline is used. Therefore, 

each particle j represents a current ij [A] and charge density j [C/m] 

given respectively by: 
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The total electromagnetic field, at the position of particle i, is the sum of the contributions of the individual 

line charges j. The magnetic contribution is due to the current ij, the electrical contribution due to the charge 

density j. 
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These equations are relativistically correct, even though no Lorentz transformation is applied. The transverse 

distribution is not restricted in any way. 

 

When setrmacrodist is used, the line charges have a radius R. Within this radius, the equations reduce to: 
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Because every particle represents a line, the simulation must be started with a thin disk of particles. When 

the longitudinal dimensions of the disk become too large due to energy spread, the accuracy of the model 

diminishes rapidly. 

v

rj-ri

d

Linecharge j

Sample particle i

•
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4.9 Scattering 

Despite the name of this section, it contains a description of both boundary and scatter elements. In 

combination, they can be used to generate particles scattered off a surface, as described in section 1.11. 

Arbitrary diffraction patters can be simulated using the scatterbitmap element. 

 

4.9.1 ForwardScatter ......................................................................................................................... 203 
4.9.2 CopperScatter ........................................................................................................................... 203 
4.9.3 ScatterBitmap ........................................................................................................................... 204 
4.9.4 ScatterCone .............................................................................................................................. 205 
4.9.5 ScatterIris.................................................................................................................................. 206 
4.9.6 ScatterPipe ................................................................................................................................ 206 
4.9.7 ScatterPlate ............................................................................................................................... 207 
4.9.8 ScatterSphere ............................................................................................................................ 207 
4.9.9 ScatterTorus.............................................................................................................................. 208 
 

An aspect ratio of 1 is recommended when inspecting scattered trajectories. Without such an aspect-ratio all 

angles will be deformed, making interpretation much harder. 

4.9.1 ForwardScatter 

forwardscatter(ECS,name,P,[nmin]) ; 

Scatter a particle in the forward direction with probability P. 

 

ECS Element Coordinate System. 

name Name of the surface. 

P Scatter probability. 

nmin Minimum nmacro. 

 

A specularly reflected macro-particle is generated with the same energy as the incident particle in the forward 

direction. The new number of elementary particles this macro-particle represent is P*nmacro. When this 

P*nmacro<nmin, the new particle is not generated. Scatter output is written in the outputfile relative to the 

specified ECS. 

 

One of the applications of the boundary elements is to remove particles using the forwardscatter element 

with a scattering probability of 0. This is demonstrated in the following example: 

forwardscatter("wcs","I","remove", 0) ; 

scatteriris("wcs","z", 1, 0.5,2 ) scatter="remove" ; 

4.9.2 CopperScatter 

copperscatter(ECS,name,nmin,nmax) ; 

Scatter a particle from a copper surface. 

The copperscatter element uses extrapolated data not yet experimentally confirmed. 

 

ECS Element Coordinate System. 

name Name of the surface. 

nmin Minimum nmacro, typically 1% of the initial nmacro. 

nmax Maximum nmacro, typically ignored by setting to 200% of the initial nmacro. 

 

The probability for forward scattering is 1/3, the chance for backward is 2/3. The overall reflection chance 

is the product of the angle of incidence dependence and the dependence on the kinetic energy of the incident 

particle, as shown in Figure 4-21 and Figure 4-22. This overall reflection chance determines the nmacro of 

the reflected particle as calculated in forwardscatter. When the product of the scattering probabilities 

times the nmacro of the incident particle is below nmin, no new particle is generated. The total kinetic 

energy of the reflected particle varies uniformly between 45% and 95% of the kinetic energy of the incident 

particle. 

 



204 GPT Reference 

 

 
Figure 4-21: Reflection chance as function of angle of incidence. Zero angle corresponds to normal incidence. 

 
Figure 4-22: Reflection chance as function of incoming kinetic energy. 

The simple function for the reflection chance as function of incoming kinetic energy comes form an 

extrapolaton of the data fom [23]. Custom scater routines can be written, as is explained in the Programmer’s 

Reference. 

4.9.3 ScatterBitmap 

scatterbitmap(ECS,name,filename,xres,yres) ; 

Scatter a particle with an arbitrary distribution as specified in a bitmap. 

 

ECS Element Coordinate System. 

name Name of the surface. 

filename Filename of a grayscale bitmap file (.bmp) containing the desired momentum distribution. 

xres Normalized x-momentum change per pixel. 

yres Normalized y-momentum change per pixel. 

 

When a particle passed through a ‘scatterbitmap’ surface, the normalized horizontal and vertical momenta 

are changed according to the probability function given in filename. This can be used, for example, to 

model a diffraction process where the bitmap contains white-values representing the angular probability 

function for the diffraction process under investigation. In the example below, we use a simple bitmap 

contaning the text ‘test’ in white. 

 

Example: GPT inputfile diffracting a 1x1 mm square input beam off a ‘test’ bitmap. 
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1. # setparticles("beam",10000,me,qe,0) ; 

2.  

3. setxdist("beam","u",0,1e-3) ; 

4. setydist("beam","u",0,1e-3) ; 

5.  

6. setGdist("beam","u",1.2,0) ; 

7.  

8. scatterbitmap("wcs","I","diffract","test.bmp",0.001,0.001) ; 

9. scatterplate("wcs","z",0.01,1,1) scatter="diffract" ; 

10.  

11. tout(0,1e-9,0.01e-9) ; 

31.  

32.   

4.9.4 ScatterCone 

scattercone(ECS,z1,R1,z2,R2) scatter="sm" ; 

Cone-shaped scattering surface. 

 

 
 

ECS Element Coordinate System. 

z1 z-position [m] of radius R1. 

R1 Radius [m] of cone at z=z1 position. 

z2 z-position [m] of radius R2. 

R2 Radius [m] of cone at z=z2 position. 

sm Scatter model to be used. 

 

New particles are generated when an incident particle passes through the infinitely thin cone surface. The 

particles are scattered according to the scattering model. 

 

The equation for the cone boundary is given by: 

0)(

2
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Example: GPT inputfile with cone surface, 50% forward scattering probability. Plot zx. 
1. # Demonstration inputfile for cone scattering element 

2. setstartline("beam",50, -2.5,0,0, 2.5,0,0, 0,0,1) ; 

3.  

4. forwardscatter("wcs","I","scat", 0.5) ; 

5. scattercone("wcs","I", 1,0.5, 2.0,1.5 ) scatter="scat" ; 

6.   

7. tout(0, 6/c, 0.06/c) ; 
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4.9.5 ScatterIris 

scatteriris(ECS,Rin,Rout) scatter="sm" ; 

Iris- or disk-shaped scattering surface. 

 

 
 

ECS Element coordinate system. 

Rin Inner radius [m] of disk. 

Rout Outer radius [m] of disk. 

sm Scatter model to be used. 

 

New particles are generated when an incident particle passes through the infinitely thin plate surface around 

the opening. The particles are scattered according to the scattering model. The normal of the disk is the z-

axis. 

 

The description of the plate boundary is given by: 

0=z  if r>Rin and r<Rout. 

 

Example: GPT inputfile with iris surface, particles are removed. Plot zx. 
1. # Demonstration inputfile for iris scattering element 

2. setstartline("beam",50, -2.5,0,0, 2.5,0,0, 0,0,1) ; 

3.  

4. forwardscatter("wcs","I","remove", 0) ; 

5. scatteriris("wcs","z", 1, 0.5,2 ) scatter="remove" ; 

6.   

7. tout(0, 4/c, 0.04/c) ; 

33.  

4.9.6 ScatterPipe 

scatterpipe(ECS,z1,z2,R) scatter="sm" ; 

Pipe-shaped scattering surface. 

 

 
 

ECS Element Coordinate System. 

z1 z-position [m] where the pipe begins. 

z2 z-position [m] where the pipe ends. 

R Radius [m] of pipe. 

sm Scatter model to be used. 

 

New particles are generated when an incident particle passes through the infinitely thin pipe surface. The 

particles are scattered according to the scattering model. 
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The description of the cone boundary is given by: 

0222 =−+ Ryx   

 

Example: GPT inputfile with pipe surface, 50% scattering probability. Plot xy. 
1. # Demonstration inputfile for pipe scattering element 

2. setstartline("beam",50, -2,2,0, 2,2,0, 0,-1,0) ; 

3.  

4. forwardscatter("wcs","I","scat", 0.5) ; 

5. scatterpipe("wcs","I", -1,1, 1 ) scatter="scat" ; 

6.   

7. tout(0, 4/c, 0.04/c) ; 

4.9.7 ScatterPlate 

scatterplate(ECS,a,b) scatter="sm" ; 

Plate-shaped scattering surface. 

 

 
 

ECS Element Coordinate System. 

a Total plate length in x-direction. 

b Total plate length in y-direction. 

sm Scatter model to be used. 

 

New particles are generated when an incident particle passes through the infinitely thin plate surface. The 

particles are scattered according to the scattering model. The normal of the plate is the z-axis. 

 

The description of the plate boundary is given by: 

0=z   

 

Example: GPT inputfile with plate surface, particles are removed. Plot xy. 
1. # Demonstration inputfile for plate scattering element 

2.  

3. setparticles("beam",1000,me,qe,0.0) ; 

4. setxdist("beam","u",0,2) ; 

5. setydist("beam","u",0,2) ; 

6. setGdist("beam","u",10,1) ; 

7.  

8. forwardscatter("wcs","I","remove", 0.0) ; 

9. scatterplate("wcs","z",1, 1,1 ) scatter="remove" ; 

10.  

11. tout(2/c) ; 

4.9.8 ScatterSphere 

scattersphere(ECS,R,[a1,a2]) scatter="sm" ; 

Sphere-shaped scattering surface. 
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ECS Element Coordinate System. 

R Radius of sphere. 

a1 Start angle [rad] measured ccw from the z-direction in the zR-plane. 

a2 End angle [rad] measured ccw from the z-direction in the zR-plane. 

sm Scatter model to be used. 

 

New particles are generated when an incident particle passes through the infinitely thin sphere surface. The 

particles are scattered according to the scattering model. The symmetry axis of the sphere is the z-axis. 

 

The description of the sphere boundary is given by: 

02222 =−++ Rzyx   

 

Example: GPT inputfile with sphere surface, 50% scattering probability. Plot zx. 
1. # Demonstration inputfile for an open sphere scattering element 

2. setstartline("beam",50, 2,0,-2, 2,0,2, -1,0,0) ; 

3.  

4. forwardscatter("wcs","I","scat", 0.5) ; 

5. scattersphere("wcs","I", 1, pi/2,pi ) scatter="scat" ; 

6.  

7. tout(0, 4/c, 0.04/c) ; 

4.9.9 ScatterTorus 

scattertorus(ECS,Rout,Rin,[a1,a2]) scatter="sm" ; 

Torus-shaped scattering surface. 

 

 
 

ECS Element Coordinate System. 

Rout Outer radius [m] of torus. 

Rin Inner radius [m] of torus. 

a1 Start angle [rad] measured ccw from the z-direction in the zr-plane. 

a2 End angle [rad] measured ccw from the z-direction in the zr-plane. 

sm Scatter model to be used. 

 

New particles are generated when an incident particle passes through the infinitely thin torus surface. The 

particles are scattered according to the scattering model. 

 

The description of the torus boundary is given by: 

0)()(2 22222222224 =−++++−+− bzyxbzyxaa   

where a is the outer radius and b is the inner radius of the torus. 
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Example: GPT inputfile with torus surface, 50% scattering probability. Plot zx. 
1. # Demonstration inputfile for torus scattering element 

2. setstartline("beam",50, 3,0,-2, 3,0,2, -1,0,0) ; 

3.  

4. forwardscatter("wcs","I","scat", 0.5) ; 

5. scattertorus("wcs","I", 1.1,1.0, 0,pi/2 ) scatter="scat" ; 

6.  

7. tout(0, 4/c, 0.04/c) ; 
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4.10 Remove particles 

The elements listed in this section remove particles when inside a specific volume. No scattered particles are 

generated. 

 

4.10.1 Gminmax .................................................................................................................................. 210 
4.10.2 Multislit..................................................................................................................................... 210 
4.10.3 Rmax ......................................................................................................................................... 210 
4.10.4 StdXYZmax .............................................................................................................................. 210 
4.10.5 XYmax ...................................................................................................................................... 211 
4.10.6 Zminmax ................................................................................................................................... 211 
 

An alternative to these elements is to use the boundary elements of section 4.9 to define a boundary and use 

forwardscatter with a probability of 0 to remove the particle without generating a scattered particle. 

4.10.1 Gminmax 

Gminmax(ECS,L,Gmin,Gmax) ; 

Removes all particles with a Lorentz factor outside the specified range. 

 

ECS Element Coordinate System. 

L Length of the element [m]. 

Gmin Minimum Lorentz factor. 

Gmax Maximum Lorentz factor. 

 

This element is only active when L
2

1z . In that range, it removes all particles with a Lorentz factor outside 

the range bracketed by the specified Gmin and Gmax. 

4.10.2 Multislit 
multislit(ECS,a,b,L,d,N) ; 

Removes a particle if it does not pass through an opening of a multiple slit. 

 

ECS Element Coordinate System. 

a Width of a slit opening [m] (in x-direction). 

b Height of a slit opening [m] (in y-direction). 

L Length of the element [m] (in z-direction). 

d Distance between the centers of two slit openings [m]. 

N Number of slits. 

 

This element simulates a multiple slit. The particles can only pass through the openings of the slit, all other 

particles are removed if L
2

1z . This element is local. 

4.10.3 Rmax 

rmax(ECS,R,[L]) ; 

Removes a particle when it is too far from the axis. 

 

ECS Element Coordinate System. 

R Maximum radius [m]. 

L Length of the element [m]. If not specified,  is assumed. 

 

The particle is removed when: LR
2

1222  and + zyx . 

 

Although L can be specified, this element is global. 

4.10.4 StdXYZmax 

stdxyzmax(Nstdx,Nstdy,Nstdz) ; 

Removes particles too far off the center of the bunch. 
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Nstdx Allowed number of standard deviations in x. Ignored when zero. 

Nstdy Allowed number of standard deviations in y. Ignored when zero. 

Nstdz Allowed number of standard deviations in z. Ignored when zero. 

 

Every particle located at least Nstdx, Nstdy or Nstdz standard deviations away from the average x-, y- or 

z-coordinate of the bunch is removed. 

 

This element is intended to ‘clean up’ the simulation by removing all outliers, all the particles located too far 

from the center of the bunch. This can be used to solve the following problems: 

• Outliers can affect the GDFA data analysis routines and cause unrealistic values for bunch length, 

energy spread etc.  

• Outliers can significantly increase the simulation time for a variety of reasons. 

Typical values for Nstdx, Nstdy and Nstdz are between 4 and 6. 

 

Particle i is removed if one of the following conditions is true: 
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4.10.5 XYmax 

xymax(ECS,a,b,[L]) ; 

Removes a particle when it is too far from the axis. 

 

ECS Element Coordinate System. 

a Maximum x-deviation [m]. 

b Maximum y-deviation [m]. 

L Length of the element [m]. If not specified,  is assumed. 

 

The particle is removed when: a
2

1x  or b
2

1y  if L
2

1z . 

 

Although L can be specified, this element is global. 

4.10.6 Zminmax 

zminmax(ECS,zmin,zmax) ; 

Removes all particles in front of zmin or behind zmax. 

 

ECS Element Coordinate System. 

zmin Minimum z-coordinate [m]. 

zmax Maximum z-coordinate [m]. 

 

The particle is removed when z<zmin or z>zmax. 
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4.11 Miscellaneous 

This section contains all built-in elements not easily placed in any of the other categories. 

 

4.11.1 CCS ........................................................................................................................................... 212 
4.11.2 CCSflip ..................................................................................................................................... 212 
4.11.3 Collision .................................................................................................................................... 212 
4.11.4 Drift........................................................................................................................................... 213 
4.11.5 Gravity ...................................................................................................................................... 213 
4.11.6 Overlaptest ................................................................................................................................ 213 
4.11.7 Randomize ................................................................................................................................ 213 
4.11.8 Run ............................................................................................................................................ 214 
4.11.9 SetRlimit ................................................................................................................................... 214 
4.11.10 Viscosity ................................................................................................................................... 214 
 

4.11.1 CCS 

ccs(ECS,CCSname) ; 

Defines a Custom Coordinate System. 

 

ECS The coordinate system transform. 

CCSname The name of the Custom Coordinate System. 

 

See section 1.4.3 for the description of Custom Coordinate Systems. 

4.11.2 CCSflip 

ccsflip(ECS,CCSname) ; 

Refer all particles to another axis. 

 

ECS The coordinate system transform. 

CCSname The name of the Custom Coordinate System to transfer the particle to. 

 

All particles coordinates are refered to the axis named CCSname when z>0 in the specified ECS. 

 

See section 1.4.3 for the description of Custom Coordinate Systems. 

4.11.3 Collision 

collision() ; 

Detect particle-particle collisions and start a new ‘combined’ particle. 

 

At the end of every successful timestep collisions between two particles are detected when: 

2
2

jji R− rr   

 

When a collision is detected, both particles are removed and a new particle is created. The new position is 

equal to the mass-weighted average position. The new momentum is the sum of the moments of the initial 

particles: 
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The new mass and charge are the sum of the mass and charge of the original particles as given by: 
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4.11.4 Drift 

drift(ECS,L,[R]) ; 

Drift section. 

 

ECS Element Coordinate System. 

L Length of the drift section [m]. 

R Radius [m]. When this parameter is specified, the particle is removed when 222
R+ yx . 

 

This element is ‘active’ when L
2

1z . It does nothing except optionally remove a particle when it is too far 

from the axis. If your set up has large sections without elements it is recommended to use drift. It can 

speed up calculation time because all the other local elements on the axis don't have to be checked each 

timestep. 

 

Although this element can be replaced by a rmax, it is recommended to use drift when possible because it 

is local and therefore faster. 

4.11.5 Gravity 

gravity(gx,gy,gz) ; 

Calculates uniform relativistic gravity force 

 

gx Gravitational acceleration [m/s2] in x-direction. 

gy Gravitational acceleration [m/s2] in y-direction. 

gz Gravitational acceleration [m/s2] in z-direction. 

 

For non-relativistic velocities, the gravitational field is simply given by: 

gF m=   

where g is the gravitational acceleration. For relativistic particles however, the more complicated equation 

from the general theory of relativity must be used: 

 βgβgβF )()1( 2 −+= m   

 

The equation is derived from the relativistic gravity force of a spherically symmetric object with mass M 

given by: 
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where G is the gravitational constant and E is the particle energy 2mc . When the particle displacement is 

much smaller than r, the spherical field can be approximated by a uniform field using 
3

/ rGMrg −= . 

4.11.6 Overlaptest 

overlaptest() ; 

Tests if local elements overlap on-axis. 

 

As described in section 1.4.1, the GPT kernel does not allow local elements to overlap beyond neighbouring 

centers. This element can be added to the inputfile to run an on-axis test to see if local elements erroneously 

overlap. In case of a modeling error, an error with detailed information is printed and GPT does not start 

tracking. 

 

When GPT is run with the –v option, this element prints the boundaries of all local elements. 

4.11.7 Randomize 

randomize([seed]) ; 

Initialize the GPT random-number generator. 

 

seed Number indicating the starting point in the sequence of random numbers generated by 

GPT. The system time is used when omitted. 
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Without randomization, all pseudorandom sequences will reproduce from run to run. Using randomize you 

can specify a different seed for a different, but reproducing, sequence. When seed is not specified, the 

system time is used to assure every GPT run uses a different sequence. 

 

When randomize is used in combination with the random-ordering specification (~) of the initial particle 

distributions, please make sure it appears before the corresponding set...dist element(s). 

4.11.8 Run 

run(program, [param1, param2, ...]) ; 

Runs an external command. 

 

program Command to be executed. 

paramN Optional parameter(s). 

 

Using run, any external program can be executed that doesn’t require interactive (keyboard) input. When 

additional parameters are specified, they are separated by spaces and passed to the program. For example, 

the following lines will delete the file filename in the current directory. 

run("del", "filename") ;  # Windows 

run("rm" , "filename") ;  # Linux 

 

Variables, expressions and the redirection operators ‘<’, ‘|’ and ‘>’ work as usual. For example the following 

code fragment runs program -2 3.141592653589793 /options and writes the output to the file 

program.log. 
1. a = -2 ; 

2. b = pi ; 

3. run("program ",a,b, "/options", ">program.log") 

 

Obviously, when specific Linux or DOS commands are specified, the GPT inputfile is not portable anymore. 

Furthermore, only command-line programs are supported by the GPTwin graphical user interface. 

4.11.9 SetRlimit 

setrlimit(resource,soft,hard) ; 

Limits the use of system resources. 

 

resource Must be any of: "CORE" (maximum size of the core file [bytes]), "CPU" (Time limit in 

[s]), "DATA" (maximum size [bytes] of the data segment) or "FSIZE" (largest size [bytes] 

for any file written).  

soft The soft limit for the resource, implemented for the resource "CPU" only. 

hard The hard limit for the resource, implemented for all resources. 

 

This element limits the use of system resources, in particular CPU time. It is primarily used to prevent 

GDFMGO/GDFSOLVE from wasting CPU time on unrealistic input parameters. This element is only 

implemented for the Linux/Mac version of GPT. 

 

Setting the "CPU" limit instructs GPT to try to finish the current timestep and close all outputfiles after the 

soft limit is reached. When the hard-limit is reached for any resource, the program is terminated 

regardless of the state of the outputfile. This may result in corrupt and unreadable outputfiles. The following 

example sets a soft limit of 1000 and a hard limit of 1200 seconds: 
setrlimit("CPU",1000,1200) ; 

 

The implementation of setrlimit is a 1:1 mapping to the setrlimit function of the underlying operating 

system. Please consult your system documentation for technical details as they tend to differ slightly. 

4.11.10 Viscosity 

viscosity(eta) ; 

Calculates viscosity forces. 
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eta viscosity [Pa s]: . 

 

This element adds a linear viscosity force as function of particle velocity. The viscosity force acts on all 

particles and is given by: 

cR βF 6−=   

 

The radius of the particles R can be set using the setrmacrodist keyword. Typical eta values are 17.1 10-

6 for air and 1.00 10-3 for water at standard pressure and room temperature. 
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4.12 Free Electron Laser (FEL), Wakefields, and CSR   

This section describes elements for particle-radiation interaction, i.e. the simulation of Free Electron Lasers 

(FELs), wakefields and Coherent Synchrotron Radiation (CSR) effects. 

 

4.12.1 Gauss00mf ................................................................................................................................ 216 
4.12.2 Undueqfo .................................................................................................................................. 219 
4.12.3 Unduplan................................................................................................................................... 219 
4.12.4 Wakefield .................................................................................................................................. 220 
 

The FEL module allows multi-mode, multi-pass FEL simulations, with emphasis on phase-space evolution 

of the electron bunch during passage through the undulator. This is an expert element for expert users. If you 

plan to use GPT for serious design work on FELs, please contact us for additional advice. 

 

The wakefield element calculates the fields of longitudinal and transverse wakefields in a 1D approximation. 

The wakefunctions are read from an external tabulated file and this file needs to be precomputed using other 

software. The implementation for the wakefields is not based on a series of kicks, but the wakefields 

themselves are added to the equations of motion. This is more natural and more accurate in a time-domain 

code, but please note that the units of the wakes are different compared to most other codes. 

 

The CSR module is a full-featured CSR model based on 1D segmentation of the bunch in 3D space. The 

fields are directly evaluated from the Liénard–Wiechert potentials, based on the stored history of the bunch. 

This allows for example for microbunching studies in a series of magnets close together where the entrance 

and exit effects are crucial. There is an embargo on this element for a specific use case. Please contact us for 

details. 

4.12.1 Gauss00mf 

gauss00mf(ECS, w0, L, fmin, fmax, Nm, Ain, dz, alpha, LVset ) ; 

Multiple first order Gaussian modes in free space. 

 

ECS Element Coordinate System. 

w0 Radius of waist [m]. 

L Total cavity length [m]. 

fmin Minimum frequency [Hz]. 

fmax Maximum frequency [Hz]. 

Nm Number of modes to be included in the simulation. 

Ain Initial field amplitude [V/m] for all modes. 

dz Initial translation of center pulse [m]. 

alpha Damping [s–1]. 

LVset Name of the set containing ‘Litvinenko’ particles. To disable this option, an empty string 

"" must be specified. 

 

The gauss00mf element of GPT models a radiation pattern consisting of a (large) number of first-order 

Gaussian waves propagating in free space [24]. Both the effect of the waves on the particle trajectories and 

the effect of the particles on the wave amplitudes and phases are included. 

 

There is a separate GPT version that includes an updated version of this element including transverse modes 

and MPI capabilities. Please contact us for details. 

4.12.1.1 Equations 

The Gaussian waves included in the simulation are all assumed to have a polarization in the x-direction. The 

total electromagnetic fields of all modes j, each with amplitude Aj and phase j, is then given by: 
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and n is the mode number, r is the radial position of a particle and z the longitudinal position. The sign of 

both the electric and the magnetic field is reversed for all particles in the Litvinenko set. 

 

The total stored energy of mode j in length L is given by: 

LwAW jj

2

00

2

2
1 =   

 

The differential equations for the amplitudes and phases of all modes are derived by first separating each 

wave j in two orthogonal waves with amplitudes u and v: 
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The total number of modes Nall in the specified frequency range fmin to fmax  is given by: 

( )fminfmax−=
c

L
Nall

2   

In the simulation only a specified limited number of modes Nm is included. The mode spacing N can be 

calculated from: 

Nm

Nall
N =   

The most accurate simulation, with N=1, includes all modes in the simulation. When N is 2, every other 

mode is included. In other words, every simulated mode represents not only itself but also its neighboring 

mode. With typical FEL parameters with high frequencies and large cavities, a N parameter of more than 

one thousand is normal, indicating that every simulated mode represents over a thousand actual modes. 

 

The mode numbers nj used in the simulation are uniformly distributed between the specified frequencies by: 

( ) Nj
c

L
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2
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Because both N and n must be integers, the specified Nm is adapted to model the simulated frequency range 

properly between fmin and fmax. 

 

The energy lost by each macro-particle i, with charge Qi, contributes to an increase in stored energy in all 

N modes represented by mode j: 
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The differential equations solved by this element can be derived from the orthogonality of the modes and 

conservation of energy. An additional frequency independent damping term is added to account for 

outcoupling and mirror losses. The equations are solved for each mode individually and given by: 
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The sign of the first term, not the damping, is reversed for all particles in the Litvinenko set. 

 

The boundary conditions of the differential equations, the amplitudes and phases of all modes at t=0, are 

given by: 
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The initial pulse is created in the center of the cavity. In order to overlap the radiation pulse with an electron 

bunch, the dz parameter can be used to translate the initial pulse. For example, for a cavity between z=0 and 

z=L the pulse at t=0 can be moved to z=0 by specifying dz=–L/2. 

4.12.1.2 Frequency domain output 

At every time output of GPT, the G00mf element writes the amplitude, phase, frequency and wavelength of 

each mode in the GPT outputfile: 

A00 Array of amplitudes of all modes [V/m]. Can be plotted as function of phase, frequency or 

wavelength. 

phi00 Array of phases of all modes [rad]. 

freq00 Array of frequencies of all modes [Hz]. 

lam00 Array of wavelengths of all modes [m]. 

 

The amplitude and phase of mode j written in the GPT outputfile are calculated from: 
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The division by N for the amplitude compensates the multiplication by N in the interaction strength. This 

makes the amplitude of the output spectrum independent of the number of modes. 

 

The total energy in the pulse is also written in the outputfile: 

W00 Total energy in the pulse [J]. 
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The total energy in the pulse is equal to the energy lost by the particles: 

e
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4.12.1.3 Time-domain output 

When Nm≠1, at every time output of GPT, the G00mf element writes the time-structure of the Gaussian modes 

to the GPT outputfile in the following arrays: 

At00 Array of amplitudes [V/m], to be plotted as function of t00. 

Pt00 Array of power [W], to be plotted as function of t00. 

t00 Array for the time-axis [s]. 

 

The time-domain output is defined by the Fourier transform of the frequency domain. When all modes are 

included in the simulation, N=1, the time-domain output repeats itself after round-trip time 2L/c. A mode 

spacing of N in frequency domain is equivalent to N identical pulses in the round-trip time. As a result, all 

relevant time output is defined in the interval t given by: 
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The time-structure is calculated by the discrete Fourier transformation of the frequency spectrum at z=0 

using: 
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where the spacing in time domain dt is given by: 

fmax7

1
=dt   

To ease the interpretation of the results, koffset is chosen such that the pulse is centered around t=0. This is 

implemented by a robust minimalization of  from: 

 = +

k
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All arrays for both frequency and time output can be visualized directly with GPTwin, or analyzed with the 

standard GPT analysis tools like GDFA. 

4.12.2 Undueqfo 

undueqfo(ECS,Nu,lamu,Bu,trim1,trim2) ; 

Double focusing undulator with equal focusing in x and y. 

 

ECS Element Coordinate System. 

Nu Total number of undulator periods. 

lamu Undulator period [m] 

Bu Undulator field amplitude [T]. 

trim1 First matching coefficient (usually ¼). 

trim2 Second matching coefficient (usually ¾). 

 

The B field generated by this element is given by: 
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where 
lamu

2
=uk  and trim1trim2trim2trim1 ,,1,1,,1,1,, =sF  for each half undulator period. 

 

To import realistic undulator fields, please see the MAP3D_B element. 

4.12.3 Unduplan 

unduplan(ECS,Nu,lamu,Bu,trim1,trim2) ; 

Planar undulator. 

 

ECS Element Coordinate System. 

Nu Total number of undulator periods. 

lamu Undulator period [m]. 

Bu Undulator field amplitude [T]. 

trim1 First matching coefficient (usually ¼). 

trim2 Second matching coefficient (usually ¾). 

 

The B field generated by this element is given by: 
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where 
lamu

2
=uk  and Fs is the shaping function for the first and the last half undulator period. 

 

The dimensionless undulator strength K can be obtained using: 

cm

q
K

8

lamuBu
=   

 

To import realistic undulator fields, please see the MAP3D_B element. 

4.12.4 Wakefield 

wakefield(ECS,L,b1,wakefile.gdf,z,Wx,Wy,Wz,[options,...]) ; 

Include 1D longitudinal and/or transverse wakefield(s)  

 

ECS Element coordinate system. 

L Length of element [m] 

b1 Fringe parameter [m−1] 

wakefile.gdf Filename containing the wake potentials 

z Name of the column containing the lag [m]. All coordinates must be positive. 

Wx Name of the column containing the transverse x-wake [V/C/m2]. Can be en empty string. 

Wy Name of the column containing the transverse y-wake [V/C/m2]. Can be an empty string. 

Wz Name of the column containing the longitudinal wake [V/C/m]. Can be an empty string. 

options A list of further options that affect the model, see below. 

 

This element includes 1D transverse and longitudinal wakefields in the range −𝐿/2 < 𝑧 < 𝐿/2. The wakes 

are a convolution of the 1D current profile of the bunch with the specified wake function(s). The fields are 

defined by: 

𝐸𝑥(𝑧) = 𝐴(𝑧)∫ 𝐵(𝑧′) 𝐼(𝑧′) 𝑊𝑥(𝑧
′ − 𝑧) �̅�(𝑧′) 𝑑𝑧′

∞

𝑧′=𝑧

𝐸𝑦(𝑧) = 𝐴(𝑧)∫ 𝐵(𝑧′) 𝐼(𝑧′) 𝑊𝑥(𝑧
′ − 𝑧) �̅�(𝑧′) 𝑑𝑧′

∞

𝑧′=𝑧

𝐸𝑧(𝑧) = 𝐴(𝑧)∫ 𝐵(𝑧′) 𝐼(𝑧′) 𝑊𝑥(𝑧
′ − 𝑧′) 𝑑𝑧′

∞

𝑧′=𝑧

 

where a 1D longitudinal segmentation of the beam is used to estimate the line-current I(z) and the average 

transverse positions �̅�(𝑧) and �̅�(𝑧). The additional shape functions 𝐴(𝑧) and 𝐵(𝑧′) are described below. 

 

Wakefields can be interpreted as upstream particles emitting a wake that is subsequently received by the 

downstream particles. The wake functions 𝑊𝑥(𝑧), 𝑊𝑦(𝑧) and 𝑊𝑧(𝑧) define the amount of interaction as 

function of the distance between the emitting and receiving particles. All wakefields scale linearly with the 

amount of charge of the emitting particles, and the transverse wakes also scale linearly with the transverse 

offset of the receiving particles. 

 

The 𝐴(𝑧) function describes the z-range for the receiving particles, and this range coincides with the location 

of this element: The function 𝐴(𝑧) is unity in range −𝐿/2 < 𝑧 < 𝐿/2 and zero elsewhere, where for 

performance reasons a smooth transition region must be specified by the b1 parameter. The exact equation 

for A(z) is an Enge function given by: 

𝐴(𝑧) =
1

1 + 𝑒𝑏1(−𝑧−𝐿/2)
+

1

𝑒𝑏1(+𝑧−𝐿/2)
− 1 

where we note that the dimensions of b1 are inverse meter and where ∫ 𝐴(𝑧)𝑑𝑧 = 𝐿
∞

−∞
. 

 

Default 𝐵(𝑧) = 1 and this implies that emitting particles can contribute to the wake even if they are outside 

the boundaries of this element. When this is not desired, the "LimitZemission" option can be used to limit 

the range of emission to the same range as the location of this element, including the transition region. Setting 

this option implies 𝐵(𝑧) = 𝐴(𝑧). 
 

The segments of the 1D profile are calculated using anisotropic meshing analogous to the 

spacecharege3Dmesh and CSR1D models: Smaller segments are created at higher line charge density, but 
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such that low charge regions will not result in excessively large segments. The wake function(s) are user 

defined in the file wakefields.gdf, tabulated using the z, Wx, Wy and Wz columns. If one of these columns 

is not present, or not desired, an empty string must be specified. 

 

Please note that the convolution is over the longitudinal coordinate, and the column specifying the lag behind 

the test-particle must be given in units of meters, not seconds. This matches a time-domain simulation code 

such as GPT, but it is not following the usual convention for how wakes are specified. Another difference 

with some codes is that GPT calculates fields over the entire element, not an integrated effect at the very end. 

To aid debugging wakefields, the normal time output of GPT can be used to plot these fields. 

  

The code is implemented using a combination of openMP and MPI and performs well on both multi-core 

and/or multi-node machines. Further options to affect the meshing and to adjust the fields are given below. 

 

Option Default Description 
"MeshNfac",Nfac 1 The total number of segments Nseg in the 1D profile is given by the 

equation Nsegs=Nfac * NNpow where N is the total number of 

particles. 

"MeshNpow",Npow 0.5 

"MeshAdapt",adapt 0.5 The length of the 1D-segments is adjusted to 1D line charge 

density raised to the power adapt. Consequently, setting adapt 

to 0 creates segments of equal length while a value of 1 gives 

segments that are two times longer when the current is half. 
"FieldFactorWx",fac 1 Multiply transverse x-wakes by fac 
"FieldFactorWy",fac 1 Multiply transverse y-wakes by fac 
"FieldFactorWz",fac 1 Multiply longitudinal wakes by fac 
"Gminmax",Gmin,Gmax 1,∞ Only consider emitting particle having a Lorentz factor between 

Gmin and Gmax.  
"LimitZemission" false Only consider emitting particles that are within the range of this 

element. 

4.12.4.1 Example: 

Below is an example, admittedly a bit fabricated, to visualize the effect of the overall length of the structure. 

We show the effect of a longitudinal wake with exponential decay on a Gaussian bunch, where the bunch is 

in the center of the structure at z=1 m. The decay of the wake is of the order of the length of the structure, 

and so is the bunchlength. This leads to the following inputfile: 

 

1. # Set particles 

2. setparticles("beam",10000,me,qe,-1) ; 

3. setzdist("beam","g",1,.3,3,3) ; 

4.  

5. # Wakefield 

6. wakefield("wcs","z",1, L,50, "testwaves.gdf", "z","","","Wz") ; 

7.  

8. # Output 

9. tout(0) ; 

 

The results for L=1 and L=10 m are shown below. Due to the nature of wakefields, the maximum field 

amplitude trails behind the peak in line density at z=1 m. However, the shorter structure reduces the 

interaction with the front and back of the bunch is two ways: Firstly, particles upstream the end of the 

structure have reduced interaction, leading to a lower overall field amplitude. Secondly, particles downstream 

the end of the structure observe lower fields. These are two different effects, causes by the two different A(z) 

expressions in the field equations. 
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Left: Longitudial wake with exponential decay, read using an ASCII table and converted to GDF using GDF2A. Right: 

Longitudinal electric field of a Gaussian test-bunch, centered at z=1 m with σ=0.3 m. The two different lines represent 

a structure with an overall length of 1 and 10 meter. 
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4.13 Obsolete elements 

This section contains variables and elements maintained for backward compatibility. Please use the indicated 

alternatives when creating a new GPT inputfile. 

 

4.13.1 Bend.......................................................................................................................................... 223 
4.13.2 Bz.............................................................................................................................................. 223 
4.13.3 Ezcell ........................................................................................................................................ 224 
4.13.4 m ............................................................................................................................................... 225 
4.13.5 q ................................................................................................................................................ 225 
4.13.6 SetCathode................................................................................................................................ 225 
4.13.7 Setrmacro.................................................................................................................................. 225 
4.13.8 StartCathode ............................................................................................................................. 226 
4.13.9 Start .......................................................................................................................................... 227 
4.13.10 Startcyl...................................................................................................................................... 227 
4.13.11 Startgrid .................................................................................................................................... 229 
4.13.12 Startpar ..................................................................................................................................... 229 
4.13.13 StartpGB ................................................................................................................................... 229 
 

4.13.1 Bend 

bend(fromCCS,toCCS,R,Bfield) ; 

Bending magnet. 

Obsolete element, please use sectormagnet instead. 

 
 

fromCCS Name of the CCS the particles start on. 

toCCS Name of the CCS the particles are bended to. 

R Radius of the bend [m]. 

Bfield B field in the bending magnet [T]. Normally this is mc/qR. 

 

This element is an idealized bending magnet with a B field perpendicular to the z-directions of both the 

fromCCS and toCCS. The geometry is that of a wedge with the two straight sides perpendicular to the z-

directions of the axes. When the axes do not intersect or when they are parallel, this element can not be used. 

 

We define d and e as the z-directions and C as the intersection of the fromCCS and toCCS. The B field 

generated by this element5F7 is given by: 
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In other words: It is the CCS specification that defines the geometry of the magnet, not the magnetic field. 

4.13.2 Bz 

bz(ECS,filename,I) ; 

Axial global Bz-field. 

Obsolete element: Please use map1D_B instead. 

 

ECS Element Coordinate System. 

 
7 In reality, half a bending magnet is constructed on the fromaxis and the other half on the toaxis. When a particle 

leaves one half of the bending magnet it is placed on the other axis to go through the remaining part of the bend. 
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filename File with Bz samples of the B field along the z-axis in [T]. The file must have the following 

layout: 
# Comment Optional 
N  Number of given Bz samples 

z1 Bz1 z: z positions of samples 

z2 Bz2 Bz: B field in z direction at (0,0,z) 

z3 Bz3  
   

zN BzN  

 

I Multiplication factor for B. 

 

The Bz samples along the z-axis are specified in an external file. The B field generated by this element is 

given by: 
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These fields are only correct near the z-axis of the element. A so-called ‘natural cubic spline’ is calculated 

from the given (z,Bz) points. It is recommended to specify more points at positions where the first derivative 

fluctuates significantly. 

4.13.3 Ezcell 

ezcell(ECS,filename,Ezef,phi,w) ; 

Standing wave resonant cavity. 

Obsolete element: Please use map1D_TM instead. 

 

ECS Element Coordinate System. 

filename File with Ez samples of the E field along the z-axis. The file must have the following layout: 
# Comment Optional 
N  Number of given Ez samples 

z1 Ez1 z: z-positions of samples 

z2 Ez2 Ez: E field in z-direction at (0,0,z) 

z3 Ez3  
   

zN EzN  

 

Ezef Multiplication factor. 

phi Phase factor:  in radians. 

w Angular frequency: .in [s-1]. 

 

This element can be used to simulate a standing wave resonant cavity where the actual Ez field is known. It 

has been designed to simulate a single-cell prebuncher. 

 

The fields generated by this element in cylindrical coordinates are given by: 
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The fields are only correct near the z-axis of the element. A so-called ‘natural cubic spline’ is calculated from 

the given (z,Ez) points. It is recommended to specify more points at the positions where the first derivative 

fluctuates significantly. 

 

Combining the Maxwell equations in vacuum tB −= /E  and t= /00 EB   imposes the following 

restriction on the sampled electric field profile on axis: 0''22 =+ EzEz c . Previous implementations of 

ezcell used the second derivative to obtain the B
 field, producing less accurate results. 
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4.13.4 m 

m=expression ; 

Specifies the mass of an elementary particle. 

Obsolete element: Please use setparticles instead. 

 

expression Particle mass in kg. If not specified, the mass of an electron, 9.10953e-31 kg, is taken.. 

4.13.5 q  

q=expression ; 

Specifies the charge of an elementary particle. 

Use setparticles instead. 

 

expression Particle charge in Coulomb. If not specified, the charge of an electron, -1.6021892e-19 C 

is taken. 

4.13.6 SetCathode 

setcathode(set,Ra,Rc,kT) ; 

Modify a particle set according to a spherical cathode. 

Obsolete element: Please use the new particle-set functions instead. 

 

set Particle set. 

Ra Aperture [m]. 

Rc Curvature radius [m]. Specify zero for a flat surface. 

kT Temperature [eV], not yet implemented. Please use the general start elements. 

 

This element modifies a particle distribution for the simulation of a spherical cathode as shown in Figure 

4-23. 

 

 

Rc<0 

Ra 

Z=0 

Rc=0 Rc>0 

Ra 

Z=0 Z=0  
Figure 4-23: Spherical cathode for negatice, zero and positive Rc. 

The particle coordinates in real space are modified by: 

( )2222 RaRcrRczz iii −−−=   

where the + indicates a positive Rc, the – indicates a negative Rc. All particles with a radius larger than Ra 

are removed from the particle set. 

 

The startcathode element must be used to generate the particles as function of time. When 

startcathode is not used, all particles will be started at t=0. 

4.13.7 Setrmacro 

setrmacro(set,radius) ; 

Sets the radius of the macro-particles in a set. 

Obsolete element: Please use setrmacrodist instead. 

 

set Particle set. 

radius Radius of particles [m]. 

 

This element can be used to specify the radius of the particles in a set. 
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4.13.8 StartCathode 

startcathode(ECS,set, Ra,Rc,Lc, dzdt,dtmax) ; 

Continuously add particles emerging from a spherical or flat surface during the simulation. For photo-cathode 

simulations, a curved laser front can be taken into account. 

Obsolete element: Please use the new particle-set functions instead. 

 

ECS Element Coordinate System. 

set Particle set. 

Ra Aperture [m]. 

Rc Cathode curvature radius [m]. Specify zero for a flat surface. When not zero, the 

setcathode element must be used before. 

Lc Laser curvature radius [m]. Specify zero for a flat laser front or when not applicable. 

dzdt Linear transformation between z-position and time in [m/s], may be negative. 

dtmax Maximum allowed extrapolation [s]. Specify 0 to start all particles one-by-one. A larger 

value speeds up the simulation, at the cost of accuracy. 

 

This element can be used for the simulation of a spherical cathode or a continuous beam. It starts particles 

during the simulation according to a distribution, as defined using the regular start and set elements. 

However, the z-coordinate is used as time coordinate by dividing by dzdt. When simulating a spherical 

cathode, the previous element must be setcathode, with identical Ra and Rc parameters. When a photo-

cathode is simulated, an optional curvature of the laser front, Lc, can be specified to account for the difference 

in arrival time between the center and the edge of the laser pulse on the cathode. 

 

The 2.4 spacecharge routine should never be used in combination with startcathode. Instead, use 

spacecharge3D in the following way: 
1. setrmacro(macro-particle-radius) ; 

2. spacecharge3D() ; 

 

For a flat surface and laser front, all particles emerge at the z=0 plane of the ECS of startcathode, but 

only one particle is started at t=0. The other particles follow at later times ti, depending on their z-distribution 

and dzdt, the transformation between position and time: 

dzdt

i

i

zz
t

−
= max   

 

The energy of an individual particle will not influence the moment that it is added to the simulation. It is as 

if the previously specified bunch moves with constant longitudinal velocity dzdt towards the cathode. When 

a particle crosses the boundary, it emerges with the specified velocities. When a particle is added to the 

simulation, a small extrapolation is performed to compensate for the fact that timesteps normally don’t 

coincide with precise plane boundaries: 
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Finally r and r are transformed to the ECS of startcathode. 

 

 

When the laser front is not flat, i.e. Lc is not zero, startcathode accounts for the different arrival time of 

the light, as shown in Figure 4-24. A positive Lc indicates that the center of the beam is illuminated first and 

a zero Lc indicates a flat laser front. The equations are modified accordingly: 

( )
c

LaLcrLczz
t

ii

i

2222

max
−−−−

= 
dzdt

  

 

The equations for a spherical cathode are analogous to those of a flat surface. The only difference is that 

particles are not positioned at the z=0 plane of the ECS of startcathode, but at the spherical cathode 

boundary: 
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dzdt

  

where the signs of Rc and the final z-coordinates are identical, as shown in Figure 4-24. 
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Figure 4-24: Spherical cathode for negative, zero and positive Rc. 

4.13.9 Start 

start(ECS,startfile) ; 

Reads the initial coordinates of the macro-particles from a file. Particles are added to the particle set "beam". 

Obsolete element: Please use setfile instead. 

 

ECS Element Coordinate System. The coordinates of the particles are interpreted relative to the 

ECS specified here. If no transformation is needed, the identity transformation must be 

specified: "wcs","I". 

startfile File with the initial coordinates of the particles. If the file is a GPT outputfile with a 

tout(t); statement, this group must be specified by a time=t; statement above start. 

If the file is an ASCII file it must have the following layout: 
# Comment Optional 
N Number of particles 

x1 y1 z1 βx1 βy1 βz1 Particle 1 

x2 y2 z2 βx2 βy2 βz2 Particle 2 

x3 y3 z3 βx3 βy3 βz3 Particle 3 
       

xN yN zN βxN βyN βzN Particle N 

 

The initial positions of the particles are read from an external file. This can be the outputfile of a previous 

run or an ASCII file. The position and velocity are interpreted relative to the specified Element Coordinate 

System. 

 

The correct way to instruct GPT to restart using the outputfile of a previous run is shown in Listing 4-3 and 

Listing 4-4. 

Listing 4-3: file1.in: First inputfile writing output at t=3 to file1.gdf 

1. startgrid( ... )  

2. ... 

3. tout(3) ; 

Listing 4-4: file2.in: Second inputfile, reading the particle coordinates from file1.gdf 

5. time=3 ; 

6. start( "wcs","I", "file1.gdf" ) ; 

7. ... 

 

Outputfiles created by MR can also be used. Either use MR again with exactly the same parameter sweep or 

specify var=value above start to specify which group has to be used. 

4.13.10 Startcyl 

startcyl(ECS,nps,E0,Emod,sigE,R,div,divspr,Dmod,sigz/psi,[omega])]) ; 

Specifies the initial distribution in real and velocity space of a cylindrical set of macro-particles. Particles 

are added to the particle set "beam". 

Obsolete element: Please use the new particle-set functions instead. 
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ECS Element Coordinate System. 

nps Number of macro-particles.nps is truncated to enable a smooth distribution in xy-space. 

Possible values are 1, 7, 19, 37, 61, 91, 127, 169, 217, 271, 331, 397, 469, 547, ... 

Eo Mean total energy in eV. 

Emod String that determines the energy distribution function. Emod can be "Uniform" or 

"Gaussian". 

sigE Energy spread in fraction of Eo. Total spread for a uniform distribution and 1/e for a 

Gaussian distribution. 

R Maximum beam radius. 

div Linear divergence with particle radius. A negative value is allowed. 

divspr Divergence randomly distributed among the particles. 

Dmod String that determines the density distribution function. Dmod can be "Uniform", 

"Gaussian" or "Class-C". 

sigz Bunch length: Total for a uniform distribution and 1/e for a Gaussian distribution. 

psi Half conduction angle for Class-C modulation. 

omega Modulation angular frequency for Class-C modulation. 

 

The parameters represent a bunch as produced by an electron gun. The default gun orientation is in the z-

direction but can be reoriented using the ECS. 

 

The longitudinal velocity distribution can be chosen so that the energy distribution is either "Uniform" or 

"Gaussian". The corresponding probability density functions are respectively given by: 

Uniform8: 
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The transverse distribution in real space is a homogeneous cylinder with radius R. 

 

The transverse distribution in velocity space consists of two independent divergences: 

• A divergence div linear to the radius of the particle: vr=div (R/r). It only rotates the phase-space 

ellipse and therefore does not contribute to the emittance. 

• A divergence uniformly distributed in the range [0,divspr] which is randomly assigned to the 

particles. The resulting bunch will have an emittance of R divspr. 

 

The longitudinal spatial distribution can be "Uniform" (equidistant), "Gaussian" or "Class-C". The 

corresponding probability density functions are respectively given by: 

Uniform8: 
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This element does not position the particles (pseudo) randomly. The used algorithm positions the particles 

as homogeneous as possible in both real and phase space. Therefore much fewer particles are needed to 

obtain the same statistics as when using randomly distributed particles. This generally saves GPT a 

considerable amount of CPU time. 

 
8 Please note that the total distribution length is specified as . 
9  The bunch length can be calculated using L=2/kb. 
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4.13.11 Startgrid 

startgrid(ECS,Lx,dx,Ly,dy,Lz,dz,[Bx,By,Bz]) ; 

Starts the macro-particles in a rectangular grid with equal velocity. Particles are added to the particle set 

"beam". 

Obsolete element: Please use setstartxyzgrid instead. 

 

ECS Element Coordinate System. The coordinates of the particles are interpreted relative to the 

ECS specified here. If no transformation is needed, the identity transformation must be 

specified: "wcs","I" 

Lx Length of array in x-direction. This length may be zero. 

dx  Spacing in x-direction. 

Ly Length of array in y-direction. This length may be zero. 

dy  Spacing in y-direction. 

Lz Length of array in z-direction. This length may be zero. 

dz  Spacing in z-direction. 

Bx Velocities/c of the particles in x-direction. Default 0. 

By  Velocities/c of the particles in y-direction. Default 0. 

Bz Velocities/c of the particles in z-direction. Default 0. 

 

The particles start in a rectangular grid centered around the origin. The grid extends from –Lx/2,–Ly/2, –

Lz/2 to Lx/2,Ly/2,Lz/2 with spacing dx,dy,dz. The orientation and origin can be modified using the ECS. 

 

It is simple to instruct GPT to initialize billions of particles using this keyword. Since GPT has no built-in 

limit for the number of particles, it must rely on the operating system to indicate an ‘out of memory’ 

condition. On some virtual memory machines, this error message can come too late, causing either GPT or 

the complete system to crash. 

4.13.12 Startpar 

startpar(ECS,x,y,z,Bx,By,Bz) ; 

Specifies the initial position and velocity of a single macro-particle. Particles are added to the particle set 

"beam". 

Obsolete element: Please use setstartpar instead. 

 

ECS Element Coordinate System. The coordinates of the particle are interpreted relative to the 

ECS specified here. If no transformation is needed, the identity transformation must be 

specified: "wcs","I". 

x x-coordinate of the particle. 

y  y-coordinate of the particle. 

z  z-coordinate of the particle. 

Bx  Velocity/c of the particle in the x-direction. 

By  Velocity/c of the particle in the y-direction. 

Bz  Velocity/c of the particle in the z-direction. 

 

The ECS is obsolete here because the x,y,z and Bx,By,Bz parameters are sufficient to specify any position 

and any velocity. It is introduced for compatibility with other start functions. 

4.13.13 StartpGB 

startpargb(ECS,x,y,z,GBx,GBy,GBz) ; 

Specifies the initial position and velocity of a single macro-particle. Particles are added to the particle set 

"beam". 

Obsolete element: Please use setstartpar instead. 

 

ECS Element Coordinate System. The coordinates of the particle are interpreted relative to the 

ECS specified here. If no transformation is needed, the identity transformation must be 

specified: "wcs","I". 

x x-coordinate of the particle. 

y  y-coordinate of the particle. 

z  z-coordinate of the particle. 
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GBx  Momentum  of the particle in the x-direction. 

GBy  Momentum  of the particle in the y-direction. 

GBz  Momentum  of the particle in the z-direction. 
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