Shed Mod 2.5

Gabriel Palacios

gpala001@odu.edu 03/28/17

Comparing baseline vs shed mod 2.5 at - 200kV: Danny's model.

- Side and front view cross-section are shown.
- Based entirely on Danny's chamber diagram.
 - Now includes proper chamber thickness
 - NEG's have been grounded to prevent the "crazy" fields appearing under them
 - This does not mean the were not grounded before, they where at zero potential, but they did not have contact with the base of the chamber. Now they are "bolted" to the chamber.
- Shed model by Danny (better cusp)
- Included plots of potential, E-fields on rubber-insulator interface
- Included plots of E-fields on cathode-anode gap

Baseline (left) vs Shed mod 2.5 (right) -200 kV

Baseline (left) vs Shed mod 2.5 (right) -200 kV Close up of crazy stuff near bottom right

Baseline (left) vs Shed mod 2.5 (right) -200 kV fields around edges

Baseline (left) vs Shed mod 2.5 (right) -200 kV fields on top of NEG's

Baseline (left) vs Shed mod 2.5 (right) -200 kV fields triple point

Danny's 200kV chamber with inverted insulator and T electrode

Baseline (left) vs Shed mod 2.5 (right) -200 kV fields cusp

Danny's 200kV chamber with inverted insulator and T electrode

Shed mod 2.5 (right) -200 kV fields cusp detail

Reaches E=5.1MV/m near y=28 but remains below this value along the cusp.

Baseline (left) vs Shed mod 2.5 (right) -200 kV fields insulator interface

Baseline vs Shed mod 2.5 -200 kV Potentials

Baseline vs Shed mod 2.5 -200 kV Electric field Ex

Baseline vs Shed mod 2.5 -200 kV Electric field Ey

Cathode-anode gap: Ey field-axis

Electric field on symmetry axis

Cathode-anode gap: Ey field- axis -2mm

Electric field symmetry axis -2mm

Cathode-anode gap: Ey field- axis +2mm

Electric field symmetry axis +2mm

Cathode-anode gap: Ex field

Electric field along x-axis cathode-anode interface

Now 2.4 vs 2.5 plots

They behave so similarly that they pretty much overlap.

Shed mod 2.4 vs Shed mod 2.5 -200 kV Potentials

Shed mod 2.4 vs Shed mod 2.5 -200 kV Electric field Ex

Shed mod 2.4 vs Shed mod 2.5 -200 kV Electric field Ey

Cathode-anode gap: Ey field-axis

Electric field on symmetry axis

Cathode-anode gap: Ey field- axis -2mm

Electric field symmetry axis -2mm

Cathode-anode gap: Ey field- axis +2mm

Electric field symmetry axis +2mm

Cathode-anode gap: Ex field

Electric field along x-axis cathode-anode interface

Danny's Shed 2.5 (Front view)

Shed mod 2.5 at -200kV.

- Front view cross-section (only half, since the chamber is symmetric in this view).
- Now includes thickness
- NEG's have been grounded to prevent the "crazy" fields appearing under them
 - This does not mean the were not grounded before, they where, but they did not have contact with the base of the chamber.
- Fields around the shed, cathode and NEG's.

Baseline (left) vs Shed mod 2.5 (right) -200 kV

Baseline (left) vs Shed mod 2.5 (right) -200 kV fields around edges

Baseline (left) vs Shed mod 2.5 (right) -200 kV fields on top of NEG's

Baseline (left) vs Shed mod 2.5 (right) -200 kV fields triple point

Baseline (left) vs Shed mod 2.5 (right) -200 kV fields cusp

Baseline (left) vs Shed mod 2.5 (right) -200 kV fields cusp detail

Reaches E=6.4MV/m near y=28.3 but remains below this value along the cusp.

Baseline (left) vs Shed mod 2.5 (right) -200 kV fields insulator interface

Fin.