

Extreme High Vacuum

Marcy Stutzman, Ph.D. Jefferson Lab Center for Injectors and Sources

Thomas Jefferson National Accelerator Facility is managed by Jefferson Science Associates, LLC, for the U.S. Department of Energy's Office of Science

Outline

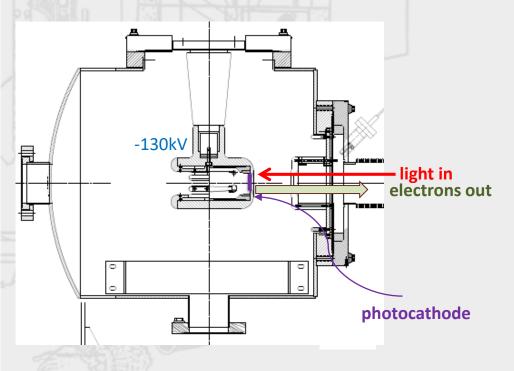
- Jefferson Lab
 - Polarized Electron Source
- Pumps
- Measurement
- Summary

Jefferson Lab vacuum

Beamline vacuum: Ultra-high vacuum

Polarized electron source: Approaching Extreme High vacuum

Jefferson Lab

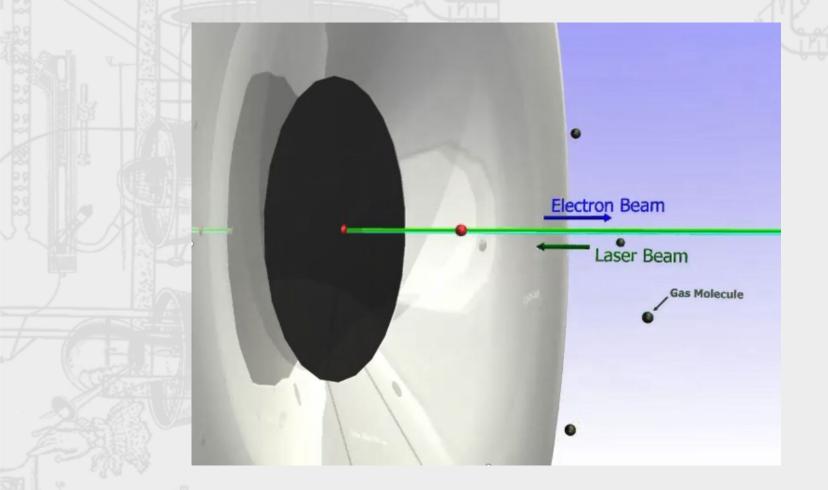

Cryomodule vacuum at 2K: <u>Calculated</u> to be Extreme High vacuum

Cryomodule insulating vacuum Medium-High vacuum

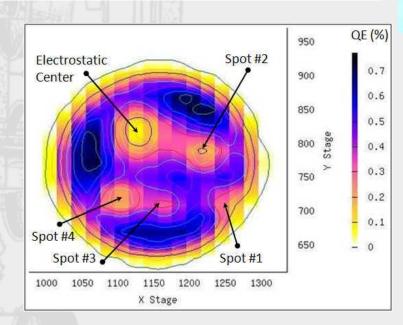
Experimental scattering chambers: High vacuum

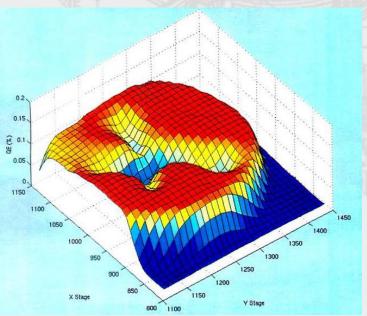
Photoemission Source

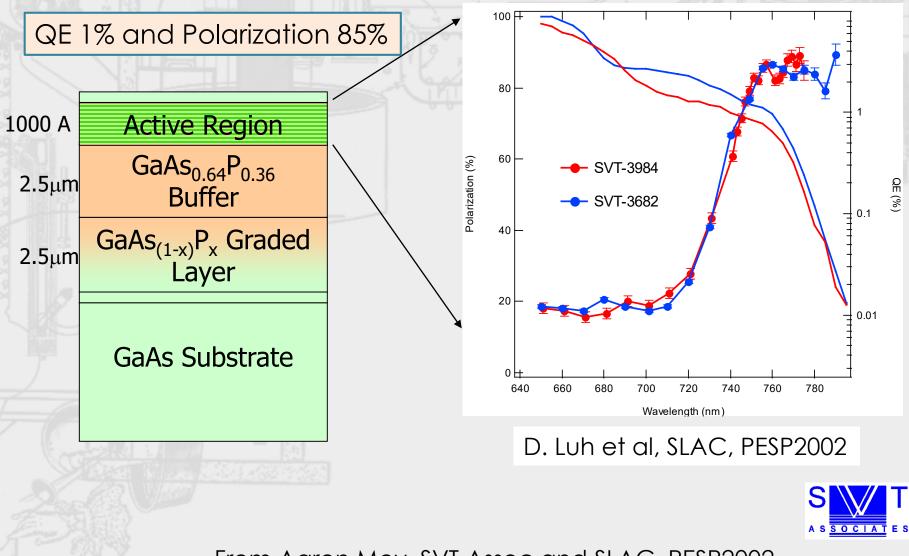
- -130 kV DC (vs. RF) electrode bias
- x-ray standard "inverted" insulator
- Pumps with NEG modules and ion pump
- Base pressure approaching XHV \equiv P < 1x10⁻¹² Torr



Jefferson Lab


Any gas in chamber can be ionized by electron beam, accelerated back toward the photocathode and limit photocathode operational lifetime




Photocathode Lifetime

- Ion bombardment with characteristic QE "trench" from laser spot to electrostatic center of photocathode – damages NEA of GaAs
- High energy ions are focused to electrostatic center: create QE "hole" Don't run beam from electrostatic center.
- QE can be restored, but takes about 8 hours to heat and reactivate

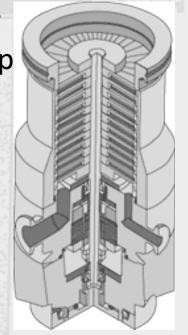
Strained-Superlattice GaAs/GaAsP

From Aaron Moy, SVT Assoc and SLAC, PESP2002

Vacuum levels

Jefferson Lab

	Example	Pressure (Torr)	atoms/cm ³
Atmosphere	Atmosphere at sea level	760	27,000,000,000, 000,000,000 or 2.7x10 ¹⁹
Low vacuum	Atmosphere on Mount Everest	252	1x10 ¹⁹
(1-300 Torr)	Pressure in bell jar experiment, Mars	1-10	1-3 x 10 ¹⁷
Medium vacuum (1 Torr-1mTorr)	Insulating vacuum, atmosphere on Pluto	10 ⁻³	10 quadrillion
High vacuum (1 mTorr- 1x10 ⁻⁷)	Scattering chambers	10 ⁻⁵	100 trillion
Ultra high	Vacuum tubes, Cathode Ray tubes, beamline vacuum	10 ⁻⁸	100 million
vacuum (UHV, 1x10 ⁻⁷ – 1x10 ⁻¹²)	Pressure outside Space Station (400 km)	10 ⁻¹⁰	1 million
	JLab Electron Gun	10-12	10,000
Extreme high vacuum (XHV <1x10 ⁻¹²)	Interstellar space estimate ~ 1 atom / cm ³	10 ⁻¹⁷	1


Mean free path

1997 - C			
	Pressure (mbar)	mean free path (m)	
	1.E+03	5.9E-08	Without vacuum, 6 nm before collision
	1.E+02	5.9E-07	
	1.E+01	5.9E-06	
	1.E+00	5.9E-05	
	1.E-01	5.9E-04	
	1.E-02	5.9E-03	
	1.E-03	5.9E-02	
	1.E-04	5.9E-01	
	1.E-05	5.9E+00	
	1.E-06	5.9E+01	
	1.E-07	5.9E+02	
	1.E-08	5.9E+03	CEBAF linac vacuum: 6 to 60 km
	1.E-09	5.9E+04	mean free path
	1.E-10	5.9E+05	
	1.E-11	5.9E+06	
	1.E-12	5.9E+07	

Modern Vacuum Pumps

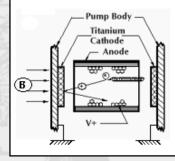
Gas Transfer Pumps

- Rotary vane pump
- Roots pumps
- Turbo pumps

Capture Pumps

- Ion pumps
- Getter pumps
- Cryopumps

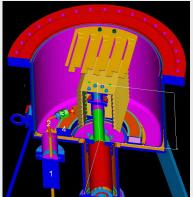
Remove molecules from *gas phase*


Compress rarified gas Move gas to higher pressure exhaust

Capture Pumping

lon pumps

- Gas ionized
- High voltage accelerates ions into plates
- Ion implant in
 plates captured


Getter pumps

- Chemically reactive surface
 Gas molecules incident on surface stick
- Chemisorption
 removes gas

Cryopumping

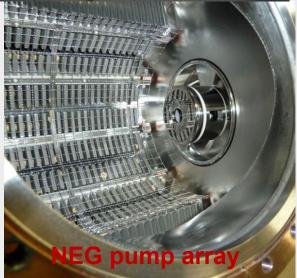
- Large surface area material
- Cooled below freezing temperature of desired gas
- Gas incident on cold surface sticks

Achieving Extreme High Vacuum

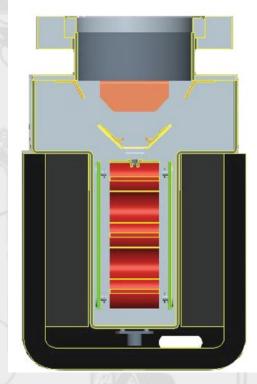
Avoid contamination by oils due to roughing pumps, fingerprints, machining.

Heat treat Chamber and components

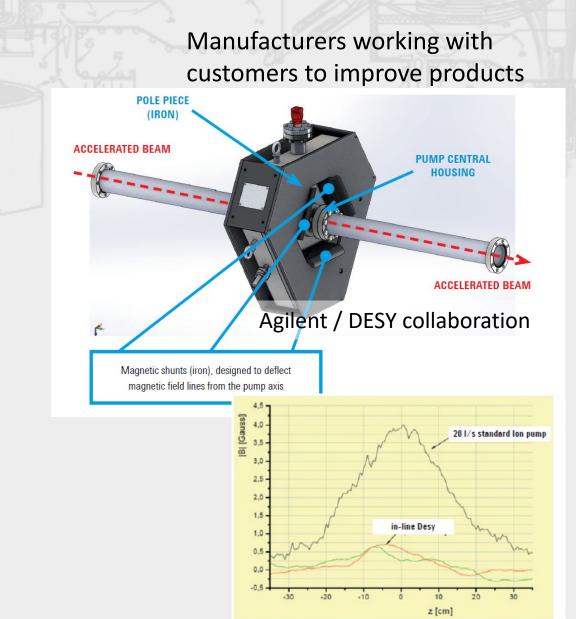
 Reduces primary source of gas: hydrogen outgassing


Baking used to get pressures below 10⁻¹⁰ Torr

250°C for 30 hours removes water vapor


Non-Evaporable Getter Pumps

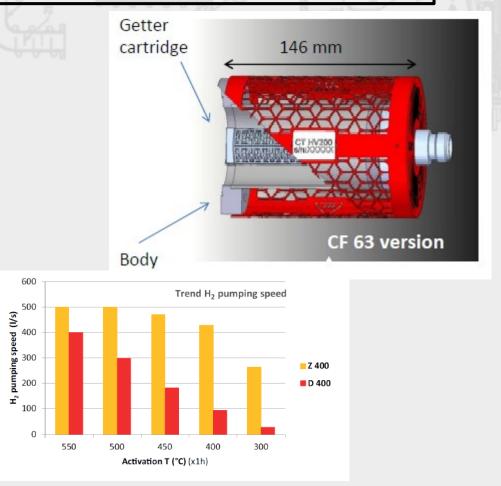
Ion Pumps



UHV pumping innovations

GammaVacuum / Edwards "Eximo" shielding and heat treatment CRADA collaboration with JLab

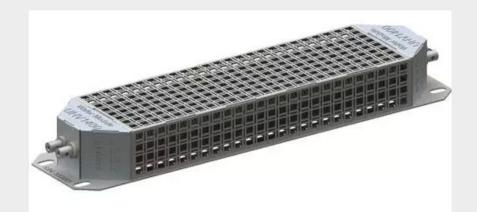
Shields (yellow) to minimize particles and gas leaving pump and entering chamber


UHV pumping innovations

New alloy: Zr-V-Ti-Al "ZAO"

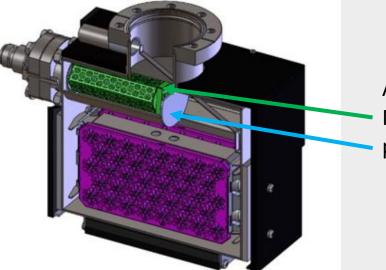
NEG pump developed CERN and SAES ~1975

Reactive metal sintered to resistive strips Activate with 38A


Lower activation temperature Higher pump speed Less dust generation

ZAO: Wafer module

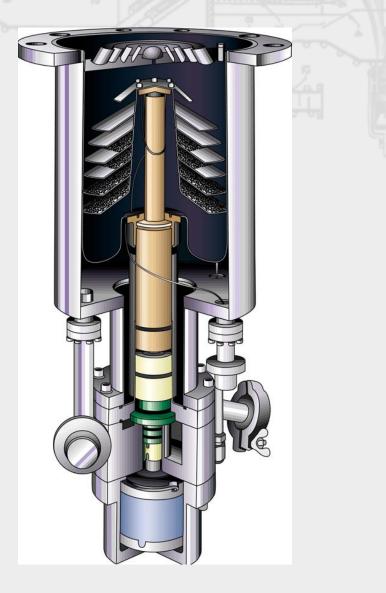
Worked with SAES to get replacement for WP modules


Combined NEG & ion pumps

SAES: add small ion pump to state of the art NEG (ZAO)

Gamma (Edwards) & Agilent Add NEGs to ion pump (older material NEG)

SAES design: NEG, small lon pump



Agilent design with NEG and particulate shield added

New cryosorber: Nanomaterial

- Typical cryopumps glue charcoal to cold surface
 - Large surface area allows
 cryosorption rather than
 cryocondensation
 - Lower pressure
- Requires Low temperature adhesives

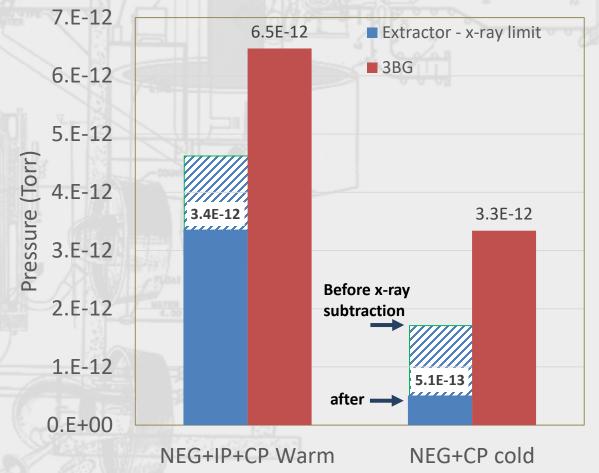
 Can't bake system well

New cryosorber: Nanomaterial

- Boron-Nitride Nanotubes have
 - Huge surface area
 - Good thermal
 - Are freestanding
 - Are manufactured across street (JLab spin-off)
- Can we use these for cryosorber material?

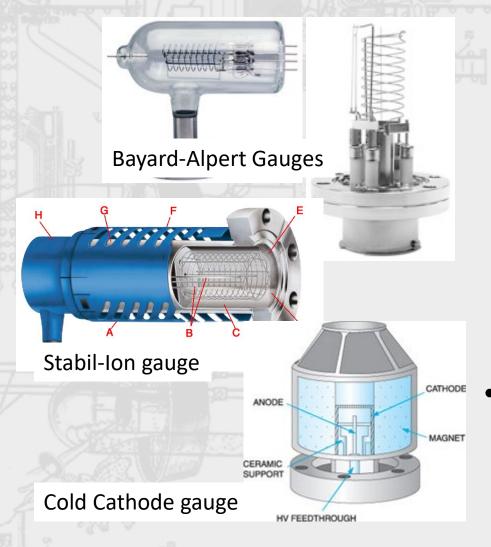
Mounting BNNT for Cryopumping

1 g BNNT material Copper grid

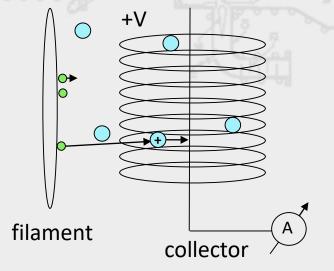


~4 g BNNT material "sewn on" with wires SULI Student, 2016

Results


BNNT outgassing low

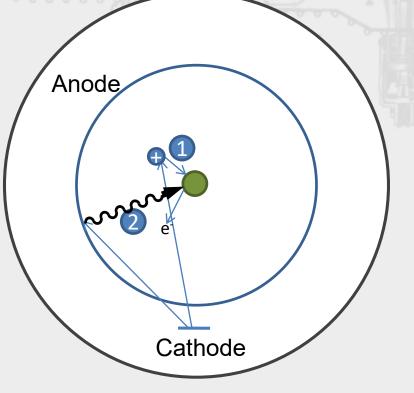
No valve


- P~3x10⁻¹² Torr
 BNNT warm
- Cryopump reduces pressure
- x-ray limit 1.2x10⁻¹²
 Torr dominates
 extractor gauge
 reading
- 3BG readings still have good signal:background, negligible x-ray effect

Marcy Stutzman, Roy Whitney and Kevin Jordan "Nano-materials for adhesive-free adsorbers for bakable extreme high vacuum cryopump surfaces" Patent US9463433B2

High/Ultra High Gauges

Jefferson Lab


Lowest pressures:
 10⁻⁸ Torr – 10⁻¹¹ Torr
 up to \$4,000

Measure Pressure: Hot cathode gauge operation and errors

- 1. True gas ionization
 - Positive current
- 2. X-ray effect
 - e- on anode -> photons emitted
 - Photons on collector -> electrons emitted
 - Extra positive current
- Additional effects:

Jefferson Lab

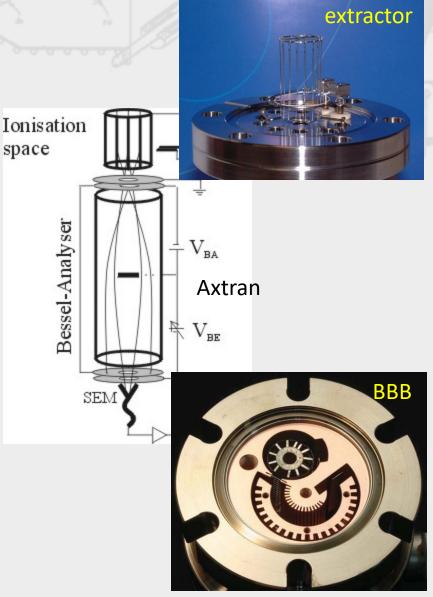
- 3. Inverse X-ray effect
- 4. Electron Stimulated Desorption

 $I^{+} = I_{real} + I_{x-rav}^{-} - I_{inv.x-ray}^{-} + I_{ESD}$

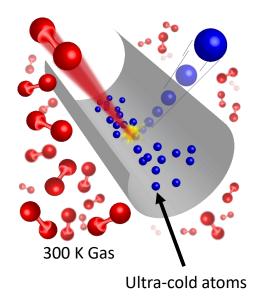
Ionization gauge pressure calibration

- Chamber evacuated
- Gauge energized
- Current measured
- Calibration factor to translate measured current to pressure

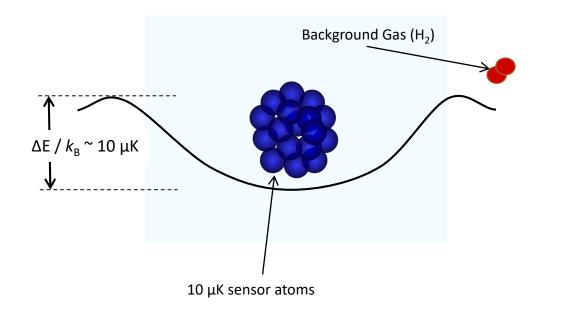
 $P = \frac{ion \ current}{Sensitivity \ * \ emission \ current}$


 x-ray limit determines lowest pressure that can be measured

XHV gauges: reduce x-ray limit


Hot filament

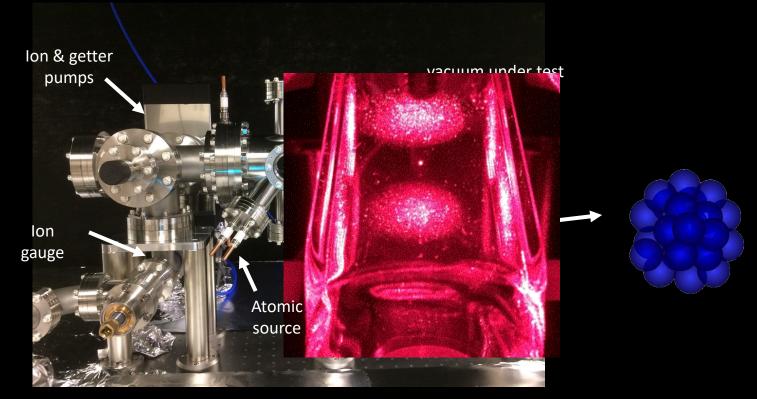
- Extractor gauge
 - available commercially for decades
 - x-ray limit reduced through geometry
 - x-ray limit quote: 7.5x10⁻¹³ Torr
 - \$4,300
 - Axtran gauge
 - Bessel box energy discrimination
 - electron multiplier to assist in low current measurements
 - Quoted limit: 3.75x10⁻¹³ Torr
 - \$7,500
- Watanabe BBB (Bent Belt Beam) gauge
 - Uses Leybold IE540 controller
 - 230° deflector BeCu housing
 - JVSTA 28, 486 (2010)
 - Quoted limit: 4x10⁻¹⁴ Torr
 - \$13,000 + Ext. controller (\$2,600)


Cold Atom Vacuum Standard (CAVS)

- World's only absolute UHV/XHV sensor and standard
- Cover range of 10^{-10} to 10^{-5} Pa
 - Presently no primary standards
- Move from classical to quantum based standard
- Two Versions: Lab Scale Miniature (portable) scale

Thanks to Julia Scherschligt and Jim Fedchak

Ultra-cold atoms make ideal vacuum sensors



- Laser cool sensor atoms to ~10 μK
- Transfer cold atoms to shallow magnetic trap
- 300 K background atoms easily kicks 10 μK atoms from magnetic trap
- Loss rate of cold-atoms is a measurement of vacuum

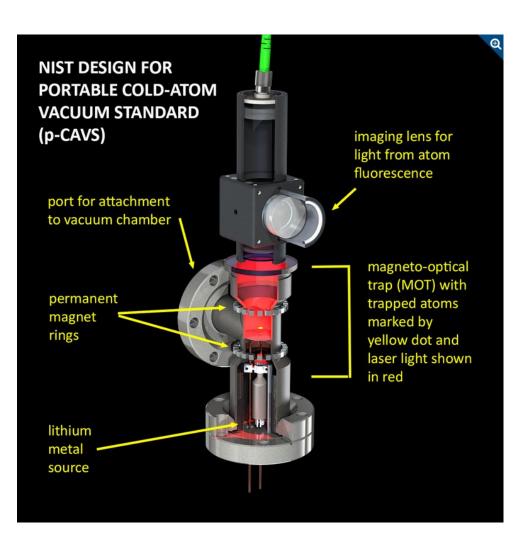
Depends on:

- Collision rate coefficient (atomic property)
- Density of background gas

NIST

p-CAVS Consumer usable quantum gauge

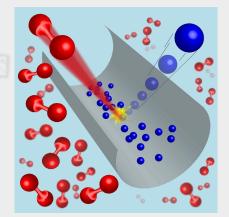
Benefits:

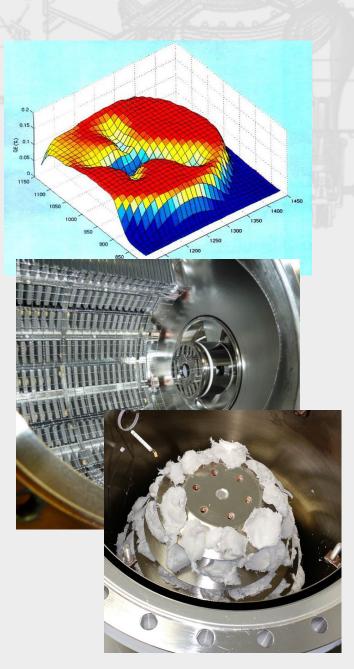

Quantum standard pressure measurement

Cross compare to hot filament gauges

Current status:

Background pressure from Li source limits base pressure ~10⁻¹⁰ Torr


Potential Li contamination of chamber



Summary

- High polarization photocathodes require vacuum near or at XHV for long lifetime
- We're optimizing the existing pumps and innovating on new XHV pumping
- Current ionization gauges may be supplemented by Quantum standards and gauges

Questions?

