Talman SPIN2016 comments

The reference is to Talman's talk at SPIN 2016, available here https://indico.cern.ch/ event/570680/contributions/2310168/attachments/1341808/2026008/Talman_Spin2016-talk. pdf.

- Talman denotes the lab frame by K and the electron rest frame by K^{\prime}. But K^{\prime} (as Talman employs it) is not the rest frame. To clarify concepts, I define two terms: "longitudinal" means "parallel to the particle momentum (velocity)" and "axial" means "parallel to the beamline reference axis." I employ a coordinate system (x, y, s). The boost from K to K^{\prime} is an axial boost, such that $p_{s}\left(K^{\prime}\right)=0\left(\right.$ or $\left.v_{s}\left(K^{\prime}\right)=0\right)$. However the particle still has a nonzero momentum $p_{x, y}\left(K^{\prime}\right)=p_{x, y}(K)$. What this means is that there is still a $\boldsymbol{v} \times \boldsymbol{E}$ term for the spin-orbit interaction in the frame K^{\prime}.
- More generally, for relativistic particles the Stern-Gerlach force is not proportional to the magnetic dipole moment. The coupling to the spin is given by the same $\boldsymbol{\Omega} \cdot \boldsymbol{s}$ Hamiltonian which yields the BMT equation ${ }^{1}$ Writing $a=(g-2) / 2$, the transverse magnetic fields in $\boldsymbol{\Omega} \cdot \boldsymbol{s}$ are multiplied by the coefficient $(\gamma a+1)$ and longitudinal magnetic fields are multiplied by the coefficient $(a+1)$. These are well known facts. They apply equally to the relativistic Stern-Gerlach force. Expressing matters in the lab frame K, the equations of motion for the momenta $p_{x, y}$, for the coupling to the spin, are

$$
\begin{equation*}
\frac{d p_{x}}{d t}=-\frac{\partial(\boldsymbol{\Omega} \cdot \boldsymbol{s})}{\partial x}=-\left(\frac{\partial \boldsymbol{\Omega}}{\partial x}\right) \cdot \boldsymbol{s}, \quad \frac{d p_{y}}{d t}=-\left(\frac{\partial \boldsymbol{\Omega}}{\partial y}\right) \cdot s \tag{1}
\end{equation*}
$$

- Consider motion through a quadrupole and treat only p_{x} below. Then to a sufficient approximation for this note, with $-e \boldsymbol{B} /\left(p_{s} c\right)=K_{1}\left(x \boldsymbol{e}_{y}+y \boldsymbol{e}_{x}\right)$,

$$
\begin{equation*}
\boldsymbol{\Omega}=-\frac{e}{m c} \frac{\gamma a+1}{\gamma} \boldsymbol{B}=(\gamma a+1) v_{s} K_{1}\left(x \boldsymbol{e}_{y}+y \boldsymbol{e}_{x}\right) . \tag{2}
\end{equation*}
$$

Then

$$
\begin{equation*}
\frac{d p_{x}}{d t}=-\left(\frac{\partial \boldsymbol{\Omega}}{\partial x}\right) \cdot s=-(\gamma a+1) v_{s} K_{1} s_{y} \tag{3}
\end{equation*}
$$

[^0]Say the quadrupole length is L_{q}. The time to transit the quadrupole is $\Delta t=L_{q} / v_{s}$. Then, approximately, the Stern-Gerlach momentum kick upon traversing the quadrupole is

$$
\begin{equation*}
\Delta p_{x}^{S G} \simeq \frac{d p_{x}}{d t} \Delta t \simeq-(\gamma a+1) L_{q} K_{1} s_{y} . \tag{4}
\end{equation*}
$$

The angular deflection is

$$
\begin{equation*}
\Delta \theta_{x}^{S G}=\frac{\Delta p_{x}^{S G}}{p_{s}} \simeq-\frac{\gamma a+1}{m \gamma v_{s}} L_{q} K_{1} s_{y} \tag{5}
\end{equation*}
$$

- Talman's expression is

$$
\begin{equation*}
\left(\Delta \theta_{x}^{S G}\right)_{\text {Talman }}=-\frac{\mu_{x}^{*}}{e \beta_{s}} q_{x} \tag{6}
\end{equation*}
$$

Here $q_{x}=1 / f$ is the inverse focal length. (I have changed Talman's " v " to β_{s}, see below.)

- Let us compare the two expressions. There are some issues about normal and skew quadrupoles, but that is not essential here. Talman states that " μ_{x}^{*} and μ_{y}^{*} differ from the Bohr magneton (not magnetron) μ_{B} only by $\sin \theta$ and $\cos \theta$ factors respectively." Here $\theta=\pi / 4$ and is not important. Then, approximately, $L_{q} K_{1} \simeq 1 / f=q_{x}$. Also $\mu_{x}^{*} \simeq(e / m c) s_{x}$, up to factors of $1 / \sqrt{2}$. Then I obtain

$$
\begin{equation*}
\Delta p_{x}^{S G} \simeq-\frac{\gamma a+1}{\gamma} \frac{q_{x} s_{y}}{m v_{s}} \tag{7}
\end{equation*}
$$

Talman's expression is

$$
\begin{equation*}
\left(\Delta \theta_{x}^{S G}\right)_{\text {Talman }}=-\frac{1}{m c \beta_{s}} q_{x} s_{x}=-\frac{q_{x} s_{x}}{m v_{s}} . \tag{8}
\end{equation*}
$$

See my comment above about β_{s}. I ignore global minus signs and the fact that my expression has s_{y} and Talman's contains s_{x}; this may be because I treated a normal quadrupole and Talman treated a skew quadrupole. Both " s_{x} " and " s_{y} " are simply spin components, of $O(\hbar / 2)$. For the CEBAF injection line, $E \simeq 123 \mathrm{MeV}$ so $\gamma \simeq 240$ (and $\gamma a \simeq 0.25$, which can be ignored). Hence overall

$$
\begin{equation*}
\Delta p_{x}^{S G} \simeq \frac{1}{\gamma} \frac{q_{x}}{m v_{s}} \frac{\hbar}{2}, \quad\left(\Delta \theta_{x}^{S G}\right)_{\mathrm{Talman}} \simeq \frac{q_{x}}{m v_{s}} \frac{\hbar}{2} \tag{9}
\end{equation*}
$$

- The angular deflection due to the Stern-Gerlach force is a factor $1 / \gamma$ relative to that derived by Talman. For a 123 MeV beam line this is about a factor of 240 .
- The effects of the Lorentz boosts have not been calculated correctly. For relativistic particles, the Stern-Gerlach force is not proportional to the magnetic dipole moment. There may be other errors.

[^0]: ${ }^{1}$ Or Thomas-BMT or Thomas-Frenkel-(anyone else you like)-BMT equation.

