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Talman SPIN2016 comments

The reference is to Talman’s talk at SPIN 2016, available here https://indico.cern.ch/

event/570680/contributions/2310168/attachments/1341808/2026008/Talman_Spin2016-talk.

pdf.

• Talman denotes the lab frame by K and the electron rest frame by K ′. But K ′ (as Talman

employs it) is not the rest frame. To clarify concepts, I define two terms: “longitudinal”

means “parallel to the particle momentum (velocity)” and “axial” means “parallel to the

beamline reference axis.” I employ a coordinate system (x, y, s). The boost from K to K ′ is

an axial boost, such that ps(K
′) = 0 (or vs(K

′) = 0). However the particle still has a nonzero

momentum px,y(K ′) = px,y(K). What this means is that there is still a v ×E term for the

spin-orbit interaction in the frame K ′.

• More generally, for relativistic particles the Stern-Gerlach force is not proportional to the

magnetic dipole moment. The coupling to the spin is given by the same Ω · s Hamiltonian

which yields the BMT equation.1 Writing a = (g − 2)/2, the transverse magnetic fields in

Ω · s are multiplied by the coefficient (γa+ 1) and longitudinal magnetic fields are multiplied

by the coefficient (a+ 1). These are well known facts. They apply equally to the relativistic

Stern-Gerlach force. Expressing matters in the lab frame K, the equations of motion for the

momenta px,y, for the coupling to the spin, are

dpx
dt

= −∂(Ω · s)
∂x

= −
(
∂Ω

∂x

)
· s , dpy

dt
= −

(
∂Ω

∂y

)
· s . (1)

• Consider motion through a quadrupole and treat only px below. Then to a sufficient approx-

imation for this note, with −eB/(psc) = K1(xey + yex),

Ω = − e

mc

γa+ 1

γ
B = (γa+ 1)vsK1(xey + yex) . (2)

Then

dpx
dt

= −
(
∂Ω

∂x

)
· s = −(γa+ 1)vsK1sy . (3)

1Or Thomas-BMT or Thomas-Frenkel-(anyone else you like)-BMT equation.
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Say the quadrupole length is Lq. The time to transit the quadrupole is ∆t = Lq/vs. Then,

approximately, the Stern-Gerlach momentum kick upon traversing the quadrupole is

∆pSGx ' dpx
dt

∆t ' −(γa+ 1)LqK1sy . (4)

The angular deflection is

∆θSGx =
∆pSGx
ps

' −γa+ 1

mγvs
LqK1sy . (5)

• Talman’s expression is

(∆θSGx )Talman = − µ
∗
x

eβs
qx . (6)

Here qx = 1/f is the inverse focal length. (I have changed Talman’s “v” to βs, see below.)

• Let us compare the two expressions. There are some issues about normal and skew quadrupoles,

but that is not essential here. Talman states that “µ∗x and µ∗y differ from the Bohr magneton

(not magnetron) µB only by sin θ and cos θ factors respectively.” Here θ = π/4 and is not

important. Then, approximately, LqK1 ' 1/f = qx. Also µ∗x ' (e/mc)sx, up to factors of

1/
√

2. Then I obtain

∆pSGx ' −γa+ 1

γ

qxsy
mvs

(7)

Talman’s expression is

(∆θSGx )Talman = − 1

mcβs
qxsx = −qxsx

mvs
. (8)

See my comment above about βs. I ignore global minus signs and the fact that my expression

has sy and Talman’s contains sx; this may be because I treated a normal quadrupole and

Talman treated a skew quadrupole. Both “sx” and “sy” are simply spin components, of

O(~/2). For the CEBAF injection line, E ' 123 MeV so γ ' 240 (and γa ' 0.25, which can

be ignored). Hence overall

∆pSGx '
1

γ

qx
mvs

~
2
, (∆θSGx )Talman '

qx
mvs

~
2
. (9)

• The angular deflection due to the Stern-Gerlach force is a factor 1/γ relative to that derived

by Talman. For a 123 MeV beam line this is about a factor of 240.

• The effects of the Lorentz boosts have not been calculated correctly. For relativistic particles,

the Stern-Gerlach force is not proportional to the magnetic dipole moment. There may be

other errors.
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