Acceleration and Bunch compression

Discussion 0000000000 Conclusion 0000000000

Development of a Polarized Positron Source for CEBAF

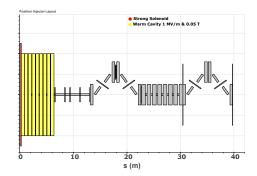
Sami Habet

IJCLab & JLab

March 17, 2023

This research work is part of a project that has received funding from the European Union's Horizon 2020 research and innovation program under agreement STRONG - 2020 - No 824093

Sami Habet

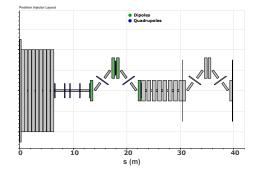

Collection system	Momentum collimation	Acceleration and Bunch compression	Discussion	Conclusion
O	0		0000000000	0000000000
Plan				

Collection system

- Momentum collimation
- 3 Acceleration and Bunch compression

Oiscussion

G Conclusion


Sami Habet

Review the magnet and RF components March 17th.

2 on 28

Collection system	Momentum collimation	Acceleration and Bunch compression	Discussion	Conclusion
O	O		0000000000	0000000000
Plan				

- Collection system
- Ø Momentum collimation
- 3 Acceleration and Bunch compression
- Oiscussion

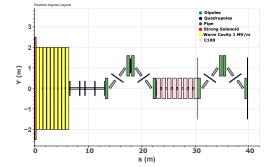
G Conclusion

Sami Habet

IJCLab &	JLab
2	on 28

Collection system	Momentum collimation	Acceleration and Bunch compression	Discussion	Conclusion
O	O		0000000000	0000000000
Plan				

Positron Injector Layout

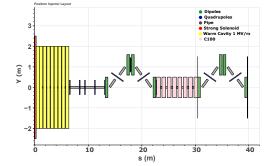

- Collection system
- 2 Momentum collimation
- 3 Acceleration and Bunch compression

• Oppoles • Classrupoles • Classrupo

Collection system	Momentum collimation	Acceleration and Bunch compression	Discussion	Conclusion
O	O		0000000000	0000000000
Plan				

- Collection system
- **2** Momentum collimation
- 3 Acceleration and Bunch compression

4 Discussion


G Conclusion

Sami Habet

IJCLab	&	JL	.ab
	2	on	28

Collection system	Momentum collimation	Acceleration and Bunch compression	Discussion	Conclusion
O	O		0000000000	0000000000
Plan				

- Collection system
- 2 Momentum collimation
- 3 Acceleration and Bunch compression
- **4** Discussion

5 Conclusion

Sami Habet

Collection system	Momentum collimation	Acceleration and Bunch compression	Discussion	Conclusion
•	O		0000000000	0000000000
Outline				

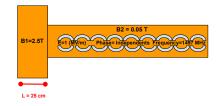
Collection system

- 2 Momentum collimation
- 3 Acceleration and Bunch compression
- 4 Discussion
- **6** Conclusion

Collection system	Momentum collimation	Acceleration and Bunch compression	Discussion	Conclusion
O	●		0000000000	0000000000
Outline				

- Collection system
- **2** Momentum collimation
- **3** Acceleration and Bunch compression
- Oiscussion
- **6** Conclusion

Collection system	Momentum collimation	Acceleration and Bunch compression	Discussion	Conclusion
0	O	•000	0000000000	0000000000
Outline				


- Collection system
- 2 Momentum collimation
- 3 Acceleration and Bunch compression
- Oiscussion
- **6** Conclusion

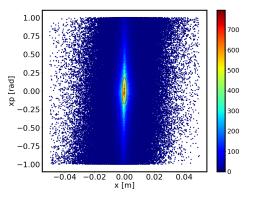
Acceleration and Bunch compression 0000

Quarter Wave Transformer

- Reduce the angular transverse spread $x_p = \frac{p_x}{p}$ and $y_p = \frac{p_y}{p}$.
- Rotate the transverse phase space (x, x_p) and (y, y_p) at the exit of the QWT.
- Use a QWT as an energy filter.
- QWT acceptance :
 - Radial acceptance $r_0^{QWT} = \frac{B_2}{B_1} R$
 - Transverse acceptance $p_t^{QWT} = \frac{eB_1R}{2}$

- L₁:Short solenoid length
- B_1 : Magnetig field in L_1
- R: Accelerator aperture

Sami Habet

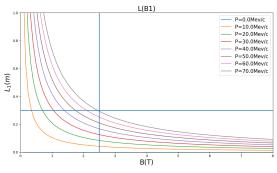

Review the magnet and RF components March 17th.

6 on 28

Quarter Wave Transformer

- Reduce the angular transverse spread $x_p = \frac{p_x}{p}$ and $y_p = \frac{p_y}{p}$.
- Rotate the transverse phase space (x, x_p) and (y, y_p) at the exit of the QWT.
- Use a QWT as an energy filter.
- QWT acceptance :
 - Radial acceptance $r_0^{QWT} = \frac{B_2}{B_1} R$
 - Transverse acceptance $p_t^{QWT} = \frac{eB_1R}{2}$

- *L*₁:Short solenoid length
- B_1 : Magnetig field in L_1
- R: Accelerator aperture



Sami Habet

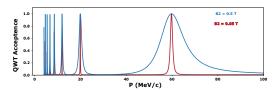
Collection system	Momentum collimation	Acceleration and Bunch compression	Discussion	Conclusion
O	O		0000000000	0000000000

- Reduce the angular transverse spread $x_p = \frac{p_x}{p}$ and $y_p = \frac{p_y}{p}$.
- Rotate the transverse phase space (x, x_p) and (y, y_p) at the exit of the QWT.
- Use a QWT as an energy filter.
- QWT acceptance :
 - Radial acceptance $r_0^{QWT} = \frac{B_2}{B_c} R$
 - Transverse acceptance $p_t^{QWT} = \frac{eB_1R}{2}$

- *L*₁:Short solenoid length
- B₁: Magnetig field in L₁
- R: Accelerator aperture

Sami Habet

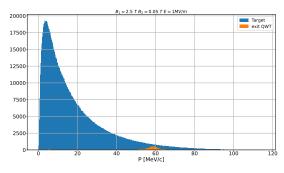
Review the magnet and RF components March 17th.


LICI ab & II ab

Quarter Wave Transformer

- Reduce the angular transverse spread $x_p = \frac{p_x}{p}$ and $y_p = \frac{p_y}{p}$.
- Rotate the transverse phase space (x, x_p) and (y, y_p) at the exit of the QWT.
- Use a QWT as an energy filter.
- QWT acceptance :
 - Radial acceptance $r_0^{QWT} = \frac{B_2}{R}R$
 - Transverse acceptance $p_t^{QWT} = \frac{eB_1R}{2}$

- *L*₁:Short solenoid length
- B₁: Magnetig field in L₁
- R: Accelerator aperture



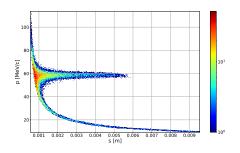
Sami Habet

Collection system	Momentum collimation	Acceleration and Bunch compression	Discussion	Conclusion
O	O		0000000000	0000000000

- Reduce the angular transverse spread $x_p = \frac{p_x}{p}$ and $y_p = \frac{p_y}{p}$.
- Rotate the transverse phase space (x, x_p) and (y, y_p) at the exit of the QWT.
- Use a QWT as an energy filter.
- QWT acceptance :
 - Radial acceptance $r_0^{QWT} = \frac{B_2}{R_1} R$
 - Transverse acceptance $p_t^{QWT} = \frac{eB_1R}{2}$

- *L*₁:Short solenoid length
- B_1 : Magnetig field in L_1
- R: Accelerator aperture

Sami Habet

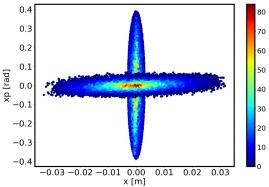

Review the magnet and RF components March 17th.

6 on 28

Collection system	Momentum collimation	Acceleration and Bunch compression	Discussion	Conclusion
O	O		0000000000	0000000000

- Reduce the angular transverse spread $x_p = \frac{p_x}{p}$ and $y_p = \frac{p_y}{p}$.
- Rotate the transverse phase space (x, x_p) and (y, y_p) at the exit of the QWT.
- Use a QWT as an energy filter.
- QWT acceptance :
 - Radial acceptance $r_0^{QWT} = \frac{B_2}{R_1} R$
 - Transverse acceptance $p_t^{QWT} = \frac{eB_1R}{2}$

- *L*₁:Short solenoid length
- B_1 : Magnetig field in L_1
- R: Accelerator aperture

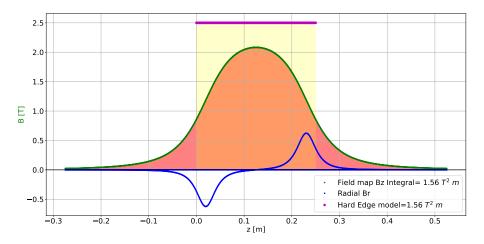


Sami Habet

Collection system	Momentum collimation	Acceleration and Bunch compression	Discussion	Conclusion
O	O		0000000000	0000000000

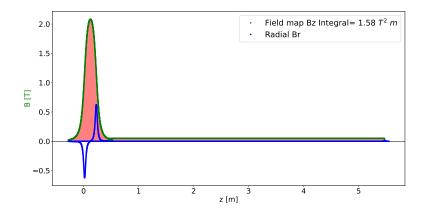
- Reduce the angular transverse spread $x_p = \frac{p_x}{p}$ and $y_p = \frac{p_y}{p}$.
- Rotate the transverse phase space (x, x_p) and (y, y_p) at the exit of the QWT.
- Use a QWT as an energy filter.
- QWT acceptance :
 - Radial acceptance $r_0^{QWT} = \frac{B_2}{B_1} R$
 - Transverse acceptance $p_t^{QWT} = \frac{eB_1R}{2}$

- L₁:Short solenoid length
- B₁: Magnetig field in L₁
- R: Accelerator aperture



Sami Habet

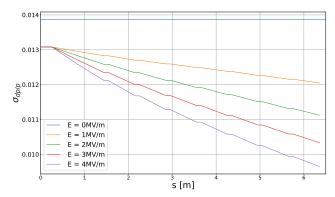
IJCLab & JLab


Quarter Wave Transformer: Hard Edge model Vs Field map

• The field map has to be adjusted to match with the $\int B_z^2 dI$.

Sami Habet

• The field map has to be adjusted to match with the $\int B_z^2 dl$.


Momentum collimation O	Acceleration and Bunch compression	Discussion 0000000000	Co
	0000	00000000000	

Accelerating warm section

Goal

 Reduce the longitudinal energy spread of the accepted e⁺ at p = 60 MeV/c

- f = 1497 Mhz
- E = 1 MV/m
- L_{cell} = 0.7 cm
- $r_{cell} = 3 cm$
- *N_{cell}* = 8

Sami Habet

IJCLab & JLab

Collection system	Momentum collimation	Acceleration and Bunch compression	Discussion	Conclusion
0	O		●000000000	0000000000
Outline				

- Collection system
- 2 Momentum collimation
- **3** Acceleration and Bunch compression
- 4 Discussion
- **6** Conclusion

Collection system	Momentum collimation	Acceleration and Bunch compression	Discussion	Conclusion
O	O		0●00000000	0000000000
	tere exettere			

First Matching section

- K: Geometric focusing strength
- QM: Quadrupole

Element	Length (m)	$K(1/m^2)$	B imes ho (T m)	k:(kG/cm)	$P_c(MeV/c)$
QM1	0.15	-2.531	0.217	-0.0548	65
QM2	0.15	2.958	0.217	0.0641	65
QM3	0.15	-0.437	0.217	-0.0095	65
QM4	0.15	-2.010	0.217	-0.0435	65

Sami Habet

IJCLab & JLab

Collection system	Momentum collimation	Acceleration and Bunch compression	Discussion	Conclusion
O	O		00●0000000	0000000000
First chican	e: Quads			

• K: Geometric focusing strength

• QM: Quadrupole

Element	Length (m)	$K(1/m^2)$	B imes ho (T m)	k:(kG/cm)	$P_c(MeV/c)$
QM1	0.15	0.304	0.217	0.0066	65
QM2	0.15	1.383	0.217	0.0300	65
QM3	0.15	-2.786	0.217	-0.0604	65
QM4	0.15	1.383	0.217	0.0300	65
QM5	0.15	0.304	0.217	0.0066	65

Collection system	Momentum collimation	Acceleration and Bunch compression	Discussion	Conclusion
O	O		000●000000	0000000000
First chican	e. Dinoles			

- K: Geometric focusing strength
- DP: Dipole

Element	Length (m)	B imes ho (T m)	$P_c(MeV/c)$	Bend angle (rad)
DP1	0.5	0.217	65	0.204
DP2	0.5	0.217	65	-0.204
DP3	0.5	0.217	65	-0.204
DP4	0.5	0.217	65	0.204

Collection system	Momentum collimation	Acceleration and Bunch compression	Discussion	Conclusion		
O	O		0000●00000	0000000000		
Conned Matching anoticg						

Second Matching section

- K: Geometric focusing strength
- QM: Quadrupole

Element	Length (m)	K $(1/m^2)$	$B \times \rho (T m)$	k:(KG/cm)	$P_c(MeV/c)$
QM1	0.15	-2.531	0.41	-0.103	123
QM2	0.15	2.495	0.41	0.102	123
QM3	0.15	1.501	0.41	0.061	123
QM4	0.15	-4.785	0.41	-0.196	123

Sami Habet

IJCLab & JLab

Second chicane: Quads

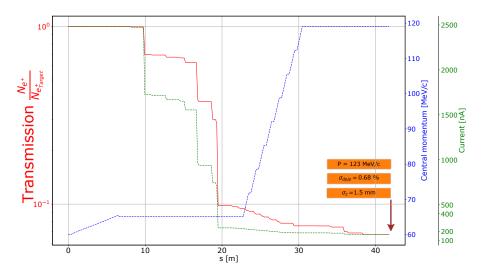
• K: Geometric focusing strength

• QM: Quadrupole

Element	Length (m)	$K(1/m^2)$	B imes ho (T m)	k:(kG/cm)	$P_c(MeV/c)$
QM1	0.15	0.304	0.41	0.0124	123
QM2	0.15	1.382	0.41	0.056	123
QM3	0.15	-2.785	0.41	-0.114	123
QM4	0.15	1.382	0.41	0.056	123
QM4	0.15	0.304	0.41	0.012	123

Collection system	Momentum collimation	Acceleration and Bunch compression	Discussion	Conclusion
0	O		000000●000	0000000000
Second chio	cane: Dipoles			

- K: Geometric focusing strength
- DP: Dipole


Element	Length (m)	$B \times \rho (T m)$	$P_c(MeV/c)$	Bend angle (rad)
DP1	0.15	0.41	123	0.154
DP2	0.15	0.41	123	-0.154
DP3	0.15	0.41	123	-0.154
DP4	0.15	0.41	123	0.154

Collection system	Momentum collimation	Acceleration and Bunch compression	Discussion	Conclusion
O	0		000000000000	0000000000
RF [.] Acceler	ating section			

- f: Frequency
- r: Radius
- E: Gradient
- Gap: Drift space

Element	Length (m)	f (MHz)	r (m)	E (MV/m)	Gap (m)
<i>Cell_{warm}</i> (8 cells)	0.7	1497	0.03	1	0.299
C100 (8 \times <i>cell</i>)	0.7	1497	0.03	10.7	0.299

Collection system	Momentum collimation	Acceleration and Bunch compression	Discussion	Conclusion
O	O		000000000●	0000000000
Summary				

Ce+BAF Parameter	e^+ model	Target value
$\sigma_{dp/p}$ [%]	0.68	\pm 1%
$\sigma_z[ps]$	4	\leq 4
$\sigma_{x}[mm]$	6	\leq 3
N $\epsilon_n[mm mrad]$	140	\leq 40
Mean Momentum [MeV/c]	123	123
$e^+~(P>60\%)$	170 nA	50 nA

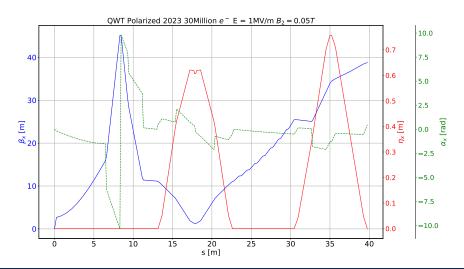
Collection system	Momentum collimation	Acceleration and Bunch compression	Discussion	Conclusion
O	O		0000000000	•000000000
Outline				

- Collection system
- 2 Momentum collimation
- 3 Acceleration and Bunch compression
- Oiscussion
- **6** Conclusion

- The performance of the positron system is heavily dependent on the central momentum. a high polarization requires a high magnetic field 1-2 T to collect positrons momentum of 60 MeV/c.
- The QWT plays a crucial role in selecting the desired momentum and reducing the spread of transverse angles, thus we need a realistic magnetic field.
- The accelerating section significantly impacts the longitudinal plane, reducing the energy spread to meet the CEBAF requirement of $\sigma_{dp/p} = \pm 1\%$.
- Including the electron beam after the target could be an interesting way to test our layout.

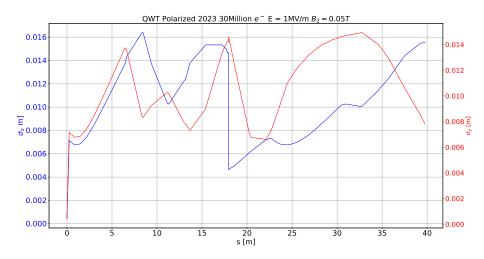
This research work is part of a project that has received funding from the European Union's Horizon 2020 research and innovation program under agreement **STRONG - 2020 - No 824093**.

THANK YOU FOR YOUR ATTENTION!


Sami Habet

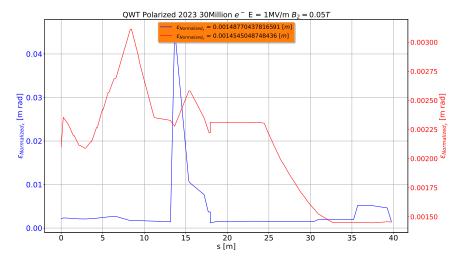
IJCLab & JLab

Review the magnet and RF components March 17th.

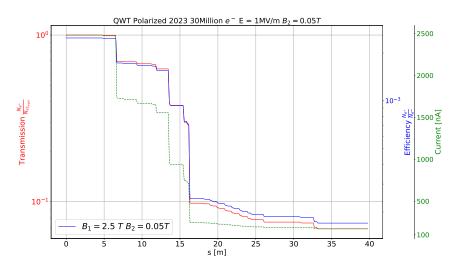

21 on 28

Collection system	Momentum collimation	Acceleration and Bunch compression	Discussion	Conclusion
0	0		0000000000	○○○●○○○○○○
Twiss funct	ions			

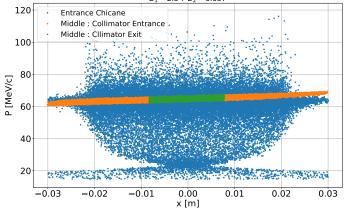
IJCLab & JLab


Collection system	Momentum collimation	Acceleration and Bunch compression	Discussion	Conclusion
0	O		0000000000	○○○○●○○○○○
Beam size				

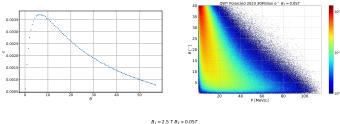
IJCLab & JLab

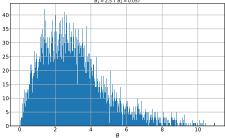

Collection system	Momentum collimation	Acceleration and Bunch compression	Discussion	Conclusion
O	0		0000000000	○○○○○●○○○○
Normalized	emittance			

IJCLab & JLab



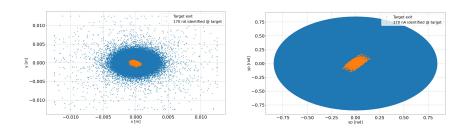
IJCLab & JLab


 $B_1 = 2.5 T B_2 = 0.05T$


Sami Habet

IJCLab & JLab

	Momentum collimation O	Acceleration and Bunch compression	Discussion 0000000000	Conclusion ○○○○○○○○●○		
gular distribution						



IJCLab & JLab 27 on 28

Collection system	Momentum collimation	Acceleration and Bunch compression	Discussion	Conclusion
O	○		0000000000	○○○○○○○○○●
Transverse s	space			

• The transmitted positrons are within the acceptance of the QWT

•
$$p_t^{QWT} = \frac{eB_1R}{2}$$
. = 10.31°

•
$$r_0^{QWT} = \frac{B_2}{B_1} R = 0.6 mm$$

Sami Habet

IJCLab & JLab