## Comparison of the focal length of the solenoid

Sajini Wijethunga

## Focal length

► For a Solenoid

$$\frac{1}{f} = \frac{e^2 \int B_z^2 dz}{4\beta_z^2 \gamma^2 m^2 c^2}$$

► From optics, lens equation

$$\frac{1}{f} = \frac{1}{u} + \frac{1}{v}$$

where, u-distance to the object, v-distance to the image



| 1 1 271.515 333.33   1 2 306.64 375.00   2 1 284.42 293.33   2 2 461.276 495.00 | Lens | Viewer | f from the field (mm) | $f = \frac{uv}{u+v}$ (mm) |
|---------------------------------------------------------------------------------|------|--------|-----------------------|---------------------------|
| 2 1 284.42 293.33                                                               | 1    | 1      | 271.515               | 333.33                    |
|                                                                                 | 1    | 2      | 306.64                | 375.00                    |
| 2 2 461.276 495.00                                                              | 2    | 1      | 284.42                | 293.33                    |
|                                                                                 | 2    | 2      | 461.276               | 495.00                    |

Table 1: Calculated f values, from field and from lens equation.

## Beam divergence coming out of the gun and beam emittance.

| Viewer | x (mm)     | y (mm)     |
|--------|------------|------------|
| 1      | 3.30973952 | 6.34969224 |
| 2      | 3.66200961 | 6.46479205 |
|        |            |            |

Table 2: Beam size on each viewer.

## Angle and Emittance

|                     |   | Viewer 1   | Viewer 2   |
|---------------------|---|------------|------------|
| Angle (mrad)        | Х | 1.85649301 | 1.56850481 |
|                     | у | 3.88312816 | 2.96989602 |
| Emittance (mm mrad) | Х | 0.9746588  | 0.823465   |
|                     | у | 2.0386422  | 1.5591954  |

Table 3: Angle and beam emittance.

