

12 GeV CEBAF: Accelerator Systems

Matt Poelker with help from A. Freyberger, C. Hovater, R. Kazimi, L. Harwood, A. Lung, J. Creel, K. Dixon, R. Geng, and many others

SPIN 2016, Champaign-Urbana, IL Sept. 25 - 30, 2016

and Polarized Beams

Outline

- Overview of 12 GeV CEBAF
- Specific Systems
 - new cryoplant, beamlines, magnets, accelerating cavities, separators, lasers
- Recent Experience
- Future Focus
 - Reliability
 - Gradient
 - Injector Upgrade
 - Injector Test Facility

2

CEBAF Overview

- Maximum (design) energy 12 GeV, 5.5pass Hall-D (11 GeV 5pass for ABC).
- Simultaneous delivery of 85 μA and nA beams: 5 orders of magnitudes in bunch charge.
- Flexible extraction for ABC, 1-5 pass options.

- Polarized electron beam (P > 85%).
- Three 499 MHz or 249.5 MHz beams interleaved resulting 1497MHz pulse structure.
 - Fourth laser upgrade planned for Summer 2016, commissioning Spring 2017.
- CW SRF linacs, 1MW capable.

Jefferson Lab

12 GeV Upgrade Overview

CEBAF 12 GeV Upgrade Schedule

36 weeks of beam operation to date.

5

Improved CHL1

New CHL2

- Additional sub-atmospheric 2K cold box
- Improved purifier skid
- 420,000 scf He gas storage
- 40,000 gal LN₂ storage
- Improved guard vacuum
- Modifications to original 2K Cold Box:
 - LN₂ gravity fed cooling
 - Removed unreliable, large linac return valve
 - Added flow straighteners and increased volumes between compressors
 - Increased heat exchanger size

- Helium screw-compressors
- Oil removal system
- 10,000 liter helium dewar
- 4 K cold box system
- Integrated computer process control system
- Instrument air system, 60 scfm
- Motor control centers, 4160V/480V
- Gas management and distribution piping
- 77'x 62' building for helium compressors
- 2 x 5MVA , 4160V substation
- Cooling tower system

Beamlines

(magnets, power supplies, beam diagnostics, vacuum lines)

Recirculation and transport to Halls A, B and C

- 357 major Dipoles (1-3m long)
- 730 Quads (30x30x30cm)
- > 2000 power supplies
 > 700 beam diagnostics
 > 5 km of vacuum line
 Reused almost all

Arc 10

- 32 major dipoles (4m long)
- 40 quads (35x30x30cm)
- 81 power supplies32 beam diagnostics
- 0.3 km of vacuum line

Transport to Hall D

- 4 major dipoles (4m long)
- 32 quads (35x30x30cm)
- 97 power supplies
- 44 beam diagnostics0.3 km of vacuum line

All items are copies or variations of previous hardware

7

Beam Transport: East and West Arcs

- All dipoles changed from "C" to "H"
- Installation occurred during both shutdowns

Beam Transport

- Upgraded 5 km of beamline and added ½ km of new beamline
- 256 arc dipoles removed, rebuilt, and re-installed
- All spreaders/recombiners and extraction chicanes fully removed ("broom clean"), reconfigured (including modifying the dipoles), and reinstalled with new stands
- New arc 10 and beamline to Hall D tagger vault
- Above included purchase, mapping, and installation of 230 quadrupoles and 50 new dipoles
- Beamline in Hall D tagger vault plus electron beam dump in tagger vault

9

Accelerating Cavities at CEBAF

We use both types for 12 GeV nuclear physics

Original CEBAF 5 cell cavity

- 5-cell, Cornell-Type
- 338 cavities in 42-1/4 modules
- Design
 - Ea=5 MV/m
 - Q₀=2.4×10⁹ @ 5 MV/m
- Achieved after Helium Processing
 - <Ea>=7.5 MV/m, <Q₀>=5×10⁹@ 5MV/m
- Achieved after Refurbishing
 - <Ea>=12.5 MV/m, <Q₀>=5×10⁹ @ 5MV/m
- Total energy 2 x 600 MV
- 5 kW 2K cooling power
- 5 MW liquefier operation power

CEBAF upgrade cavity

- 7-cell, Low-Loss Shape
- 80+8 cavities in 10+1 modules
- Design
 - Ea=19.2 MV/m
 - Q₀=7.2×10⁹ @ 19.2 MV/m
- Achieved
 - <Ea>=22.2 MV/m
 - <Q0> @ 8.1×10⁹ @ 19.2 MV/m
- Total energy 2 x 500 MV (+100 MV)
- Requires additional ~ 5 kW 2K cooling power
- Requires additional ~ 5 MW liquefier operation power

C100 Cryomodules

- Eight 7-cell cavities, same cryomodule footprint
- Cavity string suspended within space frame by nitronic rods (think bicycle spokes)
- Different tuners, different response to microphonic resonances
- Higher power klystrons, different low level RF control boards
- Smaller cryostat, different Heat Load/Temperature/Pressure interplay
- Higher levels of field emission

C100 Cryomodules

- Eight 7-cell cavities, same cryomodule footprint
- Cavity string suspended within space frame by nitronic rods (think bicycle spokes)
- Different tuners, different response to microphonic resonances
- Higher power klystrons, different low level RF control boards
- Smaller cryostat, different Heat Load/Temperature/Pressure interplay
- Higher levels of field emission

Jefferson Lab 12 GeV C100 Cavity Final E_{max}

SPIN 2016, Champaign-Urbana, IL Sept. 25-30, 2016

13

Jefferson Lab

C100 Cryomodule Construction

C100-1 and C100-2 in operation; C100-3 and C100-5 in the tunnel (safe storage)

C100-04 - Acceptance testing in progress

C100-06 – Cold mass assembly in progress

C100-07 – Final assembly in progress

- C100-08 - He headers complete

C100-09 – Leak check in progress

C100-10 – Cavity string assembly complete; staged in cleanroom.

C100 Performance Demonstration

Two C100 cryomodules installed during 6-month down Operated at nominal specifications during Qweak experiment

C100 Operational Performance with Beam

C100 Operational Performance with Beam

5th Pass RF Separation Hardware

Horizontal 5th Pass Separator (kicks out Hall D for 5.5 pass)

> D+2: 500 MHz D+3: 750 MHz

RF Separation – "D + 2"

RF Separation – "D + 3"

750MHz Separation

11 GeV maximum beam energy

Improvements were implemented Summer 2016 to increase beam separation:

- Proper cavity placement relative to Lambertson magnets (9% gain in separation)
- Increase IOT power and cooling controls (10% gain)

SPIN 2016, Champaign-Urbana, IL Sept. 25-30, 2016

12 GeV Laser Table: Summer 2016

6 (**15**4

Four Laser Upgrade for CEBAF

Fall 2015 – Spring 2016

- Simultaneous 3-beam operation with either 250/499 MHz rep rate
- Clever firmware solution allowed this with standard 499 MHz laser-RF system

Summer 2016

- Rebuilt laser system, added 4th laser
- Four beams from polarized electron source (chopper photo, right)

Winter 2016

- Planned installation of final 4-laser RF system
- Quick switch between rep rates from MCC, full 360 degree phase adjust

Spring 2017

Planned 4-beam delivery to 4 Halls

CEBAF 12 GeV Upgrade Schedule

36 weeks of beam operation to date.

24

Jefferson Lab

Beam Parameters at 12 GeV (2.2 GeV/pass)

- Beam parameters at 12 GeV meet outyear specification
- Growth in emittance/energy spread due to synchrotron radiation - agrees with expectations

Bunchlength Evolution at 12 GeV

TABLE 10: Bunch length results (rms value) summary at all locations

Technique	Location	Beam Energy	Measured	Expected	
Brock cavity	A2	$130 \ \mathrm{keV}$	$8.31\pm0.01~\mathrm{mm}$	$6.8 \mathrm{~mm}$	
Slit-scan	Chopper chamber	$130 \ \mathrm{keV}$	7.16 \pm 0.04 mm	$7.9 \mathrm{mm}$	
Brock cavity	$1D \ dump$	$130 \ \mathrm{keV}$	$10.41\pm0.04~\mathrm{mm}$	8.1 mm	
Back-phasing	4D dump	$102 { m MeV}$	$80.8\pm2.0~\mu\mathrm{m}$	$100~\mu{\rm m}$	
SLM1	Arc1	$1052~{\rm MeV}$	$91.4\pm6.5\;\mu\mathrm{m}$	$100~\mu{\rm m}$	
SLM1(compression)	Arc1	$1052~{\rm MeV}$	$46.1\pm3.5\;\mu\mathrm{m}$	56 $\mu {\rm m}$	
SLM2	$\operatorname{Arc2}$	$2002~{\rm MeV}$	112.8 \pm 5.8 $\mu \mathrm{m}$	$100 \; \mu {\rm m}$	
SLM2(compression)	$\operatorname{Arc2}$	$2002~{\rm MeV}$	42.5 \pm 5.1 $\mu {\rm m}$	$56~\mu{ m m}$	

Slit Scan @ 130 keV

(a) Slit scan for A-laser at 249.5 MHz

RF Phase Shifts @ 102 MeV

(a) Bunch is on crest

(c) Bunch is off crest by +90⁰

38 Harra soulition (m

(b) Fitting for harp scan on crest

30 Wire scatter position (non

(d) Fitting for harp scan at +90

RF Phase Shifts @ 1050 MeV

FIG. 58: Hyperbola fitting for Arc1 - rms calculation (CW mode).

FY16 Beam Operations Summary

Fall 2015

- 5 weeks of beam operations at design energy: 12 GeV
 - Measured transverse emittance: 12 GeV CEBAF meets out-year spec
 - Helium Processing in Summer 2015 helped achieve the design energy
 - Insufficient energy reach margin for reliable operations
 - 5th pass RF separation at design energy established (new 750 MHz separators)

Spring 2016

- 11 weeks planned, 10 weeks actual of beam operations at design energy: 12 GeV
 - DVCS/GMp experiment in Hall-A (passes 2,4,5) polarization ~ 89%
 - GlueX engineering run in Hall-D (pass-5.5) COMPLETED
 - HPS experiment in Hall-B (pass-1)
- Reliability issues (RF systems, Cryo), more details on next slides

Summer 2016

- 5.5 weeks low power, one CHL configuration at ~50% of design energy
 - PRad experiment in Hall-B (passes 1 & 2) COMPLETED
 - Hall-C Beamline checkout (pass 2) COMPLETED

Spring 2016 Beam Operations

Some Challenges

- Gradient elivery system accounts for half the downtime
 - Other systems, Magnets, Control, Vacuum, Safety make up the other half.

29

Jefferson Lab

4/6GeV Availability Trend

Reliability of Complex Systems

12 GeV CEBAF is a combination of new and old systems: Both sides of the "bathtub curve" -Reliability Team formed

- All downtime events greater than 5 minutes in duration are tracked
- Downtime statistics are presented, reviewed and discussed weekly
- Downtime statistics are used to prioritize near term work and develop annual work plan

Energy Reach

Jefferson Lab

Helium Processing

- Utilized during 6 GeV era to improve maximum operating gradient of SRF cavities
- Add small amount of gaseous He into the cavity
- Process cavity with RF power, watch for the radiation signature to drop (field emitters extinguished)
- Warm up the cavity to remove the He
- Determine the new maximum operating gradient

Representative gain (~4 MV/m) on one C100 cavity recently Helium processed

Application	C20 Gain	C50 Gain	C100 Gain
	(MV/m)	(MV/m)	(MV/m)
First	1.2	1.9	3.8
Second	0.9	1.4	2.9
Third	0.7	1.0	2.2

Table 12: Estimated gains from initial and subsequent applications of Helium processing on the three CEBAF cavity types. **Bold** values are derived from the references, plain text values are a best guess.

C100 Susceptibility to Microphonics

C100 Cavity gradients

- The drops in figure below show the cavity faulting OFF during the day due to construction and truck traffic (or any low frequency acoustic noise, e.g., fan)
- ESH&Q Building construction halted
- Reason: RF Power could not compensate for the rapid cavity detuning

C100 - 0 Cavity Gradients

C100 Operational Experience - Field Emission

- Field emission heats nearby beamline, stimulates gas desorption
- Vacuum pump faults
- Vacuum interlock drops cryomodule out of RF
- Can damage equipment and activate material

Electrons capable of accelerating up to the full gradient

Radiation Damage

Energy Reach

- Gradient insufficient to support reliable 12 GeV operations
 - Average C100 performance below design
 - Gradient Team to solve the problem
- Gradient Degradation (~34 MeV/pass/year)
 - Accumulation of new field emitters, particulate on the cavity surface
 - Identify source of particulate (in progress)
 - Mitigate: Develop the plan, approve the plan, implement
 - C20 refurbishment program (C50->C75) in place until degradation is mitigated
- Radiation Damage of components
 - C100 gradient large enough to accelerate field emitted electrons to energies above Neutron threshold (~10 MeV)
 - Optimize C100 gradient/field emission ratio (Gradient Team)
 - Helium process to reduce field emitter sites
 - Improve particulate control, maintain low FE state post HeProc

CEBAF Parity Violation Experiments

Experiment	Energy	Pol	I	Target	A_{PV}	Charge	Position	Angle	Size Diff
					Expected	Asym	Diff	Diff	$(\delta\sigma/\sigma)$
	(GeV)	(%)	(μA)		(ppb)	(ppb)	(nm)	(nrad)	
HAPPEx-I (Achieved)	3.3	38.8	100	¹ H (15 cm)	15,050	200	12	3	
		68.8	40						
G0-Forward (Achieved)	3	73.7	40	¹ H (20 cm)	3,000-40,000	300±300	7±4	3±1	
HAPPEx-II (Achieved)	3	87.1	55	¹ H (20 cm)	1,580	400	2	0.2	
HAPPEx-III (Achieved)	3.484	89.4	100	¹ H (25 cm)	23,800	200 ± 10	3	0.5 ± 0.1	
PREx-I (Achieved)	1.056	89.2	70	²⁰⁸ Pb (0.5 mm)	657±60	85±1	4	1	
QWeak-I (Achieved)	1.155	89	180	¹ H (35 cm)	281 ± 46	8±15	5 ± 1	0.1 ± 0.02	
QWeak (Analysis In Progress)	1.162	90	180	¹ H (35 cm)	234±5	<100±10	<2±1	<30±3	$< 10^{-4}$
PREx-II (To Be Sched- uled, FY18?)	1	90	70	²⁰⁸ Pb (0.5mm)	500 ± 15	<100±10	<1±1	<0.3±0.1	$< 10^{-4}$
MØLLER (To Be Scheduled, FY21+?)	11	90	85	¹ H (150 cm)	35.6±0.74	<10±10	$< 0.5 \pm 0.5$	$< 0.05 \pm 0.05$	$< 10^{-4}$

- PREx-II and its cousin, CREx, have requirements similar to QWeak-I. CEBAF can support these experiments without modification.
- Møller PQB requirements order of magnitude more stringent than previous parity experiments.

CEBAF Injector Upgrade

- Upgrade Gun HV to reduce space charge effects, minimize losses, improve A_Q stability.
- Upgrade $\frac{1}{4}$ cryomodule to reduce/eliminate x/y coupling.
- Upgrade all the elements between Gun and $\frac{1}{4}$ for 200 keV beam energy.

CEBAF – ILC 200 kV Inverted Gun

Developed and ready for installation

- Commissioned at Test Cave to 225 kV w/o field emission
- Large Grain Niobium electrode
- But prefer a bit more voltage headroom....

Testing > 300 kV Inverted Guns

CEBAF Injector Upgrade Status

Done 200kV capable gun installed, need 200+ kV power supply

Done Vertical Wien filter installed

Done C100-0 installed in 0L04 slot, injector 123 MeV capable

Done New $\frac{1}{4}$ cryomodule design

June 2016 New $\frac{1}{4}$ cryomodule fabrication complete

FY16/FY17 New $\frac{1}{4}$ cryomodule commissioning

FY17+ Upgrade and commissioning the elements between gun and $\frac{1}{4}$ cryomodule to support 200keV transport. 41 Jefferson Lab

CEBAF Injector Upgrade Status

Done 200kV capable gun installed, need 200+ kV power supply

Done Vertical Wien filter installed

Done C100-0 installed in 0L04 slot, injector 123 MeV capable

Done New $\frac{1}{4}$ cryomodule design

June 2016 New $\frac{1}{4}$ cryomodule fabrication complete

FY16/FY17 New $\frac{1}{4}$ cryomodule commissioning

FY17+ Upgrade and commissioning the elements between gun and $\frac{1}{4}$ cryomodule to support 200keV transport. Jefferson Lab

42

Injector Test Facility

- Commission HDIce and the new CEBAF injector
- Expect keV operations soon
- New gun and 200 kV Wien Filters at CEBAF during Summer 2017

Thank You

Backup Slides

JLab SPIN topics

More SPIN contributions by JLab source group members and collaborators:

- Wednesday Sept. 27, 9:00, Parallel Session, Yoshitaka Taira, JLab, "High energy X-ray vortex generation using inverse Compton scattering"
- Wednesday Sept. 27, 16:10, Parallel Session VI, Wei Lui, JLab and University of Chinese Academy of Sciences, "Record-level quantum efficiency from high polarization strained GaAs/GaAsP superlattice photocathodes with Distributed Bragg Reflector"
- Thursday, Sept. 29, 15:05 Plenary Session, Joe Grames, Jlab, "Production of Highly Polarized Positrons Using Polarized Electrons at MeV Energies"
- Tuesday Sept. 26, 15:20 Parallel Session, Adeleke Adeyemi, Hampton University, "PEPPo: The Calibration of the PEPPo Polarimeter"
- Parallel Session, Tim Gay, UNL, "High-Precision Mott Polarimetry at the JLab Injector"
- Parallel Session, Charles Hanretty, JLab, "eHD at Jefferson Lab"
- Parallel Session, Richard Talman, Cornell University, "The CEBAF Injection Line as Stern-Gerlach Polarimeter"

6 GeV Laser Table

Beamline Tune Mode Generator acuum window PPLN SHG FIBER LASER : HALL C IBER LASERS PPLN SHG FIBER LASI HALL A Pockels Cell A 🔊 3-laser configuration

CEBAF Polarized Electron Injector

Comprehensive measurement and control of the electron beam during helicity reversal remains the critical strategy

During Summer 2016 the source laser table will be configured with an additional laser, enabling **simultaneous 4-Hall** capability

Completion of the **Injector Upgrade** includes a **higher voltage gun** and **improved cryounit** to better retain the PQB generated at the source

Issues? Any polarization dependencies?

- Yves Roblin has implemented an ELEGANT model to calculate spin precision with synchrotron radiation (SR) included – standard 6 GeV formula will not work
 - Adiabatic Damping: emittance grows but amplitude of betatron oscillations (e.g., helicity-correlated position and angle differences) should still be damped by square root of ratio of momenta
 - Beam energy distribution stays symmetric, no energy tails
 - Polarization Dependencies (?):
 - I. Total SR power depends on transverse polarization, $P_{pol}/P_{unpol} \sim 10^{-4}$
 - II. Spin-flip SR (Sokolov–Ternov self-polarization effect) of about

$$\delta pol = \frac{\tau_{JLab}}{\tau_{ST}} = \frac{20 \mu s}{113 s} \sim 10^{-7}$$
 Both cancel with helicity reversal

- III. Total SR power for longitudinal polarized electrons is spin independent but power radiated into space above and below orbital plane is different and thus spin dependent $(A \sim 10^{-5})$ principle of Spin-Light Polarimeter
 - \blacktriangleright Helicity-correlated SR \rightarrow Helicity-correlated emittance growth

World Record High Polarization Photocathode

- 6.4% QE & 84% polarization at 776 nm from strained GaAs/GaAsP superlattice photocathode with GaAsP/AIAsP
 Distributed Bragg Reflector (DBR)
- The highest QE & FOM of any reported high polarization photocathode
- Possible to improve both QE & Pol
- SBIR partnership

Cathode	Lab	<u>P(</u> %)	QE (%)	FOM (P ² QE)
GaAs-GaAsP	SLAC/SVT	86	1.2	0.89
AllnGaAs-AlGaAs	St. Petersburg	92	0.85	0.72
GaAs-GaAsP	Nagoya	92	1.6	1.35
GaAs-GaAsP/DBR	JLab/SVT 🧲	84	6.4	4.52

Photo-pumping

Jefferson Lab

Laser Beam

Magnetized Beam

Rebuilding the alkaliantimonide photocathod e deposition chamber

Magnetizing solenoid

Solenoid installed in front of gun table

slits used to evaluate magnetization

Beam with mechanical angular momentum

51

200

...DC Light = bleedthrough...

Gain switched laser systems generate some DC light, which bleeds into adjacent chopper slits (and into Hall D bucket). Modelocked lasers generate less bleedthrough, but very reluctant to revisit them....

12 GeV Bleedthrough

- Same as 6 GeV bleedthrough DC beam bleeding through neighboring chopper slits...
- ...and now with 249.5 MHz lasers, bleedthrough can pass through the same slit (what Joe calls selfleakage) producing a bleedthrough bunch 2ns behind "good" bunch.
- Halls expecting 249.5 MHz beam also get beam at 499 MHz
- New 12 GeV bleedthrough problem: Hall D gets beam when their laser is OFF, problematic when radiator is inserted or retracted, can't just close slit
- Solution: turn OFF ALL lasers or insert a beam dump

Bleedthrough "Conclusions"

- Bleedthrough electrons originate at the injector chopper, and are delivered to an unintended hall
- Bleedthrough electrons are produced at the photocathode by DC laser light
- Bleedthrough electrons pass through neighboring chopper slits ("old" 6 GeV bleedthrough)
- Now in 12 GeV era with 249.5 MHz lasers, bleedthrough electrons can also pass through the intended hall slit, producing a bleedthrough bunch delayed by 2ns from "good" bunch

Bleedthrough "Conclusions" continued

- Mostly, bleedthrough is a problem for Hall B polarization dilution. Solve this problem by extracting ~ 10uA for Hall B and "neck down" their slit
- For 249.5 MHz lasers, the bleedthrough beam that is produced by A, B and C lasers will be delivered to Hall D. Only a problem when Hall D wants to insert or retract their radiator
- Hall D's bleedthrough beam will go to the hall of shared chopper slit., i.e., Hall A or Hall C

RF Separation – Proposed (750 MHz)

Beam Transport: Spreaders and Recombiners

East Spreader

- Spreaders and Recombiners, one each per linac
- Critical CEBAF components, completely rebuilt
- Space constrained, very complicated

Beam Transport: Beamline to Hall D Tagger Vault

Hall D Complex

Hall D Tagger Magnet/Dump

12 GeV CHL Maximum Capacity

- Old 6 GeV (CHL1)
 - Load: 4.25 kW @ 2.1K, 11.65 kW @ 35K
 - Capacity: 4.6 kW @2.1K, 12 kW @ 35K
 - 10 g/s liquefaction @ 4.5K
- New 12 GeV (CHL1 + new CHL 2)
 - Load: 7.4 kW @ 2.1K, 14.65 kW @ 35K
 - Capacity: 8.8 kW @ 2.1K, 24 kW @ 35K
 - 10 g/s (CHL 1) plus 15 g/s (CHL 2) of liquefaction

59

