1 Purpose

Calculating the ion production rate vs. gun voltage for the different gas species found in the "After 2 Days" RGA spectrum below:

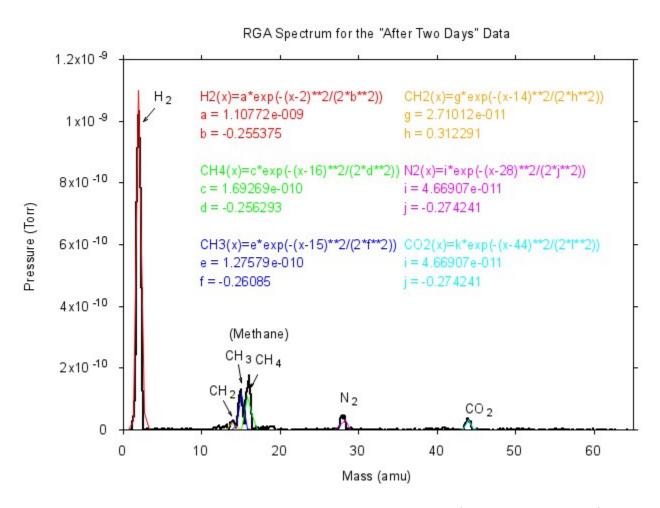


Figure 1: Analysis of the RGA spectrum for the "After 2 Days" data (before correction factor)

2 Ion Production Rate vs. Gun Voltage

The ion production rate (i.e. change in number density over time) is given by Reiser[1]

$$\frac{dn}{dt} = n_b n_g \sigma_i v = n_b n_g \sigma_i \beta_e c \tag{1}$$

We would like to rewrite the ion production rate as a function of voltage (or really in terms of beam energy T_e). We can start by rewriting β_e in terms of T_e :

$$T_{e} = (\gamma - 1) m_{e} c^{2}$$

$$\gamma = 1 + \frac{T_{e}}{m_{e} c^{2}}$$

$$\frac{1}{\sqrt{1 - \beta_{e}^{2}}} = 1 + \frac{T_{e}}{m_{e} c^{2}}$$

$$1 - \beta_{e}^{2} = \left(\frac{1}{1 + \frac{T_{e}}{m_{e} c^{2}}}\right)^{2} = \left(\frac{m_{e} c^{2}}{m_{e} c^{2} + T_{e}}\right)^{2}$$

$$\beta_{e}^{2} = 1 - \left(\frac{m_{e} c^{2}}{m_{e} c^{2} + T_{e}}\right)^{2}$$
(2)

The numerical equation for the ionization cross section given by Reiser [1]

$$\sigma_{i[m^{2}]} = \frac{1.872 \times 10^{-24} A_{1}}{\beta_{e}^{2}} f(T_{e}) \left[\ln \left(7.515 \times 10^{4} A_{2} \beta_{e}^{2} \gamma^{2} \right) - \beta_{e}^{2} \right]$$

$$f(T_{e}) = \frac{I_{i}}{T_{e}} \left(\frac{T_{e}}{I_{i}} - 1 \right)$$

$$A_{1} = M^{2}$$

$$A_{2} = \frac{e^{\frac{C}{M^{2}}}}{7.515 \times 10^{4}}$$

$$(3)$$

Plugging in equation (2) into (3) yields:

$$\sigma_{i}(T_{e}) = \frac{1.872 \times 10^{-24} A_{1}}{1 - \left(\frac{m_{e}c^{2}}{m_{e}c^{2} + T_{e}}\right)^{2}} \frac{I_{i}}{T_{e}} \left(\frac{T_{e}}{I_{i}} - 1\right) \times \ln \left[7.515 \times 10^{4} A_{2} \left(1 - \left(\frac{m_{e}c^{2}}{m_{e}c^{2} + T_{e}}\right)^{2}\right) \left(1 + \frac{T_{e}}{m_{e}c^{2}}\right)^{2}\right] - \left(1 - \left(\frac{m_{e}c^{2}}{m_{e}c^{2} + T_{e}}\right)^{2}\right)$$
(4)

We can then plug (2) and (4) into (1) to yield a relationship between $\frac{dn}{dt}$ and T_e . Using Mathematica, this relationship can be shown graphically below for each gas species. We see that for each gas species, the graph has a zero at the ionization energy and is dominated by the logarithm in σ_i for high beam energies. A table of ion production rates (IPR) for selected beam energies is also shown below.

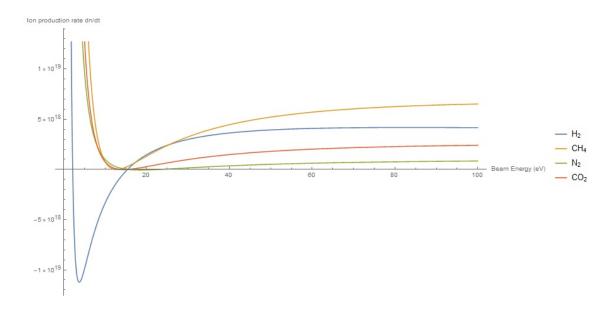


Figure 2: Ion production rate as a function of low beam energies for the gas species found in the RGA spectrum excluding CH₃ and CH₂.

Gas Species	IPR at $50 \text{eV} (\text{m}^{-3} \text{s}^{-1})$	IPR at $100 \text{eV} \left(\text{m}^{-3} \text{s}^{-1} \right)$	IPR at $500 \text{eV} \left(\text{m}^{-3} \text{s}^{-1} \right)$	IPR at $1 \text{keV} (\text{m}^{-3} \text{s}^{-1})$
H_2	3.93×10^{18}	4.15×10^{18}	3.03×10^{18}	2.45×10^{18}
$\mathrm{CH_4}$	5.22×10^{18}	6.52×10^{18}	5.81×10^{18}	4.95×10^{18}
N_2	5.22×10^{17}	8.43×10^{17}	9.07×10^{17}	7.99×10^{17}
CO_2	1.80×10^{18}	2.41×10^{18}	2.26×10^{18}	1.94×10^{18}
Gas Species	IPR at $100 \text{keV} \left(\text{m}^{-3} \text{s}^{-1}\right)$	IPR at $130 \text{keV} \left(\text{m}^{-3} \text{s}^{-1}\right)$	IPR at $180 \text{keV} (\text{m}^{-3} \text{s}^{-1})$	IPR at $1 \text{MeV} \left(\text{m}^{-3} \text{s}^{-1} \right)$
H_2	4.88×10^{17}	4.52×10^{17}	4.16×10^{17}	3.46×10^{17}
$\mathrm{CH_4}$	1.15×10^{18}	1.07×10^{18}	9.91×10^{17}	8.46×10^{17}
N_2	2.00×10^{17}	1.87×10^{17}	1.73×10^{17}	1.50×10^{17}
CO_2	4.60×10^{17}	4.29×10^{17}	3.97×10^{17}	3.40×10^{17}

Table 1: Ion Production Rates (IPR) of each gas species for selected beam energies.

References

[1] Martin Reiser. Theory and Design of Charged Particle Beams. Wiley VCH Verlag GmbH, 2008.