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a b s t r a c t

The concept of so-called ‘rf resonant beam polarimetry’ has been proposed as a potentially fast, accurate and
nondestructive technique for measuring the spin polarization of stored polarized beams. The published analyses
have employed a semiclassical treatment for the cavity rf fields and also the particle spin. We revisit the problem,
using quantized operators for the cavity rf field, and also treat the particle spin as a quantum operator. With
suitable approximations, the quantum model can be solved exactly, yielding so-called ‘vacuum Rabi oscillations.’
Using our solution of the quantum model, we are able to offer more precise quantitative estimates for the energy
and number of photons emitted into the cavity per unit time. Our treatment employing quantized operators
yields significantly different conclusions from the semiclassical analysis.
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1. Introduction

The concept of ‘rf resonant beam polarimetry’ was proposed by
Derbenev [1,2] as a potentially fast, accurate and nondestructive tech-
nique for measuring the spin polarization of stored hadron beams. (In
principle, the technique can also be applied for 𝑒+𝑒− beams, but fast
and accurate nondestructive polarimetry based on QED processes such
as laser Compton backscattering is available for such beams.) Briefly,
Derbenev’s proposal [1] is to place an rf cavity in the ring, where the
frequency of the resonant cavity mode would equal the spin precession
frequency (plus an integer multiple of the beam revolution frequency).
The cavity parameters are chosen so that the cavity has no modes
resonant with the orbital motion, i.e. the beam revolution frequency
and the betatron and synchrotron oscillation frequencies. The cavity is
also ‘passive’ in the sense that it is initially empty. The circulating spins
interact resonantly with the cavity and deposit electromagnetic energy
into the cavity, essentially an inverse of the more usual situation of a
spin flipper or rf depolarizer, where it is the electromagnetic fields in
the cavity which drive the spin precessions. The electromagnetic energy
in the cavity is proportional to the voltage in the cavity and is in turn
proportional to the beam polarization. See [1, Secs. 2–4] for details.
Additional technical details were elaborated in [2].

Derbenev’s analysis in [1,2] was semiclassical (also called quasi-
classical below). The electromagnetic field in the cavity was treated
classically. The spins of the particles were treated as classical vectors,
of length 1

2ℏ, executing classical rotations. Planck’s constant, or rather
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ℏ, appears only as a formal parameter, to specify the magnitude of a
particle spin vector. In practice, however, in view of the small magnitude
of the estimated electromagnetic energy deposited in the cavity, we
decided to revisit the problem and reformulate the analysis using
quantized operators for the electromagnetic field in the cavity and also
to treat the particle spins as quantum operators. We treat only the case
of spin 1

2 and the vector polarization. (Derbenev also treated only the
vector polarization.) We found that there is a natural analogy of the
spin–cavity interaction with the so-called Jaynes–Cummings model [3].
The latter model treats the interaction of a nonrelativistic two-level atom
in a resonant cavity, and was developed in the 1960s in connection
with the then new subject of laser physics. Instead of a two-level atom
executing atomic transitions between a ground state and excited state,
we have a spin flips between ‘up’ and ‘down’ spin states. In particular,
using the approximations made by Derbenev in [1], the quantum model
can in fact be solved exactly, i.e. the eigenstates and eigenvalues of the
spin–cavity Hamiltonian can be calculated exactly. The result is a direct
analogy with the phenomenon of so-called ‘vacuum Rabi oscillations’.
Our solution for the vacuum Rabi oscillations will be displayed below.
Derbenev [1] employed the example of a cavity with a TM110 resonant
mode to perform numerical estimates. We employ the same TM110 cavity
to obtain numerical estimates using our solution for the vacuum Rabi
oscillations. We find that the estimated number of photons emitted
into the cavity, on the timescale of the polarimetry measurement, is
much less than unity. This is the principal finding of our paper, and
is in sharp contrast to the results of Derbenev’s analysis. Basically,
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a semiclassical analysis yields that the electromagnetic energy in the
cavity is a continuous function of time (starting from zero, because
by definition the cavity is initially empty). However, the semiclassical
result is given by an average over many quantum interactions. In reality,
the interaction of the spins and the cavity consists of discrete spin flips,
which yield photon emissions into the cavity. We conclude that the use
of a resonant cavity as a polarimeter is significantly more complicated
than Derbenev’s analysis indicates [1,2].

Our purpose in this paper is to analyze the model treated by
Derbenev [1,2], using quantum mechanics. As stated above, we show
that the use of quantum mechanics is essential, i.e. the semiclassical
analysis employed in [1,2] is not adequate to treat the problem. For this
reason, in this paper we treat the same model employed by Derbenev
and we make the same approximations as those in [1,2]. We recognize
that in practice those conditions are difficult to satisfy in a real physical
system. It is possible that there exist other storage ring designs, where
resonant polarimetry would be easier to accomplish. We leave such
issues to future work.

We also treat a number of related issues in this paper. For example,
spin flippers and rf depolarizers are equivalent to driven resonant cavi-
ties, resonant with the spin precession frequency, and it is well known
that a semiclassical model works well to treat both the electromagnetic
fields in the cavity and for the spin precessions. This is well known
in the context of the Froissart–Stora formula [4]. However, for spin
flippers and rf depolarizers, the resonant cavity contains a macroscopic
electromagnetic field and is not initially empty. We show how our
quantum model yields the semiclassical results for spin flippers and
rf depolarizers, when a suitable limit is taken. For this purpose, it
is essential to recognize that the electromagnetic field in the cavity
should be expressed using the so-called ‘coherent states’ of quantum
optics [5,6]. We shall define coherent states and demonstrate the
importance of their role in our analysis below.

Another property of the spin–cavity interaction, well known to
workers in the field, is that the cavity electromagnetic field can kick
the particle orbit. This drives a coherent betatron oscillation around the
ring circumference, which causes the particle orbit to pass off-center
through the ring quadrupoles. This modifies the effective spin resonance
strength. See [7] for a review of the subject. The matter was mentioned
by Derbenev in [2] and noted as a complication in the analysis. We
also study the matter below, and point out that because the cavity
electromagnetic field is quantized, the change to the particle orbits must
also be treated quantum mechanically, yielding a further complication
to the analysis.

We also note that Schottky signals can, in principle, also cause energy
to be deposited in the cavity, due to the synchrotron oscillations and the
bunched nature of the stored beam [8,9]. However, a simplified analysis,
using parameters for RHIC, indicates that if the fractional spin tune is
close to 1

2 and the synchrotron tune is very small, as is typically the case
in hadron rings, the Schottky power at the cavity resonant frequency is
negligible.

The structure of our paper is as follows. In Section 2 we present
our basic notation and definitions. Many of these follow Derbenev [1],
to make contact with his work. In Section 3 we review the solution of
Derbenev’s quasiclassical model in [1], while in Section 4 we introduce
the quantum model. In view of its importance to our paper, we place the
solution of the quantum model in a separate section, in Section 5, where
we derive the Rabi oscillations and also show how the quasiclassical
limit may be obtained from the quantum model. Section 6 presents some
numerical estimates, using a model of a cavity with a TM110 resonant
mode (the same as that employed by Derbenev [1]). In Section 7
we analyze the interaction of the cavity with the beam current and
in Section 8 we briefly discuss the driving of the coherent orbital
oscillations. Section 9 presents an analysis of synchrotron oscillations
and Schottky signals. Section 10 concludes.

2. Basic notation and definitions

2.1. General

We refer the reader to the texts by Conte and MacKay [10] and
Dragt [11] for a general introduction to charged particle motion in
accelerators, while [12] is a good reference for classical Hamiltonian
dynamics. For a review of spin dynamics in accelerators, we refer the
reader to [13,14]. We treat a particle of mass 𝑚 and charge 𝑒, with
velocity v = 𝜷𝑐 and Lorentz factor 𝛾 = 1∕

√

1 − 𝛽2. We denote the
canonical particle coordinate and momentum by r and p, respectively.
We assume the orbital motion is integrable and denote the orbital
action–angle variables by (I ,𝝓). As in [1], we treat particles of spin
1
2 only, hence the polarization density matrix is fully specified by the
vector polarization. We denote the semiclassical spin vector by S, with
amplitude ℏ∕2, and the quantum spin operator by 1

2ℏ𝝈, where 𝝈 is a
vector of Pauli matrices. The magnetic moment anomaly is denoted by
𝐺 = (𝑔 − 2)∕2 and the spin tune on an orbit by 𝜈 (and on the reference
orbit by 𝜈0). In general we append a subscript ‘0’ to denote the values
of variables on the reference orbit. The coordinate axes are (x̂, ŝ, ŷ)
which are respectively radial (outwards), longitudinal and vertical. The
positive sense of circulation is counterclockwise around the ring. We
shall also use ẑ instead of ŝ to denote the longitudinal direction, e.g. 𝜎𝑧
for the rms bunch length. The independent variable is the time 𝑡 and a
dot denotes a time derivative. We shall also employ 𝜃 as the generalized
azimuth around the ring, where 𝜃 = 2𝜋𝑠∕𝐿, where 𝑠 = 𝑣0𝑡 is the arc
length along the reference orbit and 𝐿 is the ring circumference. The
beam revolution angular frequency is 𝜔0 = 2𝜋𝑣0∕𝐿. The Hamiltonian
can be expressed as

𝐻 = 𝐻orb +𝐻spin +𝐻cav +𝐻cav−orb +𝐻cav−spin . (2.1)

Here 𝐻orb describes the orbital motion of the particle, 𝐻spin describes
the spin motion in the prescribed accelerator (or ‘external’) guide
fields, 𝐻cav describes the cavity EM fields and the interaction terms are
𝐻cav−orb and 𝐻cav−spin for the interaction of the cavity fields with the
particle orbit and spin, respectively. The interaction with free radiation
fields (photon emission) is neglected. Following [1], we assume the
cavity has no modes which are resonant with the orbital revolution
frequency or the betatron and synchrotron oscillations. Note that, in
general, the transverse magnetic fields in a resonant cavity will kick
the orbit and drive coherent orbital oscillations around the ring. The
resulting coherent orbital oscillations cause the spins to interact with
the quadrupole, etc. magnetic fields around the ring, which modifies the
spin resonance strength. This effect is not explicitly included in Eq. (2.1)
and will be analyzed later. The accelerator guide fields are specified by
a vector potential Aext and we neglect electrostatic fields. The orbital
motion may be treated classically. To make contact with [1], we employ
units such that the Lorentz force is given by F = 𝑒(E + 𝜷 ×B). Hence the
Hamiltonian for the orbital motion in the accelerator guide fields is

𝐻orb =
[

(

p − 𝑒
𝑐
Aext

)2
𝑐2 + 𝑚2𝑐4

]1∕2
. (2.2)

2.2. Poisson brackets, equations of motion and dynamical invariants

Note that in [1], the Poisson Brackets of a canonically conjugate
(coordinate, momentum) pair (𝑄, 𝑃 ) is defined to be {𝑃 ,𝑄} = 1
and Hamilton’s equation for a dynamical variable 𝐷 is 𝐷̇ = {𝐻,𝐷}.
Derbenev’s definitions follow the convention in [15]. We comment on
this below. In the quantum theory, it is usual to write [𝑄𝑞 , 𝑃𝑞] = 𝑖ℏ
(appending a subscript ‘𝑞’ to denote quantum operators). Hence Der-
benev’s convention implies [𝑄𝑞 , 𝑃𝑞] = −𝑖ℏ{𝑄, 𝑃 }. For the components
of the spin operator, however, Derbenev writes (see [1] for details of
definitions) {𝑆𝑛, 𝑆̂} = 𝑖𝑆̂ and {𝑆̂, 𝑆̂∗} = 2𝑖𝑆𝑛. In the quantum theory,
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the corresponding commutator relations are [𝑆𝑛,𝑞 , 𝑆̂𝑞] = −ℏ𝑆̂𝑞 and
[𝑆̂𝑞 , 𝑆̂∗

𝑞 ] = −2𝑆𝑛,𝑞 . This implies that for the spin components in [1],

[𝑆𝑛,𝑞 , 𝑆̂𝑞] = 𝑖ℏ{𝑆𝑛, 𝑆̂} , [𝑆̂𝑞 , 𝑆̂∗
𝑞 ] = 𝑖ℏ {𝑆̂, 𝑆̂∗} . (2.3)

Hence there is a relative inconsistency of a minus sign in [1], for
the relation between the quantum commutators and classical Poisson
Brackets, when treating orbital and spin variables.

We employ a consistent treatment and define the Poisson Bracket
as {𝑄, 𝑃 } = 1. For all classical variables 𝐴𝑐 and 𝐵𝑐 and their quantum
counterparts 𝐴𝑞 and 𝐵𝑞 , the relation between the quantum commutators
and classical Poisson Brackets is defined to be [𝐴𝑞 , 𝐵𝑞] = 𝑖ℏ{𝐴𝑐 , 𝐵𝑐}.
Hamilton’s equation of motion for a classical function 𝐹𝑐 is given by

𝑑𝐹𝑐
𝑑𝑡

= {𝐹𝑐 ,𝐻𝑐} +
𝜕𝐹𝑐
𝜕𝑡

. (2.4)

Here𝐻𝑐 is the classical Hamiltonian. The Heisenberg equation of motion
for the corresponding quantum operator 𝐹𝑞 , with 𝐻𝑞 as the quantum
Hamiltonian, is

𝑖ℏ
𝑑𝐹𝑞
𝑑𝑡

= [𝐹𝑞 ,𝐻𝑞] + 𝑖ℏ
𝜕𝐹𝑞
𝜕𝑡

. (2.5)

A (classical) dynamical variable 𝐷 is a function of the coordinates
and momenta (including the field in the cavity) and the spin, but is
explicitly independent of the time 𝑡. Hence we say Hamilton’s equation
for a dynamical variable is 𝐷̇ = {𝐷,𝐻𝑐}. A dynamical invariant 𝐼 is a
dynamical variable whose value does not change with time, i.e. 𝐼̇ = 0,
which implies {𝐼,𝐻𝑐} = 0. A dynamical invariant quantum operator 𝐼𝑞
commutes with the Hamiltonian [𝐼𝑞 ,𝐻𝑞] = 0.

Synchrotron oscillations create some complications in the above
formalism, because the Hamiltonian depends explicitly on the time, so
𝐻̇ = 𝜕𝐻∕𝜕𝑡 ≠ 0. Hence the total energy of the system is not conserved.
It is assumed in [1] that the Hamiltonian is explicitly independent of the
time, and we shall do the same. We shall discuss synchrotron oscillations
later in this paper.

2.3. Spin basis

The spin precession vector in terms of electric and magnetic fields E
and B is given by

𝜴 = − 𝑒
𝑚𝑐

[(

𝐺 + 1
𝛾

)

B⟂ + 1 + 𝐺
𝛾

B∥ +
(

𝐺 + 1
𝛾 + 1

)

E × v
𝑐

]

. (2.6)

Here B⟂ and B∥ are the transverse and longitudinal components of B
with respect to the particle velocity v. We initially treat the spin as a
quasiclassical vector. Then 𝐻spin = 𝜴ext ⋅ S and 𝐻cav−spin = 𝜴cav ⋅ S,
where 𝜴ext and 𝜴cav are obtained by substituting the accelerator guide
fields and cavity fields in Eq. (2.6), respectively. With an obvious
notation, Eext = −(1∕𝑐)𝜕Aext∕𝜕𝑡 and Bext = 𝛁×Aext. The spin precession
equation is given by the Thomas-BMT (Bargmann, Michel and Telegdi)
equation [16,17], which in our model takes the form

𝑑S
𝑑𝑡

= (𝜴ext +𝜴cav) × S . (2.7)

We assume the spin motion in the ring to be stable, i.e. nonresonant
with the orbital revolution frequency and the betatron and synchrotron
oscillations. By design, the spin precession frequency is resonant with a
cavity mode, with angular frequency 𝜔𝑐 . The term in 𝜴cav will be treated
as a perturbation. First we treat the ‘unperturbed’ spin precession, i.e.

𝑑S
𝑑𝑡

= 𝜴ext × S . (2.8)

We sketch only a summary below; the full details are given in [14]. The
spin precession on a given orbit can be specified as a linear combination
of three vectors (l,m,n), which form a right-handed orthonormal basis
of solutions of Eq. (2.8). The unit vector n is the quantization axis of
the spin eigenstates on the orbit [18] (see also the review [14]). Define

also the vector 𝜼 = l + 𝑖m. Note that 𝜼 ⋅ 𝜼 = 𝜼 ⋅ n = 0 and 𝜼 ⋅ 𝜼∗ = 2. Any
solution of Eq. (2.8) can be parameterized via

S = 𝑆𝑛 n + 1
2
(

𝑆−𝜼 + 𝑆+𝜼∗
)

. (2.9)

Here 𝑆𝑛 = S ⋅ n, 𝑆+ = S ⋅ 𝜼 and 𝑆− = S ⋅ 𝜼∗. The nonvanishing Poisson
Brackets are

{𝑆𝑛, 𝑆±} = ∓𝑖𝑆± , {𝑆+, 𝑆−} = −2𝑖𝑆𝑛 . (2.10)

On the reference orbit, the basis vectors have the periodicity property
n0(𝜃+2𝜋) = n0(𝜃) and 𝜼0(𝜃+2𝜋) = 𝑒−𝑖2𝜋𝜈0𝜼0(𝜃). The periodicity properties
for off-axis orbits are listed in [14]. The resonance condition with the
cavity mode is

𝜔𝑐 = 𝜈0𝜔0 + 𝑘𝜔0 . (2.11)

Here 𝑘 is an integer. It will be convenient below to define 𝜈𝑐 = 𝜔𝑐∕𝜔0.

∙ The resonance condition was actually stated as an approximate
equality in [1, eq. (3)], i.e. 𝜔𝑐 ≃ 𝜈0𝜔0 + 𝑘𝜔0. However, in the
relevant derivations in [1, eq. (3)], Derbenev assumes 𝜔𝑐 =
𝜈0𝜔0 +𝑘𝜔0 exactly (see below). Hence we assume that Eq. (2.11)
is satisfied exactly. However, one should recognize that in real
physical systems, the resonance condition will only be satisfied
to within a very small tune spread.

∙ It is assumed in [1] that the resonance condition in Eq. (2.11) is
unique. However, for a ring equipped with full strength Siberian
Snakes, the (fractional) spin tune is 𝜈0 =

1
2 , and the conditions for

the spin resonance and ‘mirror resonance’ coincide: 𝜈𝑐 = 𝜈0 +𝑘 =
−𝜈0 + 𝑘 + 1. Then the resonance condition is not unique and the
analysis in [1], or in this paper, is not applicable. This fact should
be borne in mind.

We now observe that Derbenev [1] makes a very strict assumption in
his model. He assumes that it is a good approximation that n takes the
same value on the off-axis orbits, i.e. n = n0 throughout the region
of phase space where the spins interact significantly with the cavity.
However, Derbenev’s model permits a spin tune spread, i.e. 𝜈 − 𝜈0 may
be nonzero off axis. Quoting from [1]: ‘‘We neglected here the spin–
orbit coupling effect on 𝑆𝑛 and 𝑆±, but have taken into account the
spin tune spread 𝛥𝜈’’. Following [1], we write 𝜼0 = e 𝑒−𝑖𝜈0𝜃 . Notice that
e(𝜃 + 2𝜋) = e(𝜃). This vector will be employed later, for the cavity–spin
interaction 𝐻cav−spin. Following [1], we sum over the particles, indexed
by 𝑗 = 1,… , 𝑁 . Then the Hamiltonian for the ‘free spin precession’ is

𝐻spin = 𝜔0
∑

𝑗
(𝜈𝑗 + 𝑘)𝑆𝑗𝑛

= 𝜔𝑐
∑

𝑗
𝑆𝑗𝑛 +

∑

𝑗
𝜖𝑗 𝑆

𝑗
𝑛 .

(2.12)

∙ The parameter 𝜖𝑗 yields the spin tune spread. It is given by [1]

𝜖𝑗 = (𝜈𝑗 − 𝜈𝑐 + 𝑘)𝜔0 . (2.13)

The term in 𝜖𝑗 in Eq. (2.12) will be treated as part of the
interaction Hamiltonian below.

∙ Note that unless Eq. (2.11) is an exact equality, 𝜖𝑗 does not
average to zero. The average is

⟨𝜖𝑗⟩ =
1
𝑁

∑

𝑗
𝜖𝑗 = (𝜈0 − 𝜈𝑐 + 𝑘)𝜔0 . (2.14)

Later in [1], Derbenev does make the approximation 𝜖𝑗 = 0 for
all the particles, which is only possible if Eq. (2.11) is an exact
equality. For these reasons, we choose to state the resonance
condition Eq. (2.11) as an exact equality from the outset.

∙ Of course, in deriving Eq. (2.14), we assumed ⟨𝜈𝑗⟩ = 𝜈0. It is
possible for the spin distribution to have a systematic spin tune
shift. However, such an effect is typically very small, propor-
tional to the beam emittances, and we neglect it. Furthermore,
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the approximation 𝜖𝑗 = 0, which is employed in the analysis
in [1], is not possible if the spin distribution has a systematic
spin tune shift.

2.4. Field in cavity

We now treat the ‘free field’ cavity Hamiltonian 𝐻cav. We continue
to employ a classical model. The vector potential A in the cavity satisfies
the wave equation

𝛥A − 1
𝑐2

𝜕2A
𝜕𝑡2

= 0 . (2.15)

We employ the Coulomb (or radiation) gauge divA = 0. We decompose
A into a sum over the cavity modes. It suffices here to treat only the
resonant mode. We express the vector potential for the resonant mode in
the form A(r , 𝑡) = A𝑐 (r)𝑄(𝑡), i.e. separation of space and time variables.
The electric field is given by

E(r , 𝑡) = −1
𝑐
𝜕A
𝜕𝑡

= −1
𝑐
A𝑐 (r) 𝑑𝑄

𝑑𝑡
. (2.16)

This is parameterized in [1] as

E(r , 𝑡) = −1
𝑐
𝑃 (𝑡)E𝑐 (r) . (2.17)

Hence E𝑐 (r) = A𝑐 (r) and 𝑃 (𝑡) = 𝑄̇. The magnetic field is given by

B(r , 𝑡) = 𝛁 × A = 𝑄(𝑡)𝛁 × A𝑐 (r) . (2.18)

This is parameterized in [1] as

B(r , 𝑡) = 𝑄(𝑡)𝛁 × E𝑐 (r) ≡ 𝑄(𝑡)B𝑐 (r) . (2.19)

The above expressions are consistent with the following equations in [1]

𝑐2𝛥E𝑐 + 𝜔2
𝑐E

𝑐 = 0 , divE𝑐 = 0 . (2.20)

The normalizations of the eigenmodes are, correcting some misprints
in [1],

∫ (E𝑐 )2 𝑑3r = 4𝜋𝑐2 , ∫ (B𝑐 )2 𝑑3r = 4𝜋𝜔2
𝑐 . (2.21)

Then the Hamiltonian for the resonant mode of the cavity field is [19]

𝐻cav = 1
8𝜋 ∫

[

(E)2 + (B)2
]

𝑑3r

= 1
8𝜋 ∫

[ (E𝑐 )2𝑃 2(𝑡)
𝑐2

+ (B𝑐 )2𝑄2(𝑡)
]

𝑑3r

= 1
2
(𝑃 2 + 𝜔2

𝑐𝑄
2) .

(2.22)

This agrees with the expression in [1, eq. (1)]. Hamilton’s equations are
𝑄̇ = {𝑄,𝐻cav} = 𝑃 and 𝑃̇ = {𝑃 ,𝐻cav} = −𝜔2

𝑐𝑄, which together yield
𝑄̈ = −𝜔2

𝑐𝑄, which when substituted into Eq. (2.15) yields Eq. (2.20).
Next, to prepare the formalism for the interaction of the cavity field
with the particle spins, we follow [1] and introduce the complex field
amplitudes 𝑎 and 𝑎∗ via

𝑎 =
𝑖𝑃 + 𝜔𝑐𝑄
√

2𝜔𝑐
𝑒𝑖𝜔𝑐 𝑡 . (2.23)

Their Poisson Bracket is {𝑎, 𝑎∗} = −𝑖. The electric and magnetic fields of
the resonant mode are given by

E(r , 𝑡) = −

√

2𝜔𝑐
𝑐

𝑎𝑒−𝑖𝜔𝑐 𝑡 − 𝑎∗𝑒𝑖𝜔𝑐 𝑡
2𝑖

E𝑐 (𝑟) , (2.24a)

B(r , 𝑡) = 𝑎𝑒−𝑖𝜔𝑐 𝑡 + 𝑎∗𝑒𝑖𝜔𝑐 𝑡
√

2𝜔𝑐
B𝑐 (𝑟) . (2.24b)

The electromagnetic energy in the resonant mode of the cavity is ℰ𝑐 =
𝜔𝑐 |𝑎|

2.

2.5. Spin–cavity interaction

We now treat the interaction of the particle spins with the resonant
cavity mode. For simplicity, Derbenev [1] assumed the resonant electric
field is zero on axis, and may be neglected. (This will be justified below.)
Then using Eq. (2.6), (2.9) and (2.24b) and treating only one spin

𝐻spin−cav = − 𝑒𝑄
𝑚𝑐

[(

𝐺 + 1
𝛾

)

B𝑐⟂ + 1 + 𝐺
𝛾

B𝑐∥

]

⋅ S

= − 𝑒
𝑚𝑐

𝑎𝑒−𝑖𝜔𝑐 𝑡 + 𝑎∗𝑒𝑖𝜔𝑐 𝑡
√

2𝜔𝑐

[(

𝐺 + 1
𝛾

)

B𝑐⟂ + 1 + 𝐺
𝛾

B𝑐∥

]

⋅
(

𝑆𝑛n +
𝑆−𝜼 + 𝑆+𝜼∗

2

)

= − 𝑒
2𝑚𝑐

√

2𝜔𝑐

[(

𝐺 + 1
𝛾

)

B𝑐⟂ + 1 + 𝐺
𝛾

B𝑐∥

]

⋅
(

𝑎∗𝑆−e𝑒𝑖𝑘𝜃 + 𝑎𝑆+e∗𝑒−𝑖𝑘𝜃
)

+ nonresonant .

(2.25)

We must average the above around the ring. (The averaging procedure
is well known, in the expansion of a localized resonance driving term as
a sum of Fourier harmonics around the ring circumference, see [14] for
details.) We also sum over the spins. Following [1], we write, discarding
the nonresonant terms,

𝐻spin−cav = 𝑔𝑘𝑎
∗
∑

𝑗
𝑆𝑗− + 𝑔∗𝑘𝑎

∑

𝑗
𝑆𝑗+ . (2.26)

The coupling strength is given by [1, eq. (4)]

𝑔𝑘 = − 𝑒
2𝑚𝑐

√

2𝜔𝑐

⟨[(

𝐺 + 1
𝛾

)

B𝑐⟂ + 1 + 𝐺
𝛾

B𝑐∥

]

⋅ e𝑒𝑖𝑘𝜃
⟩

. (2.27)

The average is around the ring circumference.

∙ To derive the above expression, it is essential that the spin basis
vectors are the same on all the particle orbits, otherwise 𝑔𝑘
depends also on the orbit, and must be placed inside the sum
over 𝑗.

∙ Note also that we have so far neglected the contribution from the
coherent orbital oscillations to the resonance strength.

3. Solution of quasiclassical model

3.1. Interaction Hamiltonian and equations of motion

We summarize the solution of the quasiclassical model. The interac-
tion Hamiltonian is given by the spin tune spread term in Eq. (2.12) and
the spin–cavity coupling in Eq. (2.26) and is denoted by 𝐻res in [1]:

𝐻res =
∑

𝑗
𝜖𝑗 𝑆

𝑗
𝑛 + 𝑔𝑘𝑎

∗
∑

𝑗
𝑆𝑗− + 𝑔∗𝑘𝑎

∑

𝑗
𝑆𝑗+ . (3.1)

We observe that 𝐻res is only a subset of all the interaction terms,
because numerous nonresonant interactions have been neglected. This
is a standard approximation in perturbation theory. In the absence of
interactions, the values of 𝑎, 𝑆𝑗± and 𝑆𝑗𝑛 would be stationary. The terms
in 𝐻res cause their values to vary with time. The resulting equations of
motions are

𝑎̇ = {𝑎,𝐻res} = − 𝑖𝑔𝑘
∑

𝑗
𝑆𝑗− , (3.2a)

𝑆̇𝑗− = {𝑆𝑗−,𝐻 res} = − 𝑖𝜖𝑗 𝑆𝑗− + 𝑖2𝑔∗𝑘𝑎𝑆
𝑗
𝑛 , (3.2b)

𝑆̇𝑗𝑛 = {𝑆𝑗𝑛 ,𝐻 res} = 𝑖𝑔𝑘𝑎
∗𝑆𝑗− − 𝑖𝑔∗𝑘𝑎𝑆

𝑗
+ . (3.2c)

These equations differ in the signs of some terms relative to [1, Eqs. (5–
6)] because of our definitions of the Poisson Brackets and Hamilton’s
equations.
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3.2. Invariants

It is stated in [1] that the above system has the following general
invariants:

∙ The Hamiltonian 𝐻res itself. Recall that 𝐻res is only invariant to
the extent that the nonresonant interactions were neglected.

∙ The total beam spin value at 𝛥𝜈𝑗 = 0. We shall explain this
statement below.

∙ The combined adiabatic invariant [1, eq. (7)]

𝐼+ = |𝑎|2 +
∑

𝑗
𝑆𝑗𝑛 . (3.3)

We prove that 𝐼+ is invariant as follows:

𝐼̇+ = 𝑎̇𝑎∗ + 𝑎𝑎̇∗ +
∑

𝑗
𝑆̇𝑗𝑛

= −𝑖𝑔𝑘𝑎∗
∑

𝑗
𝑆𝑗− + 𝑖𝑔∗𝑘𝑎

∑

𝑗
𝑆𝑗+ +

∑

𝑗

(

𝑖𝑔𝑘𝑎
∗𝑆𝑗− − 𝑖𝑔∗𝑘𝑎𝑆

𝑗
+
)

= 0 .

(3.4)

Next we explain the concept of ‘the total beam spin value at 𝛥𝜈𝑗 = 0’.
Here ‘𝛥𝜈𝑗 = 0’ means zero spin tune spread, i.e. 𝜖𝑗 = 0 for all 𝑗 = 1,… , 𝑁 .
As we noted above, this is only possible if the spin resonance condition in
Eq. (2.11) is an exact equality. Let us sum over the spins and define 𝑛 =
∑

𝑗𝑆
𝑗
𝑛 and ± =

∑

𝑗𝑆
𝑗
±. The (squared) total spin vector is 2 = 2

𝑛+−+.
If 𝜖𝑗 = 0 then the Hamiltonian in Eq. (3.1) is a function of only the ‘total
spin components’

𝐻res(𝜖𝑗 = 0) = 𝑔𝑘𝑎
∗− + 𝑔∗𝑘𝑎+ . (3.5)

From standard angular momentum theory, the square of total spin vector
commutes with all of its components, i.e. classically {2,𝑛} = 0 and
{2,±} = 0. Hence {2,𝐻res} = 0, i.e. the ‘the total beam spin value
at 𝛥𝜈𝑗 = 0’ is invariant. Note that this invariance would not be possible
if 𝜖𝑗 ≠ 0. Essentially, the analysis in [1] assumes the timescale for the
decoherence of the spins is longer than the timescale of the use of the
cavity for polarimetry.

3.3. Macroscopic field: rf depolarizer

It is instructive to solve the equations of motion for the case of an
rf depolarizer. In that case, the cavity rf field is macroscopic and we
may set the value of 𝑎 to a fixed (macroscopic) constant, say 𝑎𝑚. Then
Eq. (3.2a) yields a negligible perturbation of 𝑂(𝑁ℏ) to the value of 𝑎𝑚.
We solve Eqs. (3.2b) and (3.2c) for 𝑆𝑗𝑛 and 𝑆𝑗−. We neglect the spin tune
spread term 𝜖𝑗 . For brevity, set 𝑖𝑔∗𝑘𝑎 = |𝑎𝑚𝑔𝑘|𝑒𝑖𝛿 . Then

𝑆̇𝑗− = 2|𝑎𝑚𝑔𝑘|𝑒𝑖𝛿𝑆𝑗𝑛 , (3.6a)
𝑆̇𝑗𝑛 = −|𝑎𝑚𝑔𝑘|𝑒−𝑖𝛿𝑆𝑗− − |𝑎𝑚𝑔𝑘|𝑒

𝑖𝛿𝑆𝑗+ . (3.6b)

The solution is (here 𝜙𝑗 is a constant)

𝑆𝑗𝑛 =
1
2
ℏ cos(2|𝑎𝑚𝑔𝑘|𝑡 + 𝜙𝑗 ) , (3.7a)

𝑆𝑗− = 1
2
ℏ sin(2|𝑎𝑚𝑔𝑘|𝑡 + 𝜙𝑗 ) 𝑒𝑖𝛿 . (3.7b)

This is the well established solution for a resonance driving term
operating without decoherence mechanisms: the spins all rotate at
the same frequency, around a spin rotation axis determined by the
resonance driving term. The spin resonance strength is 2|𝑎𝑚𝑔𝑘|∕𝜔0. The
distribution of phases 𝜙𝑗 determines the degree of the initial beam
polarization.

∙ In practice, the purpose of an rf depolarizer is to place the spins
on resonance, where they decohere and depolarize quickly.

∙ The purpose of the above analysis was to confirm that the
quasiclassical model works well for a macroscopic cavity field.
The effect of the spins on the cavity field, via Eq. (3.2a), is
negligible. We shall reproduce the above behavior when we treat
the quantum model and take the classical limit.

3.4. Energy in initially empty cavity

We now solve for the energy emitted by the spins into an initially
empty cavity. Using information from [1, Sec. 2], the initial conditions
are

𝑎(0) = 0 ,
∑

𝑗
𝑆𝑗𝑛 =

𝑁ℏ
2

𝜉 cos 𝛼 ,
∑

𝑗
𝑆𝑗− = 𝑁ℏ

2
𝜉 sin 𝛼 𝑒𝑖𝜑 . (3.8)

Quoting from [1, Sec. 2]: ‘‘𝜉 is the degree of beam polarization, 𝛼 and
𝜑 are polar and azimuthal angles of coherent spin declination from
the periodic axis n’’. The ‘coherent spin declination’ is the polarization
vector. The ‘periodic axis n’ is really n0, since the model assumes that
n is the same on all the orbits. We solve Eqs. (3.2a)–(3.2c) for small 𝑡
and where the spin tune spread 𝜖𝑗 is neglected. Then, because 𝑎(0) = 0,
both 𝑆̇𝑗− = 𝑆̇𝑗𝑛 = 0 at 𝑡 = 0. Hence we approximate that the values of
𝑆𝑗− and 𝑆𝑗𝑛 do not change significantly for small 𝑡. Then the solution of
Eq. (3.2a) is

𝑎(𝑡) ≃ −𝑖𝑔𝑘
𝑁ℏ
2

𝜉 sin 𝛼 𝑒𝑖𝜑 𝑡 . (3.9)

The electromagnetic energy in the resonant mode of the cavity is [1,
eq. (8)]

ℰ𝑐 = 𝜔𝑐 |𝑎|
2 ≃ 𝜔𝑐𝑁

2
|𝑔𝑘|

2 ℏ2𝑡2

4
𝜉2sin2𝛼 . (3.10)

∙ The above solution is only valid to the extent that 𝑆𝑗− and 𝑆𝑗𝑛 are
approximately constant. This will clearly not be true for all 𝑡. We
also know that the spins can emit a maximum energy of 𝑁ℏ𝜔𝑐 ,
where all 𝑁 spins flip, hence ℰ𝑐 ≤ 𝑁ℏ𝜔𝑐 . Hence the criterion
‘small 𝑡’ must be quantified. Derbenev offers an analysis of the
matter in [1].

∙ An immediate objection to the solution in Eq. (3.10) (or
[1, eq. (8)]) is that it vanishes for 𝛼 = 0, even for a fully polarized
beam 𝜉 = 1. However, 𝜉 = 1 and 𝛼 = 0 means all the spins are
initially in the ‘up’ spin state (quantized along n). The rate of
emission into the cavity should be maximum in this case. Hence
we require a more careful treatment of the problem, using a
quantum model.

The extremely small values of 𝛥𝜈 given by Derbenev in [1, Table 1] re-
quire momentum spreads much smaller than are achievable in the listed
rings. For example, in RHIC without Siberian Snakes, 𝛥𝜈 = 𝐺𝛾 𝜎𝑝∕𝑝 ≃
0.24, using the values for 𝐺𝛾 and 𝜎𝑝∕𝑝 in Table 2, which means that
the spins of a bunch fully polarized in the longitudinal direction would
decohere in about 4 turns –much less than the 0.06 s listed by Derbenev
in [1, Table 1]. Even with Snakes, a simulation (treating only linear
orbital dynamics) shows that it would take only about 100 turns to
depolarize the beam with initial polarization perpendicular to the stable
spin direction n. (With Snakes, even though the design particle has
𝜈 = 0.5 exactly, the spin tunes of the other particles vary from this and
the spin tune spread is nonzero.) See Fig. 1, where a set of 1000 protons
with an initial helicity of +1 were tracked in a model RHIC lattice
with full strength Siberian Snakes (but no spin rotators). The parameter
list for RHIC was given in Table 2. The details of the simulation are
as follows. The lattice employed was a model of the RHIC Blue Ring,
using only dipoles and quadrupoles and no higher multipoles. There
were no lattice imperfections. The values of 𝛽∗ at the various interaction
points (IP) are listed in Table 3. Additional simulations showed that
the decoherence was due almost entirely to the momentum spread of
the particles. A simulation where the initial 95% normalized emittance
was increased to 20𝜋 mm-mrad yielded almost the same results as those
shown in Fig. 1. However, for a simulation where the initial relative
momentum spread was reduced to 𝜎𝑝∕𝑝 = 2.5 × 10−4, the decoherence
time approximately doubled.
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Table 1
Values of relevant parameters (fundamental constants). The values quoted for the particle
mass, Compton wavelength and magnetic moment anomaly are for a proton.

Parameter Value Unit

𝑐 299 792 458 m/s
𝑚𝑐2 938.272 MeV
𝜆𝐶 = 2𝜋ℏ∕(𝑚𝑐) 1.321 × 10−15 m
𝐺 1.792847
𝛼−1𝑒 137.035999139
𝑋11 3.8317
𝐽2(𝑋11) 0.4028

Table 2
Values of parameters for RHIC used in the text.

Parameter Value Unit

𝐿 3833.845 m
𝑁 1011

𝐺𝛾 477.500
𝐸 249.90 GeV
𝑓0 78196 Hz
𝑓𝑠 26.5 Hz
ℎinj 360 rf harmonic
𝑉rf 280 kV
𝛾𝑡 23.57
𝜂ph −1.786 × 10−3 1∕𝛾2 − 1∕𝛾2𝑡
𝜎𝑧 1.7 m
𝜋𝜀𝑥,𝑦 (normalized, rms) 1.67𝜋 mm-mrad
𝜋𝜀𝑥,𝑦 (normalized, 95%) 10𝜋 mm-mrad
𝜎𝑝∕𝑝 5.0 × 10−4

𝑄𝑥 28.695
𝑄𝑦 28.685
𝛽𝑥,𝑦 50.0 m
𝑦c.o. 0.1 mm
𝑟𝑐 0.2 m

Table 3
Values of 𝛽∗ at interaction points (IR).

IR 𝛽∗𝑥 (m) 𝛽∗𝑦 (m)

IR6 (STAR) 0.65 0.66
IR8 (PHENIX) 0.64 0.67
IR10 7.54 7.73
IR12 7.53 7.73
IR2 5.04 5.12
IR4 7.46 7.67

4. Quantum model

4.1. Spin precession

Other than the spin, we shall employ a hat to distinguish quantum
operators from classical variables. The spin basis vectors, spin tune
and resonance condition are the same in the quantum model. The
corresponding quantum Hamiltonian is

𝐻̂spin = 1
2
ℏ𝜔0𝜈0

∑

𝑗
𝜎𝑗𝑛 +

1
2
ℏ
∑

𝑗
𝜖𝑗 𝜎

𝑗
𝑛 . (4.1)

Here 𝜎𝑛 = 𝝈 ⋅ n0, 𝜎+ = 𝝈 ⋅ 𝜼0 and 𝜎− = 𝝈 ⋅ 𝜼∗0. The nonvanishing
commutators are

[𝜎𝑛, 𝜎±] = ±𝜎± , [𝜎+, 𝜎−] = 2𝜎𝑛 . (4.2)

4.2. Cavity field

Following the usage in quantum optics, laser physics and cavity
quantum electrodynamics (QED), etc., we shall refer to the excitations
of the cavity modes as ‘photons’ [3,5,6]. The cavity field variables
are promoted to quantum operators 𝑄̂ and 𝑃 , with the commutator
[𝑄, 𝑃 ] = 𝑖ℏ. The annihilation operator 𝑎̂ of the resonant cavity field
is given by (see Eq. (2.23))

𝑎̂ = 1
√

2ℏ𝜔𝑐
(𝑖𝑃 + 𝜔𝑐𝑄) 𝑒𝑖𝜔𝑐 𝑡 . (4.3)

Fig. 1. Spin tracking simulation of 1000 protons with initial horizontal polarization and
helicity of +1, in a model RHIC lattice with full strength Siberian Snakes. The (fractional)
spin tune is 1

2
, which explains the two branches of the plot.

The creation operator is 𝑎̂† and [𝑎̂, 𝑎̂†] = 1. As with 𝑎 and 𝑎∗, 𝑎̂ and
𝑎̂† pertain only to the resonant cavity mode: there are corresponding
operators for all the other cavity modes. The number operator of the
photons in the resonant mode is ̂ = 𝑎̂†𝑎̂. The eigenvalues of ̂ are
the non-negative integers 𝑛 = 0, 1, 2,…. The corresponding eigenstates
|𝑛⟩ are known as Fock states. We shall require the following properties
below:

𝑎̂†|𝑛⟩ =
√

𝑛 + 1 |𝑛 + 1⟩ , 𝑎̂|𝑛⟩ =
√

𝑛 |𝑛 − 1⟩ . (4.4)

The quantum expectation value for electromagnetic energy in the
resonant mode of the cavity is 𝑐 = ℏ𝜔𝑐 ⟨𝑎̂†𝑎̂⟩. Here the angle brackets
denote an expectation value using the quantum state of the resonant
cavity field. It is not an average over time, for example. Of course, the
resonant cavity field will be created by interactions with all the particles,
so the above average will implicitly include the particle orbits and spins.
In a suitable limit, the above should equal the classical expression for
the cavity energy. Let us analyze this limit in more detail.

The Fock states are eigenstates of the free-field cavity Hamiltonian
𝐻̂cav, and they form an orthonormal basis, but they do not have a
classical interpretation. The expectation value of the cavity field in a
Fock state |𝑛⟩ is zero. The electric and magnetic field operators are
obtained from Eqs. (2.24) and (2.24b) with the substitution of

√

ℏ 𝑎̂ and
√

ℏ 𝑎̂† for 𝑎 and 𝑎∗ respectively. Then, using ⟨𝑛|𝑎̂|𝑛⟩ = ⟨𝑛|𝑎̂†|𝑛⟩ = 0 yields

⟨𝑛|Ê|𝑛⟩ = ⟨𝑛|B̂|𝑛⟩ = 0 . (4.5)

The quantum states which most closely resemble classical electromag-
netic waves are called ‘coherent states’ (see [5,6]). The coherent states
are eigenstates of the annihilation operator, i.e. 𝑎̂|𝜁⟩ = 𝜁 |𝜁⟩, where 𝜁 is a
complex number. To distinguish between Fock and coherent states, we
employ Roman letters to denote a Fock state, e.g. |𝑛⟩, and Greek letters
to denote a coherent state, e.g. |𝜁⟩. Note that the ground Fock state |0⟩
is also a coherent state. A (normalized) coherent state can be expressed
as a sum of Fock states via

|𝜁⟩ = 𝑒−|𝜁 |
2∕2

∞
∑

𝑛=0

𝜁𝑛
√

𝑛!
|𝑛⟩ = 𝑒−|𝜁 |

2∕2𝑒𝜁𝑎̂
†
|0⟩ . (4.6)

Although the coherent states yield a complete set of states, they do
not form a basis. The overlap between any two coherent states |𝜁⟩ and
|𝜁 ′⟩ is nonzero: |⟨𝜁 ′|𝜁⟩|2 = 𝑒−|𝜁−𝜁 ′|

2
. The coherent states are said to be

overcomplete [6]. If the cavity field is given by a coherent state |𝜁⟩, the
quantum expectation values of the cavity electric and magnetic fields
are (using ⟨𝜁 |𝑎̂|𝜁⟩ = 𝜁)

⟨𝜁 |E|𝜁⟩ = −

√

2ℏ𝜔𝑐
𝑖2𝑐

(

𝜁𝑒−𝑖𝜔𝑐 𝑡 − 𝜁∗𝑒𝑖𝜔𝑐 𝑡
)

E𝑐 (𝑟) , (4.7a)

⟨𝜁 |B|𝜁⟩ =
√

ℏ
2𝜔𝑐

(

𝜁𝑒−𝑖𝜔𝑐 𝑡 + 𝜁∗𝑒𝑖𝜔𝑐 𝑡
)

B𝑐 (𝑟) . (4.7b)
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These expressions can be interpreted classically. If we set 𝑎 =
⟨𝜁 |

√

ℏ 𝑎̂|𝜁⟩ =
√

ℏ 𝜁 , we reproduce Eqs. (2.24a) and (2.24b). Note,
however, that unlike a Fock state, a coherent state is not a state of
definite photon number: a coherent state is not an eigenstate of the
number operator ̂ (except for the ground state |0⟩). The mean and
variance of the number of photons are given by

𝜇𝜁 = ⟨𝜁 |̂ |𝜁⟩ = |𝜁 |2 , 𝜎2𝜁 = ⟨𝜁 |̂ 2
|𝜁⟩ − 𝜇2𝜁 = |𝜁 |2 . (4.8)

These results are characteristic of a Poisson distribution of the photon
number, which can be derived from Eq. (4.6). For a macroscopic value
|𝜁 | ≫ 1, the standard deviation is negligible compared to the mean
photon number, and the expectation values in Eqs. (4.7a) and (4.7b)
can be treated as deterministic classical fields. We shall make extensive
use of coherent states below.

4.3. Interaction Hamiltonian

We make the same approximations used to derive Eq. (3.1). For
brevity, define 𝑔̃𝑘 =

√

ℏ 𝑔𝑘. The quantum interaction Hamiltonian is

𝐻̂res =
1
2
ℏ
(

∑

𝑗
𝜖𝑗 𝜎

𝑗
𝑛 + 𝑔̃𝑘𝑎̂

†
∑

𝑗
𝜎𝑗− + 𝑔̃∗𝑘 𝑎̂

∑

𝑗
𝜎𝑗+

)

. (4.9)

As in the quasiclassical model, the quantum model has dynamical
invariants. First, there is the Hamiltonian 𝐻̂res itself. Next, if 𝜖𝑗 = 0
for all 𝑗 = 1,… , 𝑁 , then the (squared) total spin operator is invariant.
Define the total spin components 𝛴𝑛 =

∑

𝑗𝜎
𝑗
𝑛 and 𝛴± =

∑

𝑗𝜎
𝑗
±. Then

define the squared total spin operator 𝜮2 = 𝛴2
𝑛 +

1
2 (𝛴+𝛴−+𝛴−𝛴+). Note

that if 𝜖𝑗 = 0 then the interaction Hamiltonian reduces to

𝐻̂res =
1
2
ℏ
(

𝑔̃𝑘𝑎̂
†𝛴− + 𝑔̃∗𝑘 𝑎̂𝛴+

)

. (4.10)

Then [𝜮2, 𝛴𝑛] = [𝜮2, 𝛴±] = 0, hence [𝜮2, 𝐻̂res] = 0. Third, the classical
invariant 𝐼+ has a quantum analog

𝐼+ = ℏ𝑎̂†𝑎̂ + 1
2
ℏ
∑

𝑗
𝜎𝑗𝑛 . (4.11)

It is easily verified that [𝐼+, 𝐻̂res] = 0.

4.4. Quantum invariants

The notion of ‘invariance’ for a quantum operator must be under-
stood carefully. In general, if an operator 𝐽 is a quantum invariant,
then 𝐽 commutes with the Hamiltonian and the Heisenberg equation of
motion yields 𝑑𝐽∕𝑑𝑡 = 0. However, what will measurements of the value
of 𝐽 yield? A classical dynamical invariant always has a definite value,
which is specified by the initial conditions of the particle orbit and spin,
and the cavity field. This is not always true for a quantum invariant. For
example, consider the photon number operator ̂ . This is a quantum
invariant, if we treat only the cavity free field (no interactions). If the
cavity field is given by a Fock state |𝑛⟩, then measurements of ̂ always
yield the value 𝑛, because the quantum state |𝑛⟩ is an eigenstate of ̂ .
However, if the quantum state is a coherent state |𝜁⟩, then |𝜁⟩ is not
an eigenstate of ̂ (except for 𝜁 = 0), and measurements of ̂ do not
always yield a definite value.

In general, measurements of a quantum invariant operator 𝐽 will
yield a definite value only if the quantum system is in an eigenstate of 𝐽 .
Otherwise, measurements of 𝐽 will not always yield the same value. This
is due to quantum uncertainty, and is not related to noise or interactions,
etc. The strongest statement we can make is that, for any quantum state,
the expectation value ⟨𝐽 ⟩ is constant in time.

∙ If 𝜖𝑗 = 0, the squared total spin operator 𝜮2 will have a definite
value only if the spins are in an eigenstate of the total spin. For
𝑁 = 2, this means the singlet or triplet spin state, but not a
linear combination of the two. In general, the operator 𝜮2 will
not have a definite value for a partially polarized beam, although
the (squared) classical total spin 2 will do so.

∙ The quantum invariant 𝐼+ will have a definite value only if the
cavity field is in a Fock state |𝑛⟩. However, Fock states do not
have a classical limit, even for large 𝑛. To make contact with
the classical invariant 𝐼+, the cavity field must be described by
a coherent state, but this is not an eigenstate of 𝐼+ and does not
have a definite number of photons. The quantum invariant 𝐼+
will also have a definite value only if the spins are in an eigenstate
of the spin operator ∑𝑗𝑆

𝑗
𝑛 . This will not be the case, for example,

for a partially polarized beam.

5. Solution of quantum model

5.1. Rabi oscillations

We place the solution of the quantum model in a separate section.
As a first step, we derive the so-called ‘Rabi oscillations’. This is an
important phenomenon, and the material below draws heavily from
the Jaynes–Cummings model [3]. We begin with a model of one spin
(and drop the index 𝑗 on the particle). The eigenstates can be calculated
exactly for this case. The one-spin model can be solved for nonresonant
oscillations also, but we treat only the resonant case. The Hamiltonian
is

𝐻̂res =
1
2
ℏ
(

𝑔̃𝑘𝑎̂
†𝜎− + 𝑔̃∗𝑘 𝑎̂𝜎+

)

. (5.1)

Suppose the initial cavity state is the Fock state |𝑛⟩. Denote the up and
down spin states by |↑⟩ and |↓⟩, respectively. The above Hamiltonian
couples the states |↑, 𝑛⟩ and |↓, 𝑛+ 1⟩, i.e. (spin up, 𝑛 photons) and (spin
down, 𝑛 + 1 photons). Note that these are joint (spin, field) quantum
states. Our basis of states is

(

1
0

)

which represents |↑, 𝑛⟩ and
(

0
1

)

which
represents |↓, 𝑛 + 1⟩. Denote the Hamiltonian in this basis by 𝐻𝑛. Then,
using Eq. (4.4),

𝐻𝑛 = ℏ

(

0 𝑔̃∗𝑘
√

𝑛 + 1
𝑔̃𝑘
√

𝑛 + 1 0

)

. (5.2)

The eigenvalues of𝐻𝑛 are ±ℏ𝛺𝑛+1, where𝛺𝑛 = |𝑔̃𝑘|
√

𝑛. The correspond-
ing eigenstates |𝜓±⟩ are

|𝜓±⟩ =
1

√

2 |𝑔̃𝑘|

(

𝑔̃∗𝑘
±𝑔̃𝑘

)

. (5.3)

These are known as ‘dressed states’. Suppose the initial state is |↑, 𝑛⟩
(spin up, 𝑛 photons), then for 𝑡 ≠ 0 the state is

|𝜓(𝑡)⟩ =
𝑔̃𝑘

√

2 |𝑔̃𝑘|

[

𝑒−𝑖𝛺𝑛+1𝑡|𝜓+⟩ + 𝑒𝑖𝛺𝑛+1𝑡|𝜓−⟩

]

=

⎛

⎜

⎜

⎜

⎝

cos(𝛺𝑛+1𝑡)

−
𝑖𝑔̃2𝑘
|𝑔̃𝑘|

2
sin(𝛺𝑛+1𝑡)

⎞

⎟

⎟

⎟

⎠

. (5.4)

The expectation value of the electromagnetic energy in the cavity
resonant mode is

𝑐 = ℏ𝜔𝑐 ⟨𝑎̂
†𝑎̂⟩ = ℏ𝜔𝑐

[

𝑛cos2(𝛺𝑛+1𝑡) + (𝑛 + 1)sin2(𝛺𝑛+1𝑡)
]

= ℏ𝜔𝑐
[

𝑛 + sin2(𝛺𝑛+1𝑡)
]

.
(5.5)

The oscillation of the energy in the cavity is known as a ‘Rabi oscillation’
and the above results were derived in the Jaynes–Cummings model [3]
for a two-level atom interacting with a resonant cavity.

5.2. Partially polarized beam

Suppose instead that the spin is initially down. The spin must absorb
a photon to flip to the up state. Then the state space is |↓, 𝑛⟩ and |↑, 𝑛−1⟩.
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It is easily derived that the expectation value of the electromagnetic
energy in the cavity resonant mode is

𝑐 = ℏ𝜔𝑐
[

𝑛cos2(𝛺𝑛𝑡) + (𝑛 − 1)sin2(𝛺𝑛𝑡)
]

= ℏ𝜔𝑐
[

𝑛 − sin2(𝛺𝑛𝑡)
]

.
(5.6)

Suppose the beam is partially polarized, with a projection cos 𝛼 along
n0. This can be treated as a weighted statistical mixture of two beams,
one polarized up and the other polarized down. The expectation value
is

𝑐 = ℏ𝜔𝑐
[

(𝑛 + sin2(𝛺𝑛+1𝑡))cos2(𝛼∕2) + (𝑛 − sin2(𝛺𝑛𝑡))sin
2(𝛼∕2)

]

= ℏ𝜔𝑐
[

𝑛 + cos2(𝛼∕2)sin2(𝛺𝑛+1𝑡) − sin2(𝛼∕2)sin2(𝛺𝑛𝑡)
]

.
(5.7)

The case of interest to us is 𝑛 = 0, when the cavity is initially empty,
and is known as a ‘vacuum Rabi oscillation’. Then

𝑐 = ℏ𝜔𝑐 cos2(𝛼∕2) sin
2(𝛺1𝑡) . (5.8)

Experiments with two-level atoms have observed vacuum Rabi oscilla-
tions [20,21], in agreement with the theory [3].

5.3. Multiple particles

The above analysis is for only one spin. To generalize to 𝑁 > 1
particles, we offer an approximate argument as follows. A maximum of
𝑁 photons can be emitted, hence we say the number of emitted photons
is 𝑁∕2 ‘on average’. Then we replace 𝛺𝑛 by |𝑔̃𝑘|

√

𝑛 + (𝑁 − 1)∕2, where
we write (𝑁 − 1)∕2 so that the new definition matches the previous for
𝑁 = 1. Then for an initially empty cavity, we obtain approximately

𝑐 ≃ 𝑁ℏ𝜔𝑐 cos2(𝛼∕2) sin
2(
√

ℏ|𝑔𝑘|
√

(𝑁 − 1)∕2 𝑡)

≃ 𝜔𝑐𝑁
2
|𝑔𝑘|

2 ℏ2𝑡2

4
(1 + cos 𝛼) .

(5.9)

In the last line we approximated 𝑁 ≫ 1 and also expanded for
small 𝑡. The latter expression should be compared to the quasiclassical
expression [1, eq. (8)]. Setting 𝜉 = 1 in Eq. (3.10) yields

ℰ𝑐 = 𝜔𝑐𝑁
2
|𝑔𝑘|

2 ℏ2𝑡2

4
sin2𝛼 . (5.10)

∙ We remarked previously that the quasiclassical expression yields
zero for 𝛼 = 0, i.e. when all the spins point up, which is erroneous.
The solution using the quantum model has a factor 1 + cos 𝛼,
which is maximum for 𝛼 = 0, i.e. all spins up, and zero for 𝛼 = 𝜋,
i.e. all spins down, which is correct.

∙ In the quasiclassical model, the value of the cavity field ampli-
tude is independent of the spin direction, by definition. This is
known to be a reasonable approximation for a macroscopic cavity
field. However, for an initially empty cavity, the quantum model
demonstrates that the state of the cavity field and the particle
spin are strongly correlated. The quantum eigenstates, the so-
called ‘dressed states’, are joint eigenstates of the cavity and the
spin.

∙ As already noted, the quantum expression for the cavity energy is
an expectation value. Measurements of the cavity energy will dis-
play statistical fluctuations due purely to quantum uncertainty,
independent of noise in the cavity or fluctuations in the phase
space distribution of the beam, etc. We shall comment on this
below.

5.4. Macroscopic field: rf depolarizer

To make contact with the case of an rf depolarizer (macroscopic
field), the quantum state should be a coherent state, say |𝜁⟩ as in
Eq. (4.6). This model can also be solved exactly for one spin. We are
principally interested in the case where the initial spin state is |↑⟩. Then

the ‘up’ and ‘down’ spin components of the quantum state are given by
infinite sums over the Fock states as follows

⟨↑ |𝜓(𝑡)⟩ = 𝑒−|𝜁 |
2∕2

∞
∑

𝑛=0

𝜁𝑛
√

𝑛!
cos(𝛺𝑛+1𝑡) |𝑛⟩ , (5.11a)

⟨↓ |𝜓(𝑡)⟩ = −
𝑖𝑔̃2𝑘
|𝑔̃𝑘|

2
𝑒−|𝜁 |

2∕2
∞
∑

𝑛=0

𝜁𝑛
√

𝑛!
sin(𝛺𝑛+1𝑡) |𝑛 + 1⟩ . (5.11b)

The above solution pertains to any coherent state. It was noted in [20],
for example, that for a macroscopic coherent state, the above sum is
strongly peaked at the average photon number 𝑛̄ = |𝜁 |2 ≫ 1. Then the
expectation of 𝜎𝑛, for example, can be obtained using Eq. (5.4) with 𝑛̄
and approximating 𝑛̄ ≫ 1:

⟨𝜓|𝜎𝑛|𝜓⟩ ≃ cos2(𝛺𝑛̄+1 𝑡) − sin2(𝛺𝑛̄+1 𝑡) ≃ cos(2|𝑔̃𝑘|
√

𝑛̄ 𝑡) . (5.12)

Next, set
√

ℏ |⟨𝜁 |𝑎̂|𝜁⟩| =
√

ℏ |𝜁 | =
√

ℏ𝑛̄ = 𝑎𝑚, were 𝑎𝑚 is the same
as in the quasiclassical model treated in Section 3.3. Then |𝑔̃𝑘|

√

𝑛̄ =
|𝑔𝑘|

√

ℏ𝑛̄ = |𝑎𝑚𝑔𝑘|, hence

⟨𝜓|𝜎𝑛|𝜓⟩ ≃ cos(2|𝑎𝑚𝑔𝑘|𝑡) . (5.13)

This matches the solution for 𝑆𝑗𝑛 in Eq. (3.7) (with the initial phase
𝜙𝑗 = 0). The corresponding expression for 𝑆𝑗− can also be derived from
the quantum model.

∙ We estimate the average photon number in a macroscopic cavity
field as follows. A table of data for numerous spin flippers is given
in [22]. We may say that a typical peak integrated magnetic field
for a spin flipper or rf depolarizer is 1 T-mm. From information
in [23], the lengths of an rf solenoid and rf dipole spin flipper
employed at the IUCF Cooler were about 50 cm and 40 cm,
respectively. Hence a reasonable estimate for the cavity photon
wavelength is 𝜆 = 1 m. It should be noted that the above
values are merely approximate, but we are only making order
of magnitude estimates. The momentum of one photon is 2𝜋ℏ∕𝜆.
We saw above that the resonance strength scales as

√

𝑛̄. Hence
the estimated average photon number 𝑛̄ is

𝑛̄ ≃
(

𝑒𝐵𝐿𝜆
2𝜋ℏ𝑐

)2
≃
(

106∕3.3356
2𝜋 × 6.582 × 10−16 × 2.997 × 108

)2

≃ 5.85 × 1022 .

(5.14)

∙ If the spin were initially down, we would substitute 𝛺𝑛̄ for
𝛺𝑛̄+1. However, for 𝑛̄ ≫ 1 the two frequencies are almost equal.
This justifies the assumption in the quasiclassical model that the
cavity field is independent of the state of the particle spin. As we
noted above, such an approximation is not valid if the cavity is
initially empty.

∙ The above analysis was for a model with one spin. The number
of spins in a particle bunch is 𝑁 = 𝑂(1011), hence 𝑛̄ ≫ 𝑁 ≫
1. Hence the amplitude of the cavity field or the precession
frequency |𝑔̃𝑘|

√

𝑛̄ + (𝑁 − 1)∕2 is not significantly affected by the
presence of multiple spins. This justifies the neglect of the effect
of the spins on the cavity field, for practical designs of spin
flippers or rf depolarizers and typical bunch intensities.

6. Estimates for resonant cavity energy

6.1. Coupling strength

We now derive expressions for the coupling strength |𝑔𝑘| and nu-
merical estimates for the electromagnetic energy in the resonant mode
of the cavity. To do so, and for contact with [1], we treat a cylindrical
cavity of length 𝑑 and radius 𝑟𝑐 with a resonant TM110 mode. We
employ cylindrical coordinates (𝑟, 𝜗, 𝑧) where ẑ is directed along the
ring reference axis and 𝜗 should not be confused with the ring azimuth
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𝜃. For definiteness, we assume the magnetic field points radially in the
horizontal plane and n0 is vertical at the location of the cavity. The
vector potential is A(r , 𝑡) = A𝑐 (r)𝑒𝑖𝜔𝑐 𝑡, where

A𝑐 (r) = 𝐴0𝐽1

(

𝑋11
𝑟𝑐

𝑟
)

sin 𝜗 ẑ . (6.1)

Here 𝐴0 is a normalization constant, 𝐽1 is a Bessel function and 𝑋11
denotes its first positive zero. Note that 𝜔𝑐𝑟𝑐∕𝑐 = 𝑋11. Then from
Section 2.4, 𝑄(𝑡) = 𝑒𝑖𝜔𝑐 𝑡 and E𝑐 (r) = A𝑐 (r). The electric field vanishes on
axis, hence its coupling with the spins is negligible, as assumed in [1]
and the analysis above. The magnetic field components are given by

𝐵𝑐𝑟 = −
𝐴0
𝑟
𝐽1

(

𝑋11
𝑟𝑐

𝑟
)

cos 𝜗 , (6.2a)

𝐵𝑐𝜗 = −𝐴0
𝑋11
𝑟𝑐

𝐽 ′
1

(

𝑋11
𝑟𝑐

𝑟
)

sin 𝜗 . (6.2b)

A prime denotes differentiation with respect to the argument. Using
Eq. (2.21), the normalization is

𝐴0 =
√

4𝜋𝑐2
(

2
𝜋𝑟2𝑐𝑑𝐽

2
2 (𝑋11)

)1∕2
= 2𝑐
𝐽2(𝑋11)𝑟𝑐

√

2
𝑑
. (6.3)

The transverse beam size is very small (𝜎𝑥,𝑦 ≪ 𝑟𝑐) so it is a good
approximation to write
𝐴0
𝑟
𝐽1

(

𝑋11
𝑟𝑐

𝑟
)

≃
𝐴0𝑋11
2𝑟𝑐

. (6.4)

The magnetic field is uniform along ẑ. Integrate from −𝑑∕2 to 𝑑∕2 to
obtain
1
𝐿 ∫

𝑑∕2

−𝑑∕2
𝑒𝑖𝜔𝑐𝑧∕𝑣0 𝑑𝑧 =

2𝑣0
𝜔𝑐𝐿

sin
𝜔𝑐𝑑
2𝑣0

. (6.5)

Then

|𝑔𝑘| ≃
(

𝐺 + 1
𝛾

)

𝑒
2𝑚𝑐

1
√

2𝜔𝑐

𝐴0𝑋11
2𝑟𝑐

2𝑣0
𝜔𝑐𝐿

|

|

|

|

sin
𝜔𝑐𝑑
2𝑣0

|

|

|

|

= 1
𝐽2(𝑋11)

(

𝐺 + 1
𝛾

)

𝑒
𝑚𝑐

𝛽0
𝑋11

√

𝜔𝑐
𝑑

1
𝐿

|

|

|

|

sin
𝜔𝑐𝑑
2𝑐𝛽0

|

|

|

|

.

(6.6)

The expression given in [1, eq. (9)] is (note that Derbenev writes ‘0.41’
but in fact 𝐽2(𝑋11) ≃ 0.403)

|𝑔𝑘| =
1

𝐽2(𝑋11)

(

𝐺 + 1
𝛾

)

𝑒
𝑚𝑐

√

2𝜋𝜔𝑐
𝑑

1
𝐿

|

|

|

|

sin
𝜔𝑐𝑑
2𝑐𝛽0

|

|

|

|

. (6.7)

This differs from our expression by a factor of
√

2𝜋 ≃ 2.5 in place
of 𝛽0∕𝑋11 ≃ 0.26 (with 𝛽0 ≃ 1), about a factor of 9.6 larger. A
private communication to Derbenev to clarify the issue has not yielded
a response. We shall employ Eq. (6.6) below.

6.2. Numerical estimate of oscillation period

For an initially empty cavity, the period of the Rabi oscillations is
approximately

𝑇 = 𝜋
|𝑔̃𝑘|

√

𝑁∕2
. (6.8)

Recall |𝑔̃𝑘| =
√

ℏ |𝑔𝑘|. In our units, the electromagnetic fine structure
constant is 𝛼𝑒 = 𝑒2∕(ℏ𝑐), hence
√

ℏ 𝑒
𝑚𝑐

=
𝜆𝐶
2𝜋

√

𝑐𝛼𝑒 . (6.9)

Here 𝜆𝐶 = 2𝜋ℏ∕(𝑚𝑐) is the Compton wavelength of the particle. We
employ Eq. (6.6) and set 𝛽0 = 1 and 𝜔𝑐 = 𝑋11𝑐∕𝑟𝑐 . Then

|𝑔̃𝑘| =
1

𝐽2(𝑋11)

(

𝐺 + 1
𝛾

)√

𝛼𝑒
𝑋11𝑟𝑐𝑑

𝑐𝜆𝐶
2𝜋𝐿

|

|

|

|

sin
𝑋11𝑑
2𝑟𝑐

|

|

|

|

. (6.10)

Following [1, Sec. 5], we set 𝑑 = 𝜋𝛽0𝑐∕𝜔𝑐 ≃ 𝜋𝑟𝑐∕𝑋11. Using the
parameter values in Tables 1 and 2 yields

|𝑔̃𝑘| ≃ 1.8 × 10−11 Hz . (6.11)

The oscillation period is approximately

𝑇 ≃ 7.9 × 105 s . (6.12)

6.3. Numerical estimate of photons in cavity

We treat the most favorable case of a fully polarized beam with all
the spins initially up. We also write 𝑐 = ℏ𝜔𝑐𝒩𝑐 , so 𝒩𝑐 is the estimated
number of photons in the cavity resonant mode. We employ Eq. (5.9) to
derive

𝑐 = 𝑁2
|𝑔̃𝑘|

2 𝑡2

2
. (6.13)

We employ the parameter values in Tables 1 and 2 and the value of |𝑔̃𝑘|
derived above. We use 𝑡 = 0.06 s, from [1, Table 1]. Then

𝑐 ≃ 5.7 × 10−3 . (6.14)

The estimated number of photons in the cavity is much less than unity.
For a partially polarized beam, the above estimate should be multiplied
by a factor (1 + cos 𝛼)∕2.

∙ This is the main finding of our analysis. The above result is
reminiscent of the photoelectric effect: although the quasiclas-
sical model yields a smooth function of time, in practice the
photons are emitted into the cavity in discrete integer units.
This demonstrates that an analysis using the quantum model is
essential.

∙ The quasiclassical expression is obtained by averaging over many
photon emissions. However, the average must be understood
carefully. It is not the case that multiple photons are emitted into
the cavity in one measurement period. On any one run, at most
one spin–flip photon will be emitted into the resonant mode of
the cavity, during the time of the measurement. As opposed to the
analysis in [1], which assumes a small but continuously varying
cavity voltage, there will be either zero photons or one photon
in the cavity, on any one run. With the small rates, this leads to
prohibitively long data collection for any reasonable accuracy.

We close this section with a few additional remarks. First, the condition
𝑑 = 𝜋𝑟𝑐∕𝑋11, with 𝑟𝑐 = 20 cm, yields a cavity length of 𝑑 ≃ 16.4 cm.
The bunch length in RHIC is longer than this. (The numerical parameter
values for RHIC are given in Table 2.) In fact, the value 𝑟𝑐 = 20 cm
violates the condition 𝓁𝑏 = 𝜎𝑧 ≪ 𝑟𝑐 stated in [1], that the bunch
length should be much shorter than the cavity radius. (Possibly the
condition was intended to state 𝓁𝑏 ≪ 𝑑, but 𝑟𝑐 and 𝑑 are of comparable
magnitude in [1].1 ) Using data from Table 2, for 𝐺𝛾 ≃ 477.5 the spin
precession frequency is𝐺𝛾𝑓0 ≃ 37 MHz. If we equate the cavity resonant
frequency to this value, the resulting cavity radius is 𝑟𝑐 ≃ 4.9 m and
𝑑 = 𝜋𝑟𝑐∕𝑋11 ≃ 4.0 m. These parameter values satisfy the conditions
𝜎𝑥,𝑦 ≪ 𝑟𝑐 and 𝜎𝑧 ≪ 𝑑, but the cavity radius is large. Using the more
‘reasonable’ values 𝑟𝑐 = 20 cm and 𝑑 = 1 m yields

|𝑔̃𝑘| ≃ 1.1 × 10−12 Hz , (6.15a)
𝑇 ≃ 1.3 × 107 s , (6.15b)

𝑐 ≃ 2.2 × 10−5 . (6.15c)

The overall conclusion is the same: the expectation value of the number
of spin–flip photons emitted into the cavity during a measurement
period is much less than unity.

7. Interaction of cavity with beam current

7.1. General

The beam circulates around the ring at the revolution frequency and
as such it acts as a periodic driving term to deposit energy in the cavity.

1 The motivating idea is that the entire bunch should be contained inside the cavity,
and in the transverse plane the bunch should be close to the cavity axis.
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This is a nonresonant interaction, because by hypothesis the cavity has
no modes which resonate with integer multiples of the revolution fre-
quency. Our goal here is to estimate the nonresonant background field
in the cavity originating from the circulating beam current. Since the
current is macroscopic, the calculation may be formulated classically.
Let j be the circulating current density and Acav the vector potential
of the cavity field. We treat j as a prescribed function, i.e. we neglect
the no back reaction of the cavity on the beam current. From Maxwell’s
equations, the cavity vector potential satisfies the equation [19]

∇2A cav − 1
𝑐2
𝜕2

𝜕𝑡2
Acav = −4𝜋

𝑐
j(r , 𝑡) . (7.1)

We employ the Coulomb gauge, which is standard practice. The current
density is multiplied by a periodic 𝛿-function to indicate that the
interaction only occurs in a localized region (the cavity). This yields
a ‘‘comb’’ of Fourier harmonics at integer multiples of the revolution
frequency. Hence the current density actually has the form

j(r , 𝑡) 𝛿𝑝(𝜃 − 𝜃cav) = j(r)
∞
∑

𝑗=−∞
𝑒𝑖𝑗(𝜔0𝑡−𝜃cav) . (7.2)

The index 𝑗 here should not be confused with the index 𝑗 = 1,… , 𝑁
used previously to index the particles in the beam.

7.2. Free cavity field

Without the beam current, the cavity vector potential satisfies the
free-space wave equation

∇2A cav − 1
𝑐2
𝜕2

𝜕𝑡2
Acav = 0 . (7.3)

We decompose Acav into a sum of modes 𝑘(r)𝑒𝑖𝜔𝑘𝑡, indexed by a label
𝑘. (This label 𝑘 should not be confused with that in Eq. (2.11) for the
spin resonance condition.) Then 𝑘(r) satisfies the eigenvalue equation

∇2𝑘 +
𝜔2
𝑘

𝑐2
𝑘 = 0 . (7.4)

This equation is solved using the boundary conditions of the cavity,
to derive all the modes. From that we deduce the mode frequency 𝜔𝑘
(which is the eigenvalue). We assume the 𝑘 are normalized

∫cav
𝑘1 (r)𝑘2 (r) 𝑑

3r = 𝛿𝑘1𝑘2 . (7.5)

The modes are also a complete set of functions in the cavity: they form
a normalized basis.

7.3. Interaction

With the beam current, the cavity vector potential satisfies the
inhomogeneous wave equation

∇2A cav − 1
𝑐2
𝜕2

𝜕𝑡2
Acav = −4𝜋

𝑐
j(r)

∞
∑

𝑗=−∞
𝑒𝑖(𝑗𝜔0𝑡−𝜃cav) . (7.6)

We express the time dependence of Acav via a sum over 𝑗

Acav(r , 𝑡) =
∞
∑

𝑗=−∞
Acav, j(r) 𝑒𝑖(𝑗𝜔0𝑡−𝜃cav) . (7.7)

Then

∇2Acav, j +
(𝑗𝜔0)2

𝑐2
Acav, j = −4𝜋

𝑐
j(r) . (7.8)

To solve this we employ the mode expansion for the vector potential.
We expand j(r) in a sum over the cavity modes

j(r) =
∑

𝑘
𝑑𝑘𝑘(r) . (7.9)

Here the 𝑑𝑘 are constant coefficients (independent of space and time).
Since the modes form a normalized basis, we invert to obtain

𝑑𝑘 = ∫cav
j(r) ⋅𝑘(r) 𝑑3r . (7.10)

We also expand Acav, j in a sum over the cavity modes

Acav, j(r) =
∑

𝑘
𝑓𝑗𝑘𝑘(r) . (7.11)

Here 𝑓𝑗𝑘 is also a constant (independent of space and time). Substituting
the above expression into the equation for Acav, j and equating coeffi-
cients yields the solution

𝑓𝑗𝑘 =
4𝜋𝑐 𝑑𝑘

𝜔2
𝑘 − (𝑗𝜔0)2

. (7.12)

By design, the cavity has no modes which are resonant with integer
multiples of the beam circulation frequency, hence the denominator
does not vanish. We sum over 𝑗 and 𝑘 to obtain the nonresonant solution
for the cavity vector potential

Acav(r , 𝑡) = 4𝜋𝑐
∑

𝑗,𝑘

𝑑𝑘
𝜔2
𝑘 − (𝑗𝜔0)2

𝑘(r) 𝑒𝑖𝑗𝜔0𝑡 . (7.13)

This has a macroscopic magnitude, but it is nonresonant with the spin
precession frequency.

7.4. Numerical estimate

We employ a cylindrical cavity and treat the TM110 mode. We employ
the expressions in Section 6 for the vector potential. For the TM110 mode,

110 = 𝐴110𝐽1

(

𝑋11
𝑎

𝑟
)

sin 𝜗 . (7.14)

The normalization coefficient is

𝐴110 =
(

2
𝜋𝑟2𝑐𝑑𝐽

2
2 (𝑋11)

)1∕2
. (7.15)

We next need to evaluate the overlap integral

𝑑𝑘 = ∫cav
j ⋅110 𝑑

3r . (7.16)

To evaluate this integral we must make some assumptions about the
beam current density. For simplicity, suppose the beam has a Gaussian
charge density with standard deviations 𝜎𝑥,𝑦,𝑧 horizontally, vertically
and longitudinally. We assume the bunch is oriented parallel to the
cavity axis and has a circular transverse profile so 𝜎𝑥 = 𝜎𝑦. Using values
for RHIC from Tables 1 and 2 we estimate

𝜎𝑥,𝑦 =
√

𝜀𝑥𝛽𝑥∕(𝛽𝛾) ≃
√

1.67 × 10−6 × 50∕266 ≃ 0.6 mm, (7.17)

which is much smaller than the cavity radius 𝑟𝑐 . The bunch contains 𝑁
particles and moves at speed 𝑣0. Then

j(𝑟, 𝜗, 𝑧) = 𝑁𝑒𝑣0
𝑒−𝑥2∕(2𝜎2𝑥)𝑒−𝑦

2∕(2𝜎2𝑦 )𝑒−𝑧2∕(2𝜎2𝑧 )

(2𝜋)3∕2𝜎𝑥𝜎𝑦𝜎𝑧
ẑ . (7.18)

If the bunch were centered on the cavity axis, the overlap integral
with the cavity mode would vanish. Let us postulate a closed orbit
distortion, so the bunch axis is displaced vertically from the cavity axis
by 𝑦c.o.. Since 𝑦c.o. ≪ 𝑟𝑐 and 𝑏 ≪ 𝑟𝑐 , it is a good approximation that
𝐽1(𝑋11𝑟∕𝑟𝑐 ) ≃ 𝑋11𝑟∕(2𝑟𝑐 ) within the domain of integration. Then

𝐽1(𝑋11𝑟∕𝑟𝑐 ) sin 𝜗 ≃
𝑋11
2𝑟𝑐

𝑟 sin 𝜗 =
𝑋11
2𝑟𝑐

𝑦 . (7.19)

Then the value of the overlap integral is, assuming the beam size is small
compared to the cavity dimensions,

𝑑𝑘 = ∫cav
j ⋅110 𝑑𝑥 𝑑𝑦 𝑑𝑧

= 𝐴110
𝑁𝑒𝑣0
2𝜋𝜎𝑥𝜎𝑦 ∫

𝑋11
2𝑟𝑐

𝑦𝑒−𝑥
2∕(2𝜎2𝑥)𝑒−(𝑦−𝑦c.o.)2∕(2𝜎2𝑦 ) 𝑑𝑥 𝑑𝑦

= 𝐴110
𝑋11𝑦c.o.

2𝑟𝑐
𝑁𝑒𝑣0 .

(7.20)

To estimate the number of photons, we should derive the effective
integrated peak magnetic field |𝑒B110𝐿cav|, but since |B110| ∝ |A110|,
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we can work with the vector potential. Using Eq. (7.13) and integrating
over the cavity for the TM110 mode, we obtain

|

|

|

|

∫cav
A2
110 𝑑

3r
|

|

|

|

1∕2
= 4𝜋𝑐

|𝑑𝑘|
|𝜔2

𝑐 − (𝑗𝜔0)2|
. (7.21)

We select the value of 𝑗 such that 𝜔𝑐 − 𝑗𝜔0 ≃ 𝜔0∕2. Then 𝜔2
𝑐 − (𝑗𝜔0)2 ≃

𝜔𝑐𝜔0. Then (approximating 𝑣0 ≃ 𝑐)

𝑒
𝑐
|A110| =

4𝜋𝑒
√

𝜋𝑟2𝑐𝑑

|𝑑𝑘|
|𝜔2

𝑐 − (𝑗𝜔0)2|

= 2𝑁𝑒2𝑐
𝜔𝑐𝜔0

√

2𝑋11

𝐽2(𝑋11)𝑟2𝑐𝑑
𝑦c.o.
𝑟𝑐

=
ℏ𝜔𝑐
𝑐

𝑁𝛼𝑒
𝜋

√

2
𝑋11𝐽2(𝑋11)

𝐿
𝑑
𝑦c.o.
𝑟𝑐

.

(7.22)

The peak integrated magnetic field is approximately |𝑒B110𝐿cav| =
|𝑒A110𝑑𝜔𝑐∕𝑐| = |𝜋𝑒A110|. As with the quantum model of an rf depolar-
izer, we equate this to ℏ𝜔𝑐

√

𝑁ph , where 𝑁ph is the number of photons.
Then

𝑁ph =
(

√

2𝑁𝛼𝑒
𝑋11𝐽2(𝑋11)

𝐿
𝑑
𝑦c.o.
𝑟𝑐

)2
. (7.23)

The relevant parameters values are listed in Tables 1 and 2, e.g. we
estimate 𝑦c.o. ≃ 0.1 mm. Previously we followed [1] and set 𝑑 = 𝜋𝛽0𝑐∕𝜔𝑐 ,
but for simplicity we set 𝑑 = 1 m here. Then

𝑁ph ≃ 1.6 × 1018 . (7.24)

This is a large number, but recall these photons are nonresonant. Hence
a cavity resonator with a high 𝑄 is required, to filter out these photons.
It is estimated in [1] that for a superconducting cavity, a value of
𝑄 ≃ 2 × 1010 is possible.

8. Coherent orbital oscillations

It is well known that a transverse magnetic field in a spin flipper or
rf depolarizer not only rotates the spin but also kicks the particle orbit.
This drives a coherent orbital oscillation around the ring circumference,
which causes the orbit to pass off-axis through the ring quadrupoles, etc.
This yields an additional contribution to the spin resonance strength. A
review of the relevant formalism is given in [7]. The contribution of the
coherent orbital oscillations to the spin resonance strength was noted by
Derbenev in [2], who remarked that this phenomenon would complicate
the analysis (the analyzing power of the polarimeter).

We discuss the coherent orbital oscillations briefly below, using a
quantum model. Since the cavity is initially empty, it is the spin flips
which generate the cavity field to drive the forced orbital oscillations.
First consider a model of a homogeneous vertical magnetic field. The
solutions for the eigenstates and eigenvalues of the Dirac equation in a
uniform vertical magnetic field are known. The paper by O’Connell [24]
has the required answer, including an anomalous magnetic moment.
(O’Connell [24] cites a paper by Ternov, Bagrov and Zhukovskii, which
we have not been able to obtain.) O’Connell sets ℏ = 𝑐 = 1. The Dirac
equation with an anomalous magnetic moment 𝜇 is

𝑖
𝜕𝜓
𝜕𝑡

=
{

𝜶 ⋅ (p − 𝑒A) + 𝛾4𝑚 + 𝜇𝛾4𝝈 ⋅ B
}

𝜓 . (8.1)

Here 𝝈 is a 4 × 4 spin matrix. Define the Schwinger critical field
𝐵𝑐 = 𝑚2𝑐3∕(𝑒ℏ). Then the energy levels of the positive and negative
energy states are, restoring ℏ and 𝑐 explicitly,

𝐸𝑛 = ±

{

𝑝2𝑧𝑐
2 +

[

√

𝑚2𝑐4 + 𝑒ℏ𝑐𝐵(2𝑛 + 𝜉 + 1) + 𝜉 𝐺𝑒ℏ𝐵
2𝑚𝑐

]2
}1∕2

. (8.2)

Here 𝑛 = 0, 1, 2… is the principal quantum number, 𝜉 = ±1 indexes spin
up and down, and 𝑝𝑧 is the momentum of the particle along the 𝑧 axis.

∙ The essential point is that if a spin flips, the quantum state of the
orbit changes by only about 𝛥𝑛 = ±1. Hence our fundamental
point in this section is to emphasize that the change to the
orbit (the forced orbital oscillations) cannot be treated as a
semiclassical function of time as in [2]. The change to the orbit
will be quantized.

∙ Hence, in the analysis of the Rabi oscillations, it will be necessary
to extend the quantum state of the system to be a joint (spin,
orbit, cavity) state. A change of the spin state will be correlated
with a change to both the orbital state and the cavity field.
The interaction Hamiltonian must include terms from 𝐻cav−orb
in Eq. (2.1), which have been neglected up to now. The term
in 𝐻spin in Eq. (2.1) must be extended to include the spin–orbit
coupling due to the coherent orbital oscillations.

∙ We do not propose to analyze the matter further in this paper.
Our findings above indicate that the period of a vacuum Rabi
oscillation, for an initially empty cavity, is very long, and the
estimated number of spin–flip photons which will be emitted
into the cavity, during the measurement time, is much less than
unity. Furthermore, those findings were derived using a model
with very strict assumptions on the spin tune spread, etc.

9. Synchrotron oscillations and Schottky signals

Up to now, our analysis has assumed the Hamiltonian is explicitly in-
dependent of the time. This assumption was also made by Derbenev [1].
In practice, the need for longitudinal focusing means that real rings
contain rf cavities and the Hamiltonian depends explicitly on the time.
Hence the total energy of a particle is not conserved. The dynamical
invariant 𝐼+ (see Eq. (3.3)) is also not conserved. In practice, the
energy oscillations (i.e. synchrotron oscillations) are bounded so that
the energy, for example, oscillates around an average value. Note also
that in most hadron rings, the synchrotron tune is much less than unity.
At RHIC, the synchrotron oscillation frequency is 26.5 Hz, yielding a
synchrotron tune of 𝜈𝑠 ≃ 3.4 × 10−4, so that the time variation is ‘slow’
in some sense.

However, we have seen that the analysis above, even with the
use of a time independent Hamiltonian and numerous other strict
approximations on the spin tune spread, etc., yield the result that the
estimated number of photons emitted into the resonant rf cavity is very
small, much less than unity, on the timescale of relevance for use for
polarimetry. Note also that it is explicitly assumed in [1] that the cavity
is not resonant with the synchrotron oscillation frequency. Hence, we
conclude that the inclusion of synchrotron oscillations, although it will
make a quantitative difference to the analysis, is unlikely to affect the
above conclusions of our analysis significantly.

There is, however, one further detail which should be considered,
viz. that of Schottky signals. It is possible that a circulating (bunched)
stored beam can deposit energy into the resonant cavity via incoherent
Schottky signals, and that the frequency of some of these photons
can equal the spin resonant frequency. If so, the Schottky signals
would be an additional complication to the use of the resonant cavity
for polarimetry. For the theory of Schottky signals of stored beams,
including bunched beams, we refer the reader to the excellent texts
by Chattopadhyay [8] and Boussard [9]. See also [25] for the use of
Schottky spectra for longitudinal impedance measurements at RHIC. We
offer a brief analysis of the longitudinal Schottky signals below. The
Schottky signals due to betatron motion are similar and do not add
any essential material. First, we note that the longitudinal dynamics
in real rings such as RHIC is complicated, and can exhibit features
such as long-lived soliton modes [26]. It is not our purpose here to
present a comprehensive theory of longitudinal dynamics or Schottky
signals. We confine our analysis to the simplest case of small-amplitude
incoherent synchrotron oscillations. We model the detector is a point
function (localized detector). For simplicity we place the detector at the
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azimuth 𝜃det = 0. The signal is detected at a harmonic number ℎSch. The
revolution angular frequency of particle 𝑗 is 𝜔𝑗 = 𝜔0(1 + (𝛥𝑓 )𝑗∕𝑓0). Let
the phase slip factor be 𝜂ph = 1∕𝛾2 − 1∕𝛾2𝑡 , where 𝛾𝑡 is the transition
gamma, so (𝛥𝑓 )𝑗∕𝑓0 = 𝜂ph(𝛥𝑝)𝑗∕𝑝0. The beam is bunched. It is sufficient
for our purposes to treat only small amplitude synchrotron oscillations,
hence we write
(𝛥𝑝)𝑗
𝑝0

= 𝐴𝑗 cos(𝜔𝑠𝑡 + 𝜙𝑗 ) . (9.1)

Here 𝐴𝑗 =
√

2𝐽𝑗 is the amplitude and ⟨𝐽𝑗⟩ = 𝜎2𝑝∕𝑝
2
0. The initial phase

𝜙𝑗 has a uniform random distribution in [0, 2𝜋). Then, using the Jacobi–
Anger identity for Bessel functions, the Schottky signal from one particle
is proportional to

exp
(

𝑖ℎSch∫

𝑡
𝜔𝑗 𝑑𝑡

′
)

= exp
(

𝑖ℎSch𝜔0𝑡 + 𝑖
ℎ𝜔0𝜂ph𝐴𝑗

𝜔𝑠
sin(𝜔𝑠𝑡 + 𝜙𝑗 )

)

= 𝑒𝑖ℎSch𝜔0𝑡
∞
∑

𝑚=−∞
𝑒𝑖𝑚(𝜔𝑠𝑡+𝜙𝑗 )𝐽𝑚

(ℎSch𝜂ph𝐴𝑗
𝜈𝑠

)

.

(9.2)

The use of 𝑚 as a summation index should not be confused with the
particle mass. The (longitudinal) Schottky signal consists of a sum of
synchrotron sidebands around the parent line (which is at ℎ times the
beam circulation frequency), separated at intervals of the synchrotron
oscillation frequency. The Schottky power in the 𝑚th sideband is,
summing over all the particles and averaging over the phases 𝜙𝑗 ,

𝑃Sch(ℎ,𝑚) = 𝐾Sch

𝑁
∑

𝑛=1
𝐽 2
𝑚

(ℎ𝜂ph𝐴𝑗
𝜈𝑠

)

. (9.3)

Here 𝐾Sch is a constant. We evaluate the above as follows. Rigorous
treatments can be found in [8] and [9] but for simplicity we assume a
Gaussian beam phase space distribution. Then

𝑃Sch(ℎ,𝑚) = 𝑁𝐾Sch ∫

∞

0
𝐽 2
𝑚

(ℎSch𝜂ph
√

2𝐽
𝜈𝑠

)

𝑒−𝐽∕⟨𝐽⟩ 𝑑𝐽
⟨𝐽⟩

= 𝑁 𝑒−𝜎
2
𝐼𝑚(𝜎2) .

(9.4)

Here 𝐼𝑚 is a modified Bessel function and

𝜎 =
ℎSch𝜂ph

𝜈𝑠

𝜎𝑝
𝑝0
. (9.5)

The ratio of the power in the 𝑚th sideband relative to the parent is
𝐼𝑚(𝜎2)∕𝐼0(𝜎2).

Let us make some numerical estimates using parameters for RHIC,
using data from Table 2. We set the fractional spin tune to 1

2 , to be
as far away as possible from an integer. Hence we set 𝐺𝛾 = 477.5,
i.e. a beam energy of 249.90 GeV, and take the cavity frequency as
𝑓cav = 𝐺𝛾𝑓0 = 37.3387 MHz. The synchrotron oscillation frequency
is 𝑓𝑠 = 26.5 Hz. Then the value of the sideband 𝑚 corresponding to a
fractional tune of 1

2 is given by

𝑚 =
𝑓0
2𝑓𝑠

≃ 1475 . (9.6)

Also |𝜂ph| ≃ 0.001786, while ℎSch = 477 and 𝜎𝑝∕𝑝0 ≃ 5.0 × 10−4. Then

𝜎 ≃ 477 × 0.001786 × 5.0 × 10−4

3.39 × 10−4
≃ 1.26 . (9.7)

For modified Bessel functions with arguments much smaller than the
order, 𝐼𝑚(𝑧) ≃ (𝑧∕2)𝑚∕𝑚!. Then the ratio of the power in the 𝑚th
sideband relative to the parent is

𝐼𝑚(𝜎2)
𝐼0(𝜎2)

≃
𝐼1475(1.58)
𝐼0(1.58)

≃ 1
1.728

0.791475
1475!

. (9.8)

This is a negligibly small ratio. Hence for the above set of parameter val-
ues, we may neglect the Schottky power at the spin resonant frequency
of the cavity.

10. Conclusion

Our treatment employing quantized operators yields conclusions
significantly different from Derbenev’s semiclassical analysis [1,2].
Most important of all, a semiclassical treatment yields that the elec-
tromagnetic energy in the cavity is a smooth continuous function of
time. However, the quantum model indicates that the energy will be
emitted into the cavity discontinuously, in discrete quanta (photons),
and the expected number of photons in the cavity is much less than
unity. Furthermore, Derbenev made numerous approximations in his
analysis. We employed the same approximations in our calculations
using quantum operators. Derbenev’s approximations are very strict,
and are highly unlikely to be realized in practical or foreseeable designs
of storage rings. If we consider realistic designs of storage rings, we
conclude that the use of a resonant rf cavity for polarimetry is likely to
be even more difficult than our findings above indicate.

Connections were established with important results in quantum
optics [5,6], such as the Jaynes–Cummings model [3]. In particular,
using the approximations made by Derbenev [1], the quantum model
can be solved exactly, to derive the eigenstates and eigenvalues of
the spin–cavity interaction. The resulting so-called ‘vacuum Rabi os-
cillations’ played a central role in our analysis. As a side issue, we
demonstrated how the widely employed (and successful) semiclassical
treatment of spin flippers and rf depolarizers may be obtained from the
quantum model, via the use of coherent states to describe the cavity
electromagnetic field.
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