Mott Target Ladder for Commissioning

Mott Team Meeting

J. Grames

November 20, 2013

Downstream Face

! Ideal $=7.90 "=$ Chamber CL to target port flange		
! POS	STEPS	DWG
!	SURVEY-DT-1527	39300-E-0215-REVA
!	(\#)	(inches)
!		
16	-108535	0.000
15	-101835	1.425
14	-95180	2.850
13	-88503	4.275
12	-81900	5.700
11	-75425	7.125
10	-68875	8.550
9	-62225	9.975
8	-55550	11.400
7	-48875	12.825
6	-42325	14.250
5	-35860	15.675
4	-29275	17.100
3	-22625	18.525
2	-15925	19.950
1	-9285	21.375

Jefferson Lab Alignment Group Data Transmittal

TO: J.Grames
DATE: 13 Nov 2013
FROM: Chris Gould

Checked:

\#: L1527

DETAILS:

M:lalign\DATAIStep2BUINJ131031B
Below are the results of the recent Mott Can and Ladder survey. Locations for the can are reported in CEBAF coordinates and in a beam following system where positive Z is downstream, positive Y is up and a positive X is to the beam left. Locations for the ladder are reported relative to CEBAF coordinates, beam following and relative to the MOTT Can. Yaw angles are given relative to ideal and are reported in degrees. A positive Yaw angle is counter-clockwise from above, a positive pitch angle is counter-clockwise from the beam right side and a positive roll angle is clockwise looking downstream. The step count for the ideal position of each target is also given where target 1 is the bottom most target and 16 is the top most target. It should also be noted that while fiducializing the target ladder 6 degrees of backlash in the yaw direction was observed.

Ladder is +0.2 mm high relative to Mott can, so all targets need to be inserted 0.2 mm further.

This translates into (4.6349 kilosteps / 25.4 mm) * $0.2 \mathrm{~mm}=36$ steps
Note 1: This means stepper changes from X to $X-36$
Note 2: error on linear fit is 38 steps

Target Ladder Expert Values Updated

FSD Bit Tested (Motion = Fault)

