Bubble Chamber Planning Meeting

24 July 2013

Agenda

- 1. Schedule
- 2. Design of beamline, radiator and dump
- 3. Bubble Chamber work at Argonne
- 4. Simulation and Background
- 5. Absolute beam energy
- 6. Safety

$^{12}C(\alpha, \gamma)^{16}O$ S-Factor

Statistical Error: dominated by background subtraction from ${}^{18}O(\gamma, \alpha){}^{14}C$ (depletion = 5,000)

Systematic Error: dominated by absolute beam energy (= 0.2%)

Schedule

> 12GeV CEBAF Commissioning:

	Start	End
Period I	2013-11-04	2013-12-20
SAD I	2014-01-02	2014-02-05
Period II	2014-02-05	2014-05-07
SAD II	2014-05-07	2014-09-22
Period III	2014-09-22	2014-12-19
SAD III	2015-01-02	2015-02-13
Period IV	2015-02-13	2015-06-12

Bubble Chamber Activities:

- Install beamline, radiator and dump
- Commission beamline, radiator and dump
- Install Bubble Chamber
- Commission Bubble Chamber
- Physics run

Design of beamline, Radiator & Dump

- Need to design new beamline to replace PEPPo beamline and increase the distance between the two BPMs
- Radiator: 0.02 mm and 0.1 mm Copper
- Electron Dump: 2kW dump (10 MeV, 200 μA)
- Photon Dump

Simulation

Two programs:

- I. GEANT4
- II. FLUKA
- Both use models that calculate wrong cross sections. Both do not allow for user's cross sections. Suggestion:
 - I. Use GEANT4 and FLUKA to produce the photon spectrum impinging on the super heated liquid.
 - II. Fold the above photon spectrum with our cross sections in stand-alone codes.
- Both GEANT4 and FLUKA are good in neutron tracking. Still need to check the neutron cross sections.

Background

Must measure:

- I. ${}^{17}O(\gamma, \alpha){}^{13}C$, enrichment=10%
- II. ${}^{18}O(\gamma, \alpha){}^{14}C$, enrichment=10%

➤ Rates:

- I. ${}^{17}O(\gamma, \alpha){}^{13}C$, depletion=5,000
- II. ${}^{18}O(\gamma, \alpha){}^{14}C$, depletion=5,000
- III. ¹⁴N(γ ,p)¹³C, detection eff.= 10⁻⁸

Natural Abundance:

- I. ¹⁷O: 0.038%
- II. ¹⁸O: 0.205%
- > Still need to study $^{17}O(\gamma,n)^{16}O, ...$

Safety

- High pressure system
- > Super heated liquid: N_2O or CO_2
- Buffer liquid: Mercury

Running in FEL?

Absolute Beam Energy: FEL can measure the energy with a precision of 0.4%. However, it could be very hard to improve (?)

Required Systems:

- I. Personnel Safety System (PSS)
- II. Liquid helium and RF
- III. Gun Laser
- IV. Staff

Planning Meeting

Do we want to meet every two weeks?

Wednesday 3:00 – 5:00 pm?