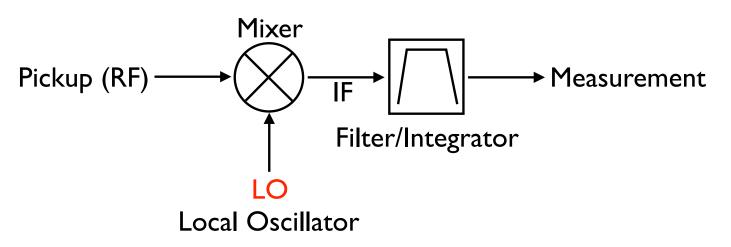
Digital Beam Charge Processor

Joe Camilleri^(*), James Egelhoff, Yury Kolomensky, Yuan Mei LBNL/UC Berkeley

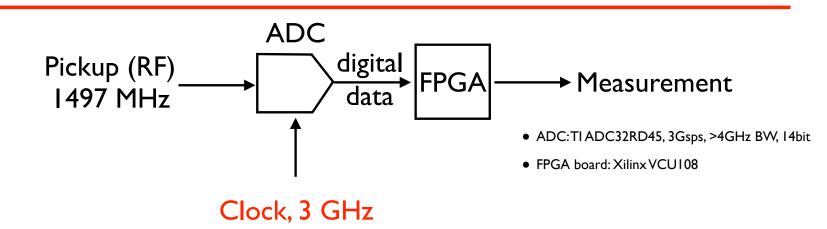
(*) Now at Virginia Tech

Beam Instrumentation Challenge


- MOLLER science goals require precision measurement of (false) beam-induced asymmetries
 - Rapid flips of the longitudinal polarization of electrons (2 kHz helicity flip rate)
 - Beam charge asymmetry measurement with 10ppm resolution ($\sigma_Q/Q < 14$ ppm)
 - Current state of the art (Qweak): ~65ppm for 1 kHz pulse pair rate
 - Limitation (most likely): LO amplitude and phase noise
- New idea to address outstanding beam instrumentation issues for MOLLER:
 - High-resolution, fully digital beam charge monitor
- LDRD at LBNL (FY18 and FY19)

Beam Instrumentation Challenge

Parameter	Jitter requirement	Achieved	Resolution requirement	Achieved
Charge	< 1000 ppm	500 ppm	< 10 ppm	65 ppm
Energy	< 108 ppm	$6.5 \mathrm{ppm}$		
Position	$< 47 \ \mu { m m}$	$48 \ \mu \mathrm{m}$	$< 3 \; \mu { m m}$	$2.4~\mu{ m m}$
Angle	$< 4.7 \ \mu rad$	1.4 μ rad		


Beam Charge Monitor

- Measure (monitor) electron beam charge on a pulse-pair basis
- Pick up 1497 MHz RF signal from BCM cavity
 - Expect ~-5 dBm signal for 60 μ A current (check)
- Single pulse duration: 0.5 ms
- Requirement: Pulse-pair charge asymmetry measurement uncertainty <10 ppm; σ_Q/Q <14 ppm
- Traditional method: cavity/stripline induction +RF mixing (down conversion)

• Resolution limited by the amplitude and phase fluctuation of LO

New approach: digital RF receiver

- High sampling rate (>~3Gsps) and high dynamic range (>10bits) ADCs that are capable of direct RF sampling
- Amplitude fluctuation of LO doesn't contribute. Phase noise is small; modest contribution to the final uncertainly
- Filtering and decimation done digitally in FPGA
- Output: decimated data stream, integrated in 0.5 msec windows in FPGA or offline


- Digitizer (white) noise $\frac{\sigma_Q}{Q} = 2^{-\text{ENOB}+3/2} \cdot \frac{1}{\sqrt{f_s \Delta T}} \rightarrow \text{ENOB} > 8 \text{ bits}$
- Thermal noise: -130 dB @ 2 kHz for beam signal of -12 dBm $\rightarrow \sigma_Q/Q \sim 0.3$ ppm
- Phase noise (uncorrelated time jitter, though mindful of I/f contributions):

$$\frac{\sigma_Q}{Q} \sim \frac{\pi f \sigma_t}{\sqrt{f_s \Delta T}} \rightarrow \sigma_t < 3.6 \text{ psec}$$

• Spec of $\sigma_Q/Q < 14$ ppm achievable with currently available hardware

BCM Digital Receiver Prototype

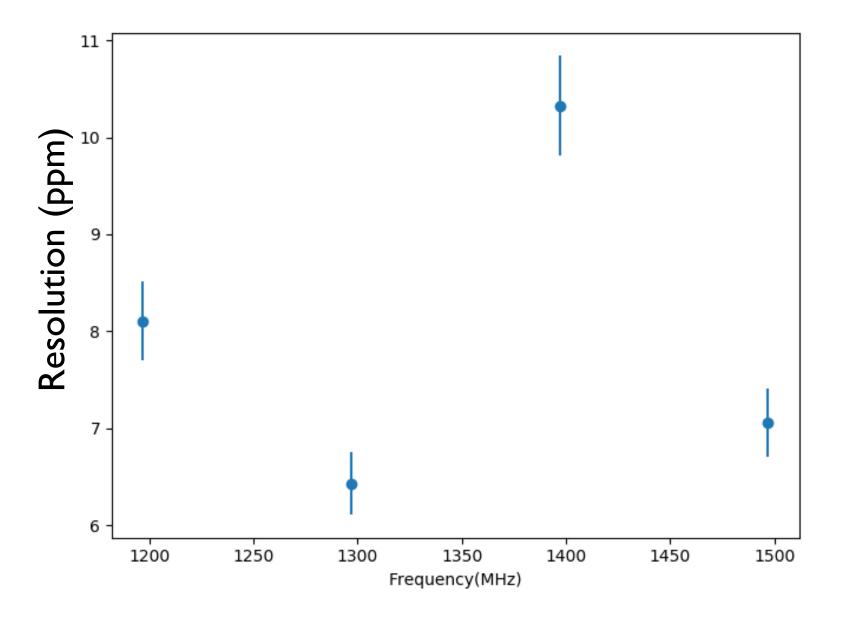
- LDRD at LBNL
 - FY18: prototyping, bench tests
 - FY19: full hardware/firmware implementation, beam tests
- Prototype based in TI ADC32RD45 evaluation board and ADC capture card; stream raw data to disk (~200 msec → 2 GB)
 - 14-bit ADC but limited to 12 bits by JESD204B interface with capture card
- Offline analysis (DDC, averaging, asymmetry analysis)

RF Clock

- ERA Instruments ERASynth+: softwareconfigurable, low-jitter RF generator; ovencontrolled oscillator
- Use two phase-locked generators
 - 3 GHz clock
 - RF signal (<1.5 GHz)
 - Split signal between 2 input channels of the ADC (typically 11 dBm/channel)

Adequate for 10 ppm resolution

Figure 27: ERASynth+ Phase Noise Performance at 3 GHz RF Output


Performance

Asymmetry difference (ppm), 1 kHz pairs 1497 MHz, +9 dBm input signal 3000 Msps, 12 bit digitizer

Asymmetry difference A_A-A_B [ppm]

Performance

Next Steps

- Build a real chassis
 - 4-channel unit (2 independent ADC boards, 2 channels each)
 - Basic RF front end (amplifier/attenuator, bandpass)
 - Built-in clock (ERASynth+), phase locked to external reference (TBD)
 - Readout into single FGPA board (VCU108) for DSP, stream decimated data out
 - Hardware should be ready in ~month, firmware development ~I-2 months
- Evaluate performance on the bench; ready for beam tests in early 2019

Questions for this group

- When (and where) to schedule beam test
 - Dedicated vs parasitic
 - Available hardware (BCMs)
 - Expected signal power (beam current)
 - Interface to the accelerator clock distrubution
 - Frequency, phase noise of the clock ?
- Interfaces to the parity/Hall A DAQ
 - Clocks, helicity windows, data stream synchronization ?
 - Hardware interfaces (copper vs optical ?)

Backup