Generation and Characterization of Magnetized Bunched Electron Beam from DC Photogun for JLEIC Cooler

Laboratory Directed Research and Development (LDRD) Proposal

Riad Suleiman and Matt Poelker

June 28, 2017

JLEIC Magnetized Beam LDRD

- Generate magnetized electron beam and measure its properties
- Explore impact of cathode solenoid on photogun operation
- Simulations and measurements will provide insights on ways to optimize JLEIC electron cooler and help design appropriate source
- JLab will have direct experience magnetizing high current electron beam

Magnetized Electron Source at GTS

K₂CsSb Photocathode Preparation Chamber, Gun, Solenoid and Beamline are all operational

K₂CsSb Quantum Efficiency ~ 6%

- K₂CsSb grown with a mask – limit photocathode active area (3 mm diameter) to reduce beam halo
- Active area can be offset from electrostatic center
- 5 mm active area also available
- Entire photocathode can be activated too

High Current Magnetized Beam

Delivered 0.5 mA dc

Plan for 5 mA by end of summer

Measuring Beam Magnetization

Use slit and viewscreens to measure mechanical angular momentum:

$$\langle L \rangle = 2p_z \frac{\sigma_1 \sigma_2 \sin \phi}{D} = eB_z a_o^2$$

 B_z : solenoid field at photocathode a_0 : laser rms size Φ : rotation (sheering) angle

0 G at photocathode

1088 G at photocathode

Work of M. Mamun

TE₀₁₁ Cavity: non-invasive technique

- > New non-invasive technique to measure beam magnetization
- Filed inventor disclosure entitled "Non-invasive RF Cavity to Measure Beam Magnetization"

Summary and Outlook

- K₂CsSb Photocathode Preparation Chamber, Gun, Solenoid and Beamline are all operational
- Photogun operates reliably at 300 kV
- Cathode solenoid can trigger field emission but we have learned how to prevent this
- Have successfully magnetized electron beam and measured rotation angle
- Continue to characterize magnetized beam and cross check measurements with simulation
- Install RF pulsed laser
- Demonstrate 32 mA
- Build and install TE₀₁₁ cavity at GTS to measure beam magnetization in collaboration with Brock and SRF Institute

Next: Funded Phase-II SBIR with Xelera, to develop rf-pulsed dc high voltage thermionic gun to be installed at GTS in 2019

Budget

Materials and Supplies:

- 1. TE_{011} copper pillbox cavity
- 2. Three skew quadrupoles
- 3. Laser components
- 4. Travel to conferences

Labor:

- 1. Mechanical designer for TE_{011} cavity
- 2. ASTRA and GPT modeling (Fay Hannon)
- 3. Postdoc

Sajini Wijethunga, student from ODU started her Ph.D. thesis on magnetized beam (advisor: Jean Delayen, funded by 75% JLab + 25% ODU)

	Total	\$891,027
As of today, spent 65%	FY18	\$285,966
	FY17	\$265,850
	FY16	\$339,211

Questions to be addressed in your June 28th presentation

Could the authors please provide a reasonably detailed spreadsheet of 2018 purchases, categorized in terms of, for example, the main items to be purchased and their cost?

In accordance with the rules for LDRD funded projects, it is essential that the project be fully completed in 2018; review your plan and milestones to ensure this will be the case.

- LDRD Goals and Purchases (this year remaining direct money \$10k parts and \$54k labor):
 - 1. 32 mA HV Power Supply: cables ordered complete
 - 2. RF Laser: Diode laser ordered complete
 - 3. High Bunch Laser: mirrors, synchronization electronics \$10k
 - Round to Flat Beam Transformation: three skew quads need to design and procure – \$9k (use labor money)
 - 5. TE₀₁₁ Cavity: requested \$20k in 2018

MILESTONES

Year 1 Milestones

• Q1 (Oct, Nov, Dec):

- 1. HV condition gun to 350 kV and build K_2CsSb preparation chamber \mathbf{V}
- 2. Design beamline, locate magnets and diagnostics at optimum positions \mathbf{V}
- Design cathode solenoid magnet ✓

• Q2 (Jan, Feb, Mar):

- 1. Connect existing beamline to gun and instrument beamline \mathbf{V}
- 2. Procure cathode solenoid magnet \mathbf{V}
- 3. Design and procure slits \mathbf{V}

• Q3 (Apr, May, Jun):

- 1. Commission exiting beamline with beam \mathbf{V}
- Measure photocathode lifetime at 5 1 mA and 350 350 kV (nonmagnetized) ✓
- 3. Relocate new spare CEBAF dogleg power supply to GTS ☑
- Q4 (Jul, Aug, Sep):
 - Install cathode solenoid magnet
 - 2. Assemble new beamline and commission with beam ☑

Year 2 Milestones

• Q1 (Oct, Nov, Dec):

- 1. Generate magnetized beam ☑
- 2. Measure mechanical angular momentum vs magnetization and laser size on photocathode ☑
- 3. Benchmark simulation against measurements \mathbf{V}

• Q2 (Jan, Feb, Mar):

- 1. Measure mechanical angular momentum vs magnetization and laser size
- 2. Benchmark simulation against measurements

• Q3 (Apr, May, Jun):

- 1. Measure photocathode lifetime vs magnetization at 5 mA and 300 kV
- 2. Study beam halo and beam loss vs magnetization
- 3. Design TE_{011} cavity to measure beam magnetization

• Q4 (Jul, Aug, Sep):

- 1. Measure mechanical angular momentum vs bunch charge
- Generate very high currents magnetized beam and study beam transport vs electron bunch charge
- 3. Design and procure three skew guads

Year 3 Milestones

• Q1 (Oct, Nov, Dec):

- 1. Commission TE_{011} cavity with beam
- 2. Install three skew quads
- 3. Generate flat beam with skew quads RTFB Transformer and measure horizontal and vertical emittances using slit method

• Q2 (Jan, Feb, Mar):

- 1. Measure RTFB transformation versus electron bunch charge
- 2. Use simulation to quantify how good or complete RTFB transform

• Q3 (Apr, May, Jun):

1. Change to HV Supply of 32 mA and 200 kV

• Q4 (Jul, Aug, Sep):

- 1. Measure photocathode lifetime vs magnetization at 32 mA and 200 kV
- 2. Study beam halo and beam loss vs magnetization