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INTRODUCTION

It is explained how the CEBAF 123 MeV injection line
can serve as one big Stern-Gerlach (S-G) polarimeter mea-
suring the polarization state of the injected beam. No phys-
ical changes to the line are required and (though not opti-
mal) beam position monitors (BPMs) already present in the
line can be used to detect the S-G signals.1

The historical Stern-Gerlach apparatus used a uniform
magnetic field (to orient the spins) with quadrupole mag-
netic field superimposed (to deflect opposite spins oppo-
sitely) and a neutral, somewhat mono-energetic, unpolar-
ized, neutral atomic beam of spin 1/2 particles. For highly-
monochromatic, already-polarized beams produced by Jef-
ferson Lab electron guns, the uniform magnetic field has
become superfluous, and every quadrupole in the injection
line produces polarization-dependent S-G deflection. The
absence of constant magnetic field on the unperturbed elec-
tron orbit has the further effect of guaranteeing zero electric
field at the electron’s instantaneous position in its own rest
frame.

The original experiment used neutral silver atoms with
approximate velocity 500 m/s and produced angular deflec-
tions of about ∆θAg ≈ 0.005 radians. from this we can es-
timate the Stern-Gerlach deflections of 6 MeV electrons in
the quadrupoles of a modern-day accelerator. In both cases
the transverse force is due to the magnetic moment of a sin-
gle electron. Magnets in the CEBAF beam line are much
like the original (1923) Stern-Gerlach magnets, though the
original magnetic field gradient×length product was sev-
eral times larger[1] than for typical quadrupoles in the CE-
BAF injection line2. But, for simplicity, we compare the
deflections of a silver atoms and a free electron in identical
magnets.

The transverse force is the same irrespective of whether
the electron is free or a valence electron in the silver
atom. An anticipated deflection of electrons with γe = 12
can be estimated from formulas for the angular deflection,
∆p⊥/pz , for the ratio of force durations, ve/vAg , and for

1Work supported by DOE contract DE-AC05-06OR23177
2Some parameters for the original Stern-Gerlach experiment were:

central field 0.1 T, peak field gradient 100 T/m, T = 1350◦K, magnet
length 0.035 m, distance from magnet center to detecting film 0.02 m.

the ratio of longitudinal momenta, pAg/pe:

∆p⊥
pz

= Force
duration

pz

ve

vAg
=

3× 108

500
= 6× 105

pAg

pe
=
MAg

me

γAg

γe

vAg

ve

≈ 108× 2000me

me

1

12

500

3× 108
≈ 0.03. (1)

In the same magnet we therefore expect 6 MeV electron
deflections of order

∆θ6MeV e ≈ 0.005× 0.03

6× 105
≈ 2.5× 10−10 radians.

With drift lengths in the injection line being of order 1 me-
ter, and allowing for the somewhat smaller field integrals,
this suggests that the Ängstrom, which is equal to 10−10 m,
is an appropriate unit for expressing the S-G betatron am-
plitudes to be expected.

For a dedicated reconfiguration of the beamline optics,
the S-G deflection could be enhanced substantially. But, to
minimize operational interuption, we first assume no beam-
line changes whatsoever, so that investigations can be al-
most entirely parasitic. Because the expected amplitudes
are so small, we also consider reducing the beam energy
to 6 MeV or less (from 123 MeV) throughout the line, by
detuning the intermediate linac section, to increase the S-G
effect.

Dual CEBAF electron beam guns produce superimposed
0.25 GHz (bunch separation 4 ns) electron beams for which
the polarization states and the bunch phases can be ad-
justed independently. For example, the (linear) polariza-
tions can be opposite and the bunch arrival times inter-
leaved so that (once superimposed) the bunch spacings are
2 ns and the bunch polarizations alternate between plus
and minus. The effect of this beam preparation is to pro-
duce a bunch charge repetition frequency of 0.5 GHz dif-
ferent from the bunch polarization frequency of 0.25 GHz.
This difference will make it possible to distinguish Stern-
Gerlach-induced bunch deflections from spurious charge-
induced excitations.

Transverse bunch displacements produce narrow band
BPM signals proportional to the fr Fourier frequency
components of transverse beam displacement. Because
linac bunches are short there can be significant resonator
response at each of the strong low order harmonics of
the 0.25 GHz bunch polarization frequency. The pro-
posed S-G responses are centered at odd harmonics, fr =
0.25, 0.75, 1.25 GHz, but not at even harmonics, such as



the 0.5 GHz bunch charge frequency. This greatly improves
the rejection of spurious “background” bunch displacement
correlated with bunch charge. For further background re-
jection the polarization amplitudes are modulated at a low,
perhaps 1 KHz frequency, which shifts the S-G response to
sidebands of the central S-G frequencies.

STERN-GERLACH DEFLECTION OF A
RELATIVISTIC PARTICLE

We are primarily interested in the Stern-Gerlach deflec-
tion caused by the passage of a point particle with ve-
locity vẑ and rest frame, transversely-polarized magnetic
dipole moment vector µ∗xx̂, through a DC quadrupole, of
length Lq , that is stationary in the laboratory frameK. The
purpose of this section is to relate the Stern-Gerlach and
Lorentz force deflections caused by a quadrupole in a trans-
fer line such as the CEBAF injection line.

It is valid to formulate the calculation with an impul-
sive approximation, in which the integrated momentum im-
parted to a particle passing through a quadrupole is small
enough to justify neglecting the spatial displacement oc-
curring during the encounter and keeping track of only the
angular deflection.3 One also notes the particle speed is
conserved because it is only a longitudinal component of
force that can change the particle speed. The Stern-Gerlach
deflection in the electron’s instantaneous rest frame can
simply be copied from well-established non-relativistic
formalism[2]; the transverse force is given by

F ′x = µ∗x
∂B′x
∂x′

. (2)

Following notation of Conte[3], the rest frame magnetic
moment is symbolized by µ∗ to stress that it constant, ir-
respective of whatever reference frame is being discussed.
A transverse spin in the laboratory is (by definition, in the
Bargmann, Michel, Telegdi (BMT) picture) also transverse
in the particle rest frame. And, concerning the present cal-
culation, there is no issue of “Lorentz transformation of
spins or magnetic moments”, since the S-G deflection is to
be calculated in a frame of reference in which the electron
remains non-relativistic. In this frame formula (2) has been
thoroughly confirmed by experiment.

As viewed in the K ′ rest frame, the passing magnet is
Lorentz-contracted to length L′q = Lq/γ, the time spent by
the particle in the magnetic field region is L′q/v, and the
integrated, rest frame transverse momentum impulse is

∆p′x = F ′x
L′q
v

=
µ∗x
v

∂

∂x′
(B′xL

′
q). (3)

3For anomalous electron angular momentum G = 0.00116 the spin
precession angle occurring during angular deflection ∆θ of approximately
Geγ∆θ/(2π) is negligible. All spins are taken to be purely horizontal
(in the x-direction) in both the laboratory and the electron rest frame.
Similarly there is no longitudinal magnetic field in either frame. On-axis
in a magnetic quadrupole there is neither magnetic, nor electric field in
either the K or the K’ frame. Once an electron is displaced by the S-G
force, there is non-zero magnetic field in the K frame, and hence non-zero
electric field in the K’ frame, but this can be neglected.

To determine B′x the laboratory magnetic field Bx needs to
be Lorentz transformed to the moving frame K ′. This pro-
duces both an electric and a magnetic field, but it is only
the magnetic field that produces Stern-Gerlach displace-
ment in the particle’s rest frame. The Lorentz transforma-
tion yields[4] B′x = γBx. We conclude that the product
BxLq = B′xL

′
q is the same in laboratory and rest frames.

Since the displacement x = x′ and the transverse momen-
tum component ∆p′x = ∆p′x are also invariant for Lorentz
transformation along the z axis, Eq. (3) becomes

∆pSG
x = Fx

Lq

v
=
µ∗x
v
Lq

∂Bx

∂x
, (4)

and similarly for ∆pSG
y . The “SG” superscripts have been

introduced to distinguish Stern-Gerlach deflections from
Lorentz force deflections.

The conclusion so far is that formula (4), derived histor-
ically using non-relativistic kinematics, is valid even for
relativistic particle speed. Of course, because v cannot
exceed c, the transverse force saturates as the particle be-
comes relativistic. Since the particle momentum continues
to increase proportional to γ, the S-G angular deflection in
a fixed excitation quadrupole field falls as 1/γ.

The magnetic field components of an erect DC
quadrupole are given by

Bx = ky, By = kx, where k =
∂Bx

∂y
=
∂By

∂x
, (5)

and |∂Bx/∂x| = |∂Bx/∂y|. The quadrupole field in the
original Stern-Gerlach experiment would, in modern accel-
erator terminology, be referred to as “skew”. The strong
quadrupoles in the CEBAF line under consideration are
“erect”. To simplify the paper we simply ignore this dis-
tinction, possibly introducing

√
2 errors in some formulas.

Treating a quadrupole of length Lq as a thin lens, the
Lorentz force on a point particle of mass m and charge e
traveling with velocity vẑ through the quadrupole imparts
momentum

∆p = F(x, y) ∆t = −eLqk(yŷ − xx̂). (6)

The relativistic longitudinal particle momentum of the par-
ticle is p = γmv and its (small) angular deflections are
given by

∆θxx̂ + ∆θyŷ =
∆p

p
= qxxx̂ + qyyŷ, (7)

where inverse focal lengths qx = 1/fx and qy = 1/fy of
the quadrupole satisfy

qx =
eLqk

p
=
Lqc∂By/∂x

pc/e
= −qy. (8)

The Stern-Gerlach angular deflections are given by

∆θSG
x =

∆pSG
x

p
=
µ∗xLqk

pv
, (9)



and similarly for y. Comparing with Eqs. (8), one sees
that the Stern-Gerlach deflection in a quadrupole is strictly
proportional to the inverse focal lengths of the quadrupole;

∆θSG
x =

µ∗x
ecβ

qx, and ∆θSG
y = −

µ∗y
ecβ

qy, (10)

These formulas4 are boxed to emphasize their universal ap-
plicability to all cases of polarized beams passing through
quadrupoles. For all practical cases β ≈ 1.

As mentioned previously, the S-G deflection in a fixed
excitation quadrupole magnet is proportional to 1/γ. Yet,
superficially, deflection formulas (10) show no explicit de-
pendence on γ (as, for example, the denominator factor 12,
in Eq. (1)). This is only because the angular deflections are
expressed in terms of quadrupole inverse focal lengths. For
a given quadrupole at fixed quadrupole excitation, the in-
verse focal length scales as 1/γ. Inverse focal lengths have
the effect of “hiding” the 1/γ Stern-Gerlach deflection de-
pendence, which comes from the beam stiffness.

With µ∗x and µ∗y differing from the Bohr magnetron µB

only by sin θ and cos θ factors respectively, a convenient
ratio of physical constants for the evaluation is

µB

ec
= 1.932× 10−13 m. (11)

Numerically, Eq. (10) yields Stern-Gerlach-induced,
Courant-Snyder betatron amplitudes proportional to√

βx ∆θSG
x = (1.932× 10−13 m)

√
βx qx, (12)

and similarly for y. The
√
β factor has been included be-

cause the transverse displacement ∆xj at downstream lo-
cation “j” caused by angular displacement ∆θi at upstream
location “i” is given (in either plane) by

∆j =
√
βjβi qi sin(ψj − ψi). (13)

where ψj − ψi is the betatron phase advance from “i” to
“j”, and ∆j stands for either ∆xj or ∆yj . Sample ∆j-
values for locations in the CEBAF injection line are listed
in Tables 1 and 2.

The quadrupole deflection formulas just derived are next
evaluated numerically for the CEBAF injection line.

BEAM LINE APPARATUS AND OPTICS
CEBAF beamline beta functions are shown in Figure 1.

To facilitate the interpretation of S-G deflections the only

4A private communication from S. Mane declares that, for Eqs. (10)
to become correct, both right hand sides need to be multiplied by a factor
1/γ, thereby weakening the deflection by a factor 1/γ. For 6 GeV elec-
trons, even with this 12-fold reduction, detection of the Stern-Gerlach de-
flection should still be possible. But a 1/γ reduction factor would make
Stern-Gerlach polarimetry impractical in high energy electron rings. In
contemplating this connundrum it is important to keep in mind, as ex-
plained in the text, and explained to Mane, that one factor of 1/γ is “hid-
den” by the fact that the quadrupole strength has been expressed as an
inverse focal length.
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Figure 1: Beta functions for the current 123 MeV injection
line optics. Points are plotted only at current quadrupole,
BPM, and beam charge monitor (BCM) locations.

points plotted are at the locations of quadrupoles, BPMs,
or beam charge monitors (BCMs).

To illustrate the sort of calculations required, the S-G
signals to be expected at each BPM position during routine
(alternating polarization) CEBAF 123 Mev electron injec-
tion line operation, are now to be calculated for a “proof-of-
principle” test. Once successful, this test should motivate
the development of a passive (non-destructive) form of high
analyzing power, precision polarimetry. Table 1 shows
the integrated S-G responses at all available BPMs. The
columns give real and imaginary parts of phasor sums of
the contributions from all quadrupoles upstream of the par-
ticular BPM. Table 2 gives the phasor contributions from
individual quadrupoles for the case of just one of the BPMs,
(IPM0R07).

Table 1: Accumulated S-G betatron responses at all
beamling BPMs. For one particular BPM, namely
IPM0R07 spelled-out betatron contributions from its up-
stream quadrupoles are given in Table 2.

s BPM label <(ax) =(ax) <(ay) =(ay) K
m Eq.(13) Eq.(13) MeV

3.38 IPM0L02 -0.15 -0.02 -0.15 -0.02 6
9.14 IPM0L03 -1.80 -1.16 -2.62 2.27 6
12.43 IPM0L04 6.41 0.63 1.57 -2.15 6
22.25 IPM0L05 -0.25 0.94 -1.32 -1.18 6
31.80 IPM0L06 1.89 1.47 1.55 -0.87 6
32.95 IPM0L06A -0.24 1.70 0.45 0.19 6
34.01 IPM0L07 -2.04 0.99 -0.07 -0.11 6
35.08 IPM0L08 -1.79 -0.95 0.71 -0.48 123
36.14 IPM0L09 -0.02 -1.24 1.82 0.68 123
37.21 IPM0L10 0.56 -0.12 0.62 2.43 123
41.66 IPM0R01 1.90 -1.29 1.90 -4.25 123
44.50 IPM0R02 -1.05 4.58 1.41 3.16 123
54.17 IPM0R03 -9.12 -3.64 0.10 1.73 123
59.85 IPM0R04 -0.90 0.72 3.93 -3.46 123
65.54 IPM0R05 -7.51 -0.57 -2.92 -1.13 123
71.22 IPM0R06 -1.30 -0.07 -0.41 5.80 123
76.91 IPM0R07 -8.64 4.05 3.01 0.39 123
86.58 IPM0R08 0.33 -4.24 -1.33 4.52 123
89.41 IPM0R09 0.58 2.25 -2.83 -4.97 123



Table 2: Individual betatron amplitude contributions from
each listed quadrupole to a particular BPM (namely
IPM0R07). The coherent sum of these amplitudes produces
the accumulated amplitude listed for IPM0R07) in Table 1.

quad label squad <(ax) =(ax) <(ay) =(ay) K
MQJ0L02 3.19 0.33 -3.60 -0.04 0.47 6

MQJ0L02A 3.80 2.06 4.66 -0.17 -0.39 6
MQJ0L03 9.62 -0.27 0.17 -0.59 0.36 6
MQJ0L04 12.77 0.15 -0.00 0.02 -0.00 6
MQD0L06 32.17 -0.04 0.02 1.29 -0.65 123
MQB0L07 34.38 0.63 0.70 -0.10 -0.11 123
MQB0L08 35.44 0.92 -0.04 -0.68 0.03 123
MQB0L09 36.51 -0.80 1.09 1.16 -1.58 123
MQB0L10 37.58 -0.18 -0.68 0.25 0.93 123
MQD0R01 41.99 -1.13 -1.14 2.17 2.19 123
MQD0R02 44.82 0.00 -0.95 -0.00 0.87 123
MQD0R03 54.49 -5.24 1.02 1.75 -0.34 123
MQD0R04 60.18 0.11 0.53 -0.60 -2.79 123
MQD0R05 65.86 -5.43 1.27 -1.70 0.40 123
MQD0R06 71.55 0.25 0.99 0.25 0.99 123

S-G SPECIFIC BEAM PREPARATION
The smallness of the S-G signal, especially relative to

spurious charge-sensitive cavity responses, makes it crit-
ical for the polarized beam to be prepared for maximum
rejectability of spurious background.

Recent International Linear Collider (ILC)-motivated
BPM performance investigations[5][6][7] are relevant to
our proposed Stern-Gerlach (S-G) detection experiment.
Resonant beam position detection relies on two TM cav-
ities. The charge-sensitive cavity (needed to normalize the
charge) is tuned to resonate in a transversely symmetric
mode at the bunch frequency. The position-sensitive cavity
is tuned to resonate in a transversely anti-symmetric mode
at the bunch frequency.

(By a Bohr argument based on the Heisenberg uncer-
tainty principle) it would not be feasible to locate a single
mono-energy electron with usefully small transverse accu-
racy. This makes the electron charge e unnaturally small
for present purposes. For comparison we define a “stan-
dard macro-charge” as the charge of Ne = 1010 electrons,
which is a typical number of electrons in each bunch in
an ILC BPM prototype test. Classical (rather than quan-
tum) mechanics is adequate for treating the centroid mo-
tion of such a large number of electrons, even as regards
their mean spin orientation.

A CEBAF beam is CW, with beam current of, say,
160µA, which corresponds to a current of about 105 (just-
defined) macro-charges per second. For S-G detection the
Ångstrom is a convenient transverse length unit for S-G de-
tection. For successful ILC operation the transverse beam
positions need to be controlled to about ±10 Å.

The bunch structures of the CEBAF injector (123 MeV,
160µA, 0.5 GHz) and the Accelerator Test Facility (ATF)
at the KEK laboratory (1.3 Gev, Nee = 1010e macro-
charge at 5 Hz pulse rate) are very different. We ignore
the energy difference, which is thought to be unimportant
for the comparison. For a typical cavity resonator quality
factor of Qr = 104 and frequency of 1 GHz, the cavity
discharging time is far shorter than the ATF repetition pe-

riod. This makes it appropriate to treat the ATF resonant
response on a pulse-by-pulse basis. Essentially different in
time structure, the CEBAF resonator response is continu-
ous wave (CW) with the previously-defined macro-charges
passing through the cavity at 100 kHz rate.

In a linac beam line, the fact that each bunch passes an S-
G sensitive BPM only once, makes it hard to arrange for the
polarization of successive bunches to be different. But, as
already explained, high frequency bunch polarization mod-
ulation frequency is made possible by superposing stag-
gered bunch trains having different polarizations. Figure 2
illustrates our planned, superimposed CEBAF bunch train.
Bunches are labeled A in one of two pre-superimposed
bunch trains and B in the other. Time domain plots are
on the left, frequency spectra on the right. The foreground
S-G betatron signal oscillates at (harmonics of) 0.25 GHz,
while the background charge signal oscillates at (harmon-
ics of) 0.5 GHz. For resonant cavity BPMs the S-G detector
would be tuned to a harmonic of the 0.25 GHz fundamen-
tal, for example to the third or fifth harmonic, for more
convenient (smaller) cavity dimensions.

We assume the polarization of the superimposed A and
B beams are also modulated with (low) frequency ωm.
The time domain, i p(t) current-polarization products of
the separate A and B beams are then given by

i pA(t) =

∞∑
n=−∞

δ(t− nT0)(A+ a cosωmt) (14)

i pB(t) =

∞∑
n=−∞

δ(t− T0/2− nT0)(A− a cosωmt).

and are plotted on the left in Figure 2. The modulation am-
plitude a is drawn much smaller in magnitude than the un-
modulated polarization amplitudeA. But over-modulation,
with values of a as great as 2A, to maximize the side-band
amplitudes, might be practical. There are two essential dif-
ferences between the A and B beams. The beam pulses
are shifted in time by one half cycle and the sign of the
modulation is reversed. The modulation frequency ωm, for
which the frequency is expected to be in about 1 kHz, is
exaggerated by many orders of magnitude in this figure,
since f0 = 1/T0 is about 0.75 GHz. Champeney[8] gives
the A-beam, cosine-modulated current-polarization Fourier
transform IPA(ω) to be

I PA(ω) =

∞∑
n=−∞

2π

T0

(
Aδ
(
ω − n2π

T0

)
+ (15)

+
a

2
δ
(
ω − n 2π

T0
+ ωm

)
+
a

2
δ
(
ω − n 2π

T0
− ωm

))
.

The Fourier transform of the B-beam, sine-modulated,
current-polarization Fourier transform is obtained by mul-
tiplying by the time-shift factor, e−iT0ω/2 for which, when
it is moved inside the summation, its ω factor can be re-
placed by 2πn/T0, due to the delta function having argu-
ment ω − 2πn/T0. The resulting (−1)n factor causes the



sign alternation exhibited in the middle right graph in Fig-
ure 2. Because the modulation frequency is so low the cor-
responding time shift of the modulation is being neglected.
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Figure 2: Time domain and frequency domain beam pulses
for the A and B staggered, modulated-polarization beams.
It is current-weighted polarization spectra that are plotted
in these figures. The beam current spectra themselves can
be obtained from the figures by suppressing the modulation
sidebands. In the A+B spectra the odd harmonics of beam
current cancel, effectively doubling the fundamental cur-
rent frequency from 0.25 GHz to 0.5 GHz. But the current-
weighted polarization side bands survive as odd harmonics
of 0.25 GHz.

SIGNAL LEVELS AND BACKGROUND
REJECTION

According to Eqs. (10) the transverse displacement mag-
nitude ∆ at distance L downstream of a quadrupole of
strength q is given by

∆ = (1.932× 10−13 m)qL
e.g.
≈ (2× 10−13 m)× 1/m× 10m = 0.02 Å. (16)

The installed CEBAF beam position monitors are
“antenna BPM’s”, each consisting of four short (ap-
proximately 4 cm long), longitudinal, probe anten-
nas, symmetrically-located azimuthally, within cylindrical
beam tubes. Not themselves being narrow band, these
BPMs are more noise-sensitive than resonant BPMs. But
they have the important advantages of responding to both
symmetric and anti-symmetric modes over large frequency
range, for example at both 0.75 GHz and 1.0 GHz, with the
responses easily separable by narrow band external filter-
ing.

Barry[9] gives the transverse impedance of standard CE-
BAF BPMs to be Z⊥ = 3800 V/m. Taking 200µA as a

satisfactory beam current, the corresponding BPM power
level would be

P ≈ (0.0002)2 × 3800× (0.02× 10−10)

= 3.0× 10−16 W = −125 dBm. (17)

At room temperature the thermal noise in a 1 Hz bandwidth
is given by

Pnoise = kT∆f = (1.38× 10−23J/K)× (293 K× 1 Hz

= 4.1× 10−21 W = −174 dBm (18)

This calculation suggests that the S-G signal level will be
large enough to be distinguishable from thermal noise.

A more serious impediment to S-G detection is spurious
cavity response to bunch charge rather than to bunch polar-
ization. We now review the procedures to be employed in
distinguishing S-G signals from background.
Centered cavity. Conventional BPM beam centering
relies on exact cavity centering for which, ideally, there
is no direct charge excitation at the position mode fre-
quency. Roughly speaking, the ILC BPM prototypes have
so far achieved absolute transverse position reproducibility
of ±15 nm, for bunch to bunch variation of beam bunches
containing Ne = 1010 electrons. This is roughly an order
of magnitude greater than (i.e. inferior to) their theoretical-
minimum expected resolution of ±1.8 nm. The authors
(persuasively) ascribe their BPM performance short-fall
primarily to error sources other than thermal noise, such
as instrument imperfections or cross-talk from spurious,
forbidden-mode response to bunch charge.

The “good news” to be drawn from the ILC ±1.8 nm
noise floor is that, with long time averaging, because of
the high average CEBAF beam current, coherent betatron
oscillation amplitudes as small as, say, 0.02 Å, can be ex-
pected to emerge from thermal noise, even with room tem-
perature detectors. The “bad news” is that there is little
reason to suppose that cavity-centering S-G selectivity (rel-
ative to spurious background excitation) can be improved
appreciably by increasing data collection times. Based
on this estimate, an S-G induced betatron amplitude of
0.02 Å, though distinguishable from thermal noise in a sin-
gle, carefully-centered, conventional resonant BPM, can be
expected to be dwarfed by a background/foreground ratio
of more than one thousand. This limitation is specific to
the beam position and beam charge signals occurring at the
same frequency, as in conventional beam position center-
ing.

Accuracies as small as ±20 Å should be achievable with
centered transverse resonant BPMs. We are striving to
measure betatron amplitudes 1000 times smaller. Mainly
we need to make the case that rejection of spurious BPM
signals caused by the beam charge (rather than the beam
polarization) can be improved by three orders of magni-
tude compared to their influence on currently achievable
transverse resonant BPM accuracy. The further selectivity
improvement factors to be expected are surveyed next.



Disjoint polarization and charge frequencies. As ex-
plained earlier, the polarized beam will be tailored so that
the bunch polarization and bunch charge frequencies are
different. In this condition the BPM cavity is sensitive to
polarization at one frequency (0.75 GHz) and to charge at
a different frequency (such as 0.5, or 1.0 GHz). Ideally, the
resulting frequency domain filtering will suppress the spu-
rious background response by many orders of magnitude.
More realistically, there will still be background response,
for example due to the small Fourier component of charge
excitation due to not-quite-cancelling beam A and beam B
currents.

Empirical beam steering to null “common mode” BPM
responses at both even and odd harmonics of 0.25 MHz
(which would all vanish for ideal beam preparation) is
especially useful for rejecting spurious background exci-
tation. This cancels both off-axis background excitation
at the fundamental beam charge frequency and charge-
imbalance background “leakage” from even harmonics to
odd harmonics, while preserving the foreground S-G re-
sponse differentially in the odd harmonics.

One can expect significant background/foreground sup-
pression from these common mode suppression and differ-
ential mode frequency domain filtering measures—perhaps
three orders of magnitude.
Shift of S-G signal to frequency sidebands. As ex-
plained previously, the effect of low frequency modulation
of the beam polarizations is to shift the S-G response to
sidebands of the central cavity resonance. To the extent
the beam currents are unaffected by this modulation, the
sideband response will provide a pure S-G signal. In prac-
tice the beam currents will, in fact, also be weakly mod-
ulated which will allow some background signal to leak
out to the side-band frequencies. Still one can expect sig-
nificant background/foreground suppression—perhaps two
orders of magnitude.
Multi-detector response modeling. Referring again to
the BPM listing, one notes that foreground S-G response
is being monitored, with various (well known) degrees of
sensitivity, in both x and y planes at 19 BPM locations. The
extent to which the beam charges are being low-frequency
modulated at the gun can be parameterized with a few pa-
rameters, such as 4, the main one describing charge imbal-
ance. Modulation of initial (low energy) beam angles will
also mimick S-G signals in individual BPMs. The corre-
sponding betatron amplitudes are adiabatically damped by
the subsequent acceleration, but they may remain signifi-
cant. But there is no reason to suppose that the downstream
sensitivity to starting beam conditions is correlated with S-
G sensitivity. If true, any spurious side-band responses can
be subtracted by a model fitted to match the total responses
at all BPMs. Perhaps two orders of magnitude selectivity
improvement can be achieved.
Lock-in signal detection. Though not mentioned pre-
viously, it is also true that the resonator responses will be
coherent with the beam bunch frequency. By lock-in de-
tection, the in-phase and out-of-phase S-G sideband deflec-

tions can be determined individually. As well as improving
noise rejection, this can serve to corroborate the response
model just described. Perhaps one more order of magni-
tude selectivity improvement can be achieved.

Multiplied together, the possibility of achieving eight or-
ders of magnitude rejection of spurious background has
been described. This seems conservatively greater than the
required three orders of magnitude indicated earlier. An-
other factor of 6 improvement might be achieved by lower-
ing the beam energy entering the transfer line from 6 MeV
to 1 MeV. This would be satisfactory for an initial proof of
principle, but would not be tolerable for eventual routine
polarimetry during production CEBAF running.
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