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ABSTRACT

In the absence of external forces, if the dynamics within an electron beam is

dominated by its angular momentum rather than other effects such as random thermal

motion or self Coulomb-repulsive force (i.e., space-charge force), the beam is said to

be angular-momentum-dominated. Such a beam can be directly applied to the field

of electron-cooling of heavy ions; or it can be manipulated into an electron beam

with large transverse emittance ratio, i.e., a flat beam. A flat beam is of interest for

high-energy electron-positron colliders or accelerator-based light sources.

An angular-momentum-dominated beam is generated at the Fermilab/NICADD

photoinjector Laboratory (FNPL) and is accelerated to an energy of 16 MeV. The

properties of such a beam is investigated systematically in experiment. The experi-

mental results are in very good agreement with analytical expectations and simulation

results. This lays a good foundation for the transformation of an angular-momentum-

dominated beam into a flat beam.

The round-to-flat beam transformer is composed of three skew quadrupoles. Based

on a good knowledge of the angular-momentum-dominated beam, the quadrupoles

are set to the proper strengths in order to apply a total torque which removes the

angular momentum, resulting in a flat beam. For bunch charge around 0.5 nC, an

emittance ratio of 100 ± 5 was measured, with the smaller normalized root-mean-

square emittance around 0.4 mm-mrad.

Effects limiting the flat-beam emittance ratio are investigated, such as the chro-

matic effects in the round-to-flat beam transformer, asymmetry in the initial angular-

momentum-dominated beam, and space-charge effects. The most important limiting

factor turns out to be the uncorrelated emittance growth caused by space charge

when the beam energy is low, for example, in the rf gun area. As a result of such

emittance growth prior to the round-to-flat beam transformer, the emittance ratio

achievable in simulation decreases from orders of thousands to hundreds.

Finally, factors that might spoil the smaller transverse emittance such as beamline

misalignments and dispersions caused by magnetic elements are discussed. The limit

of the emittance measurement system, such as camera resolution, is also studied.
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CHAPTER 1

SOME BASICS OF ACCELERATORS AND BEAMS

A particle accelerator is a machine that accelerates electrons, positrons, protons

or any other charged particles. A collection of particles with a preferred direction

of motion is a beam. The beam energy could be raised using electric fields, mostly

radio-frequency (rf) fields in modern accelerators. The start of an accelerator is the

particle source, sometimes also called a gun. An accelerating section follows the gun

to boost the energy to the desired level.

In this Chapter, we will first get familiar with the basic mathematical formalism

used in accelerator physics. We will also discuss several important concepts in beam

physics that are used extensively in this dissertation.

1.1 The coordinates

The common coordinate system used in linear accelerator physics is the Cartesian

system (x, y, z). The z coordinate coincides with the beam pipe, i.e., the particle

propagation direction, and is called the longitudinal coordinate. In contrast, x and y

are the transverse coordinates, with x being horizontal and y being vertical; (x, y, z)

forms a right-hand system.

The time derivatives of (x, y, z), usually noted by (ẋ, ẏ, ż) or (vx, vy, vz), are

the velocities of the particles. Particle momentum pi is given by γmvi (i = x, y

or z), where m is the rest mass of the particle, γ is the Lorentz factor given by

γ = 1/
√

1 − β2, β = v/c, v =
√∑

v2
i and c is the speed of light in vacuum. The

longitudinal velocity vz is normally much larger than the two transverse velocities vx

and vy. As a result, vz ≈ v, vz/c ≈ β. This is not true in the immediate region of

the particle source where particles have not yet gained significant acceleration in the

longitudinal direction.

As we will see, more extensively used are the derivatives of (x, y) with respect to

z, noted by x′, y′. It can be shown that x′ = vx/vz = px/pz, etc.

1
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1.2 Phase space, emittance, and brightness

The coordinates (x, px, y, py, z, pz) form a six-dimensional (6-D) phase space. Each

particle can be represented by a point in such a space. All particles in a beam will

occupy a volume.

A figure of merit of the beam quality in the (x, px) subspace is the normalized

root-mean-square (rms) beam emittance. For the following discussion, let’s assume

that 〈x〉 = 〈px〉 = 0, where “〈 〉” stands for taking the average value of all the N

particles, e.g., 〈x〉 =
( ∑N

i=1 xi
)
/N , etc.. The normalized rms beam emittance is

defined as [1, 2]:

εnx =
1

mc

√
〈x2〉〈p2x〉 − 〈xpx〉2, (1.1)

The value σx =
√
〈x2〉 is the rms beam size along the x-axis. In similar fashion, one

can define normalized rms emittance in (y, py) and (z, px) subspace as εny and εnz.

εnx is a measure of the phase space volume projected into the (x, px) subspace.

The product εnxεnyεnz is the volume of the 6-D phase space. Liouville’s theorem

states for noninteracting particles, the particle density, or the volume occupied by a

certain number of particles in the 6-D phase space, remains invariant [3]. As a result,

if there are no forces that couple x motion to the other directions, εnx is a constant

of motion.

Another common notation is the trace space with coordinates (x, x′, y, y′). If x′

is used instead of px in the above discussion, then the trace-space emittance, also

known as the unnormalized emittance, is defined as

εx =

√
〈x2〉〈x′2〉 − 〈xx′〉2 (1.2)

The relation between the unnormalized emittance [Eq. (1.2)] and the normalized

emittance [Eq. (1.1)] is discussed in detail in Ref. [4]. For higher energy with low

energy spread, we have

εx = εnx
mc

pz
≈ εnx

βγ
. (1.3)

Another figure of merit of a particle beam quality is its brightness. If only the
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transverse properties of the beam are considered, the differential brightness is defined

as [5]

dB =
d2I

dS dΩ
, (1.4)

where I is the beam current, S is the beam area in (x, y) space, and Ω is the beam

solid angle in (x′, y′) space. Hence the differential brightness is the beam density per

solid angle. Sometimes it is more useful to define the average brightness given by

B =
I

V4
(1.5)

where V4 =
∫ ∫

dSdΩ is the 4-D trace-space volume. Meanwhile, V4 is related to

the product of the two transverse rms beam emittances as defined in Eq. (1.2). The

brightness can thus be related to the rms emittances via

B = C I

εxεy
, (1.6)

where C is a constant determined by the beam distribution. As an example, for a

Gaussian beam, the peak brightness is given by:

BG
pk =

1

4π2

I

εxεy
. (1.7)

Another example of theoretical importance is the Kapchinsky-Vladimirsky (K-V)

distribution [6], in which the beam is confined to a 4-D ellipsoidal shell. The brightness

of a K-V-distributed beam is related to its emittances via

B =
2

π2

I

εxεy
. (1.8)

In view of Eq. (1.3), the normalized brightness is given by Bn = B/(βγ)2.
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1.3 Transfer matrix and beam matrix

Consider the transverse equation of motion of a particle in an accelerator:

u′′ +K(z)u = 0, (1.9)

where u can be either x or y, and K(z) is a function that describes the external field

in the beamline and usually is piecewise constant. Eq. (1.9) is also known as Hill’s

equation. Notice that there is no first derivative terms in Eq. (1.9), which indicates

that there is no dissipative force.

Suppose A(z) and B(z) are two independent solutions of Eq. (1.9) that satisfy the

following boundary conditions:

A (z0) = B′(z0) = 1,

A′(z0) = B (z0) = 0.

Any solution of Eq. (1.9) can be written as

u (z) = A (z)u(z0) +B (z)u′(z0),

u′(z) = A′(z)u(z0) +B′(z)u′(z0);

or in matrix formalism, as

U(z) = M(z|z0)U(z0), with U(z) =


u(z)

u′(z)


 , (1.10)

and

M(z|z0) =

[
A (z) B (z)

A′(z) B′(z)

]
. (1.11)

M(z|z0) is called the transfer matrix from z0 to z. Since there is no first-order

derivative term in Eq. (1.9), the determinant of M , which is the Wronskian, is unity.

By using the matrix formalism, the general properties of Eq. (1.9) are separated

from each particular solution since M depends only on the beamline elements between
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two points z0 and z [7]. The transfer matrix from z0 to z1, z2, · · · , zn−1, zn is the

product of the matrices of the sub-intervals:

M(zn|z0) = M(zn|zn−1) · · ·M(z2|z1)M(z1|z0). (1.12)

Consider an example where K is a constant k for z0 < z < z1. Eq. (1.9) becomes

u′′(z) + ku(z) = 0. (1.13)

For positive k, the transfer matrix is

M(z1|z0) =


 cosϕ sin ϕ√

k

−
√
k sinϕ cosϕ


 , with ϕ = (z1 − z0)

√
k . (1.14)

For negative k, we have

M(z1|z0) =


 coshϕ sinhϕ√

|k|√
|k| sinhϕ coshϕ


 , with ϕ = (z1 − z0)

√
|k| . (1.15)

For example, for a force-free drift space, we have k = 0 and

M(z|z0) =

[
1 z − z0

0 1

]
. (1.16)

For a quadrupole of length l = z − z0 and strength k, the transfer matrix is

given by either Eq. (1.14) or Eq. (1.15) depending on whether k is positive (focusing)

or negative (defocusing), respectively. In the case where the focal length f of the

quadrupole is large compared to its length l, the thin lens approximation applies.

Introducing 1/f = kl, we have

M =

[
1 0

−1/f 1

]
. (1.17)

So far we only considered 2 × 2 transfer matrices. A 4 × 4 transfer matrix can
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be introduced for propagating beam in the four trace-space coordinates (x, x′, y, y′).

This is useful when the motions in x and y degrees of freedom are coupled.

The equations of motion for a Hamiltonian system can be written as:

qi =
∂H

∂pi
, pi = −∂H

∂qi
, (1.18)

where H is the Hamiltonian of the system and qi = (x, y, z) are the coordinates and

pi are the conjugate momenta of qi. Given initial values qi0, pi0, a solution of the

following form at time t exists:

qi = qi(qi0, pi0, t), pi = pi(qi0, pi0, t). (1.19)

This may be viewed as a canonical transformation from (qi0, pi0) to (qi, pi).

The generalization of the 6× 6 transfer matrix for a non-linear transformation is:

M6 =




∂q1

∂q10
· · · ∂q1

∂p30
...

...
...

∂p3

∂q10
· · · ∂p3

∂p30


 . (1.20)

It can be shown that [7, 8, 9]

M̃6J6M6 = J6, (1.21)

where M̃6 is the transpose of M6, and J6 is given by

J6 =




J 0 0

0 J 0

0 0 J


 , (1.22)

with J being the 2 × 2 unit symplectic matrix

J =

[
0 1

−1 0

]
. (1.23)

A matrix that satisfies Eq. (1.21), such as M6, is called symplectic. In similar
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fashion, one can define a 4× 4 symplectic matrix M4 and a 2× 2 symplectic matrix

M2. For a 2 × 2 matrix, the symplectic condition is equivalent to the requirement

that the determinant of the matrix should be unity.

In 4-D phase space, (x, px, y, py) compose a set of canonical variables. If x′ =

px/pz ≈ px/p, y
′ = py/pz ≈ px/p, where p =

√
p2x + p2y + p2z, then for a conservative

system, the transfer matrix can be written as:

M4 = P−1M4P, with P =




1 0 0 0

0 p 0 0

0 0 1 0

0 0 0 p



. (1.24)

From Eq. (1.21) and Eq. (1.24), we have

M̃4J4M4 = J4, where J4 =

[
J 0

0 J

]
. (1.25)

Therefore the transfer matrix is symplectic. We will use the properties of a symplectic

4 × 4 matrix extensively in Section 3.2.

In the case of a linear transformation from zi to zf , we have

U(zf ) = M4U(zi), (1.26)

where U is the trace space coordinates of a particle given by

U =




x

x′

y

y′



, and M =




M11 M12 M13 M14

M21 M22 M23 M24

M31 M32 M33 M34

M41 M42 M43 M44



, (1.27)

where Mij = ∂Ui(zf )/∂Uj(zi) are the constants determined by the linear transforma-

tion. For example, the transfer matrix of a quadrupole in the thin lens approximation
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is

M =




1 0 0 0

− 1
f 1 0 0

0 0 1 0

0 0 1
f 1



. (1.28)

Now consider a packet of particles, called a bunch, the distribution of which is

centered at the origin of the 4-D trace space, i.e.,

∑
xi = 0,

∑
pxi = 0, etc.

The covariance matrix of U , called the beam matrix, is defined by

Σ = 〈UŨ〉 =




〈x2〉 〈xx′〉 〈xy〉 〈xy′〉
〈x′x〉 〈x′2〉 〈x′y〉 〈x′y′〉
〈yx〉 〈yx′〉 〈y2〉 〈yy′〉
〈y′x〉 〈y′x′〉 〈y′y〉 〈y′2〉



. (1.29)

We see that transverse rms emittances [see Eq. (1.2)] are given by the square-root of

the determinants of the 2 × 2 diagonal blocks. For example,

εx =

∣∣∣∣∣
〈x2〉 〈xx′〉
〈x′x〉 〈x′2〉

∣∣∣∣∣

0.5

. (1.30)

where “| |” is the determinant operator.

As a result of Eq. (1.26), the beam matrix propagates via

Σ(zf ) = MΣ(zi)M̃. (1.31)

If |M | = 1, we see that ε4D = εxεy is a constant of motion. If acceleration or

deceleration takes place, then |M | 6= 1 and the normalized 4-D rms emittance remains

a constant of motion.



9

1.4 Photocathode rf gun

1.4.1 Introduction

Free electrons can be obtained in many ways, such as by thermal emission from

a thermionic cathode, or photoemission via the photoelectric effect when laser light

shines on a photocathode. If the electron source of an accelerator incorporates a

photocathode, it is called a photocathode gun. Systems in which the photocathode

is directly inserted into an rf accelerating field is called an photocathode rf gun. The

start of a photoinjector is a photocathode gun, followed by a section of linear beamline

which incorporates accelerating structures, magnetic elements, and beam diagnostics,

etc.

The photocathode rf gun has several advantages that make it the choice of tech-

nology for high-brightness electron beams. First, the initial electron distribution,

both transversely and longitudinally, can be controlled via the photocathode drive-

laser. By tuning the drive laser parameters, the transverse beam emittance can be

optimized. Second, since ultra-short pulsed laser light is available, the electron bunch

length can be much smaller than the rf wavelength of the gun, hence eliminating the

need for complicated bunching schemes. Finally the charge density achieved with a

photocathode is of the order kA·cm−2, about two orders of magnitude higher than a

thermionic cathode [10].

Since the first photoinjector experiment at LANL in 1986 [11], the applications of

electron beams produced in photoinjectors range from free electron lasers (FELs) to

synchrotron light sources, high-energy electron-positron colliders, electron cooling of

other heavier ions (see Section 2.3.1) etc. The best normalized transverse emittance

achieved out of the gun for a bunch charge of 1 nC is ∼ 1 mm-mrad [12].

The main components of a photocathode rf gun include: photocathode, drive laser,

rf accelerating cavity with various number of rf cells, and solenoids surrounding the

cavity for beam focusing and phase-space manipulation. A sketch of a photocathode

rf gun with a 1.5-cell normal-conducting cavity is shown in Figure 1.1.

While the beam dynamics of a photoinjector is complicated and in many cases

needs to be studied numerically, there are some well-developed analytical theories,
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photocathode
laser

 RF gun

electron beam

Figure 1.1: Schematic of a 1.5-cell rf gun.

such as emittance compensation by Carlsten in 1988 [13], rf and space-charge effects

on the beam emittance by Kim in 1989 [14], particle motion in an rf photoinjector by

Serafini in 1995 [15], and envelope analysis of emittance compensation by Serafini and

Rosenzweig in 1997 [16]. These analytical models provide some preliminary guidance

a priori to numerical modeling.

1.4.2 Emittance growth from rf and space charge

Kim [14] calculated the emittance growth caused by the rf field curvature and

space charge analytically for a (n + 1/2)-cell rf gun. Starting with the electric field

on axis taken to be

Ez = E(z) cos kz sin(ωt+ φ0) (1.32)

where k = 2π/λ and λ is the rf wavelength, ω = ck and φ0 is the initial rf phase

at z = 0, t = 0, and assuming that Ez is independent of the transverse coordinates,

from Maxwell’s equations one obtains

Er =
r

2

∂Ez

∂z
, and cBθ =

r

2c

∂Ez

∂t
. (1.33)

The radial force is thus given by

Fr = e(Er − βcBθ). (1.34)
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Kim showed that the radial force can be written as

Fr = er
{
− 1

2c

d

dt

(
E(z) sin kz cos(ωt+ φ0)

)
− 1

2

( d

dz
E(z)

)
cos kz sin(ωt+ φ0)

+
β

2

( d

dz
E(z)

)
sin kz cos(ωt+ φ0)

}
.

(1.35)

The equation of radial motion is
dpr
dt

= Fr, (1.36)

where pr is the radial momentum. To calculate the emittance caused by the rf field,

we need to integrate Eq. (1.36) to get pr. The first term of Eq. (1.35) is a total time

derivative of an expression which vanishes at the photocathode and outside the cavity

exit, so its integral vanishes. The second and third terms are non-zero only at the

region where E(z) varies, such as at the cavity exit. Kim takes a step function for

E(z) at the cavity exit and finds the minimum normalized transverse emittance (in

Cartesian coordinates) from rf effects to be:

ε
rf
nx =

αk3σ2
xσ

2
z√

2
, (1.37)

where α = eE0

2mc2k
is a dimensionless parameter characterizing the rf field strength,

E0 is the peak accelerating field, and σx and σz are the transverse and longitudinal

rms beam sizes, respectively.

For the emittance growth caused by space charge, Kim notes that the space charge

force scales as

F =
1

γ2
f(γ) (1.38)

and the function f(γ) behaves as follows:

f(γ) ∼ O(1), γ ≫ A; (1.39)

fx ∼ O(γ) and fz ∼ O(γ2), 1 ≤ γ ≪ A; (1.40)

where A = σx/σz is the aspect ratio.

Integrating Eq. (1.36) over time, Kim obtained the emittance growth caused by
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space charge:

εscn,i =
π

4

1

αk sinφ0

I

I0
µi(A); i = x or z. (1.41)

Here I is the peak current, I0 = 4πǫ0mc
3/e = 17 kA the Alfvén current, ǫ0 the

permittivity of free space, e the electron charge, and µi(A) are dimensionless functions

that depend on the beam distribution. For a Gaussian distribution, Kim gave the

following approximations:

µx(A) =
1

3A+ 5
,

µz(A) =
1.1

1 + 4.5A+ 2.9A2
.

(1.42)

Eqs. (1.37) and (1.41) give an estimations of the emittance growths, assuming the

transverse position of the electrons to be constant. Therefore the emittance growths

are results of changes in transverse momenta.



CHAPTER 2

ANGULAR-MOMENTUM-DOMINATED ELECTRON

BEAMS AND THEIR APPLICATIONS

2.1 Angular-momentum-dominated electron beams

Several factors drive the bulk properties of an electron beam, such as space charge,

beam emittance, angular momentum, and external electromagnetic focusing. Beam

dynamics differs drastically when one factor dominates over the others; see Figure 2.1.

In (a), the beam is emittance-dominated and the electron motion is random; in (b),

the beam is angular-momentum-dominated and the electrons shear in a well defined

vortex pattern; in (c), the beam is space-charge-dominated; the electrons move out-

wards along the radial direction due to the repulsive collective Coulomb force within

the beam.

(a) (c)(b)

Figure 2.1: Motions of the electrons when the beam is dominated by (a) emittance,
(b) angular momentum or (c) space charge. Each dot represents an electron in (x, y)
space, and the arrow shows the magnitude and direction of the electron’s velocity.

The evolution of the transverse rms beam size of an electron bunch in a drift, i.e.,

in the absence of external electromagnetic forces, is described by the following rms

envelope equation [17]

σ′′ − K

4σ
− ε2u
σ3

− L2

σ3
= 0, (2.1)

13
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where σ is the transverse rms size, K = 2I
I0β3γ3 is the generalized perveance, I is the

absolute value of the instantaneous beam current, and I0 = 4πǫ0mc
3/e ≈ 17 kA is the

Alfvén current, εu is the uncorrelated transverse rms emittance, and L is related to

the average canonical angular momentum 〈L〉 (see Section 2.2) and the longitudinal

momentum pz of the beam via

L =
〈L〉
2pz

. (2.2)

The second, third, and fourth terms of Eq. (2.1) respectively represent the effects

due to space charge, emittance, and angular momentum. When the fourth term is

much greater than the second and the third term, the beam is said to be angular-

momentum-dominated.

If there is external electromagnetic linear focusing, an extra term in the form of

k0σ can be added to the envelope equation, where k0 is related to the strength of the

external focusing force.

2.2 Generation of angular-momentum-dominated

electron beams in a photocathode rf gun

The magnetic field on the photocathode should be avoided if the beam emittance

needs to be minimized. This can be seen from Eq. (2.1), where the canonical angular

momentum term L has the same effect on the beam envelope as the emittance εu.

However, the magnetic field is necessary to produce an angular-momentum-dominated

beam, as we will see below.

In a rotationally invariant system, the conservation of canonical angular momen-

tum L [18] states that

L = γmr2φ̇+
e

2π
Φ = const., (2.3)

where (r, φ, z) are the cylindrical coordinates, and Φ is the magnetic flux enclosed

inside a circle of radius r at a given location in z. Eq. (2.3) is also known as Busch’s

theorem [19]. At the photocathode, the average of the first term in Eq. (2.3) is zero

since 〈φ̇〉 = 0. The second term must not vanish in order to allow the beam to acquire

an angular momentum. Therefore an axial magnetic field on the cathode is required
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to generate an angular-momentum-dominated electron beam.

2.3 Applications of angular-momentum-dominated

electron beams

2.3.1 Electron cooling of heavy ions

A direct application of the angular-momentum-dominated beam is the electron

cooling of heavy-ion beams [20, 21, 22]. In such a scheme, a cold electron beam co-

propagates with the ion beam at the same average velocity. Collisions of ions with

electrons lead to a transfer of thermal motion from the ion to the electron beam. The

cooling efficiency can be greatly improved by using a “magnetized”, i.e., an angular-

momentum-dominated electron beam.

ion

e−

r
L

(a)

e−
ion(b)

Figure 2.2: Cooling of heavy ion beams using (a) magnetized electron beam; (b) non-
magnetized electron beam. The thicker (red) and thinner (blue) lines represent the
trajectories of an ion and an electron in the simplified picture.

In a simplified picture (see Figure 2.2), consider an ion and a magnetized electron

colliding with impact parameter ρ. Let the Larmor radius of the electron in the

magnetic field Bz be rL, given by

rL =
ve⊥
eBz

, (2.4)

where ve⊥ is the transverse velocity of the electron. For ρ > rL, the effective cooling

duration is determined by

τ ≈ ρ

v − ve‖
, (2.5)

where v and ve‖ are the longitudinal velocities of the ion and electron, respectively;
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while for non-magnetized electron beam, τ ≈ ρ/ve⊥. Since (v − ve‖) can be made

much smaller than ve⊥, the effective cooling duration can thus be increased by a

factor of ve⊥/(v − ve‖).

To summarize, as the ion beam and electron beam co-propagate, the electron-ion

effective interaction is increased by using an angular-momentum-dominated electron

beam, and the cooling rate is mainly determined by the longitudinal momentum

spread of the electron beam, which can be made much smaller than the transverse one.

In Ref. [23], an angular-momentum-dominated beam is proposed to be accelerated to

∼ 50 MeV and used for electron beam cooling of ion beams in the Relativistic Heavy

Ion Collider (RHIC).

2.3.2 Flat-beam generation

A flat electron beam, i.e. a beam with high transverse emittance ratio, can be

produced from an angular-momentum-dominated beam [24]. The technique con-

sists of manipulating an angular-momentum-dominated beam produced by a pho-

toinjector using the linear transformation described in Ref. [25]. A round-to-flat

beam transformer consisting of three skew quadrupoles and drift spaces is discussed

in Ref. [26]. The transformation removes the angular momentum and results in a

flat beam. A proof-of-principle flat-beam experiment was conducted at the Fermi-

lab/NICADD Photoinjector Laboratory (FNPL)1 and an emittance ratio of 50 was

reported [27, 28].

A flat beam is desired in an electron-positron linear collider, as well as in some

accelerator-based novel light sources.

For linear colliders

At the interaction point of a linear electron-positron collider, the particles in one

bunch passing through the opposite bunch are subject to a very strong transverse

electromagnetic focusing force. As a result, the particles bend and radiate. This

1. NICADD is an acronym for Northern Illinois Center for Accelerator and Detector Development.
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radiation is called “beamstrahlung” [29, 30]. As particles lose energy due to beam-

strahlung, a large energy spread is introduced in the center-of-mass collision energy.

Moreover, photons produced by beamstrahlung are sources of background in the de-

tector, as photons can convert into low-energy electron-positron or muon pairs, which

can lead to unacceptable levels of background in the detector.

For a Gaussian bunch, the beamstrahlung parameter is related to the rms beam

sizes σx, σy and σz through [29]

Υ =
5

6

Nr2eγ

ασz(σx + σy)
, (2.6)

where N is the number of particles per bunch, re is the classical electron radius, and

α is the fine structure constant. On the other hand, the geometrical luminosity of a

collider can be written as

L0 =
N2f

4πσxσy
, (2.7)

where f is the collision frequency.

Considering both Eq. (2.6) and Eq. (2.7), we can see that a flat beam with σx ≫ σy

at the interaction point helps to reduce the beamstrahlung effect while keeping the

luminosity high. For example, the TESLA2 500 GeV design has σx = 554 nm,

σy = 5.0 nm, and the corresponding normalized emittances are εnx = 10 mm-mrad,

εny = 0.03 mm-mrad.

The photoinjector production of a flat electron beam is attractive since it could

eliminate the need for an electron damping ring [24].

For light sources

For some accelerator-based light sources, a flat electron beam is beneficial. One

example is the Linac/Laser-Based Ultra-fast X-Ray Facility (LUX) project proposed

at Lawrence Berkeley National Laboratory [31, 32]. In this proposal, a flat beam

2. TESLA stands for TeV Energy Superconducting Linear Accelerator, which is a proposal for
a linear collider where both the electron and positron accelerators incorporate superconducting rf
technology.
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generated by a photoinjector is accelerated to ∼ 2.5 GeV and is used to generate ultra-

short X-ray pulses. First, the electron bunches receive a time-correlated vertical kick

in a dipole-mode cavity, introducing a correlation between the transverse momentum

amplitude of the electron and its longitudinal position within the bunch. When the

electron bunches radiate in the undulator downstream, they imprint such correlation

to the geometrical distribution of the X-ray pulses. The correlated X-ray pulses can

then by compressed using asymmetrically cut crystals [33]; see Figure 2.3.

q

a

Dy

Figure 2.3: Compression of X-ray pulse by using a asymmetrically cut crystal with
variable optical path length.

Let α be the angle between the crystal lattice plane and surface, and θ be the

Bragg angle, see Figure 2.3. The optical path length difference ∆l is related to the

pulse vertical height ∆y through

∆l =
2sinθ sinα

sin(θ + α)
∆y. (2.8)

The final X-ray pulse duration is related to the smaller transverse (usually vertical)

dimension of the flat electron beam. X-ray pulses of the duration 100 fs or less are

envisioned using this technique.

Recently, Smith-Purcell radiation [34] light sources have drawn interest, such as a

Smith-Purcell radiator [35] or an image charge undulator [36], in which a “sheet” beam
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e-

(a)

e-

(b)

Figure 2.4: Smith-Purcell radiation based light sources: (a) Smith-Purcell radiator;
(b) image charge undulator.

interacts with one or two planar metallic grating surfaces, as in Figure 2.4. A flat beam

can be used in this kind of configuration as its very small vertical emittance would

allow the beam to stay close to the grating surface over a long longitudinal distance,

therefore enhancing the beam-surface interaction. This enhancement shortens the

gain length for coherent radiation, making the use of a flat beam very attractive.



CHAPTER 3

PRINCIPLES OF ROUND-TO-FLAT BEAM

TRANSFORMATION

3.1 Introduction

In most of the existing photoinjectors, the drive-laser transverse profile is cylin-

drically symmetric. This property is inherited by the electrons emitted from the

cathode. Since other beamline elements, such as the rf gun and the solenoids around

it, are cylindrically symmetric to first order, the electron beam retains its cylindrical

characteristics. Furthermore, in order to deliver a high-brightness electron beam with

minimal transverse emittances, the magnetic field on the photocathode is tuned to

zero as explained in Section 2.2. So upon exiting the rf gun and the solenoidal field,

there is no coupling between the two transverse phase spaces. Therefore the natural

beam produced in a photoinjector is round and uncoupled in the two transverse trace

spaces (x, x′) and (y, y′). However, this kind of beam cannot be manipulated into a

flat beam. It is shown in Appendix A that “if a beam is uncoupled at the beginning

of a system, and the initial x and y emittances are equal, i.e., if εx0 = εy0, then at all

points downstream, the projected emittances εx1 and εy1 will also be equal to each

other” [9].

To produce a flat beam in a photoinjector, one might consider two different ap-

proaches. One way is to generate an asymmetric electron beam directly on the pho-

tocathode using a flat laser spot. This option was studied numerically by Rosenzweig

in the early nineties [37, 38]. However the smaller emittance of the asymmetric beam

obtained this way is below the requirement of some possible applications, and more

complicated rf accelerating structures might be necessary [39]. In this dissertation, we

adopt a simpler and more effective approach, i.e., introducing significant transverse

coupling to a cylindrically symmetric beam on the cathode and transforming such a

beam into a flat beam later. The coupling can be achieved by applying a large (e.g.,

of the order of 102−103 Gauss) longitudinal magnetic field on the photocathode. The

electron beam is born with a large canonical angular momentum which dominates the

20
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beam dynamics. Such a beam has the potential to be transformed into a flat beam

with high transverse emittance ratio. We call the beamline assembly which performs

such manipulation the round-to-flat beam transformer, or in short, the transformer.

Before we proceed with a more rigorous theory of flat-beam generation, it is in-

teresting to gain some insights through a simple-minded model [40]. Consider four

particles with the following coordinates of an angular-momentum-dominated beam:

U1,0 =




0

1

1

0



, U2,0 =




1

0

0

−1



, U3,0 =




0

−1

−1

0



, U4,0 =




−1

0

0

1




; (3.1)

see Figure 3.1 (a).

#4

#3

#2

#1

x

yy(a)
#4

#3

#2

#1

yy

x

(b)

Figure 3.1: Four electrons (#1, #2, #3, and #4) in an angular-momentum-dominated
electron beam [see (a)] are aligned diagonally after passing through the transformer,
inside which the (y, y′) coordinates are rotated by 90◦ comparing to (x, x′) [see (b)].

Let M be the transfer matrix of the transformer. If M is such that it rotates the

(y, y′) coordinates by 90◦ compared to (x, x′), i.e.,

M =




1 0 0 0

0 1 0 0

0 0 0 1

0 0 −1 0



, (3.2)
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then from Eq. (1.26), the coordinates of the four particles at the transformer exit are:

U1 =




0

1

0

−1



, U2 =




1

0

−1

0



, U3 =




0

−1

0

1



, U4 =




−1

0

1

0




; (3.3)

see Figure 3.1 (b). All the electrons on the dashed circle in Figure 3.1 (a) go through

similar changes, i.e.:

x0 = a cos θ

y0 = a sin θ

}
⇒

{
x = a cos θ = x0,

y = −a sin(θ + π/2) = −x0,
(3.4)

where a is the radius of the circle (a =
√

2), and θ is the angle of the radius with

respect to x-axis. We see that the round beam is made flat diagonally and it will

remain so in a free space since the electron velocities, if non-zero, are along the

diagonal line.

If one wishes to make the beam flat horizontally or vertically, the transformer can

be rotated by 45◦ around the z-axis.

In the following sections, we will see that a flat beam can be generated from

an angular-momentum-dominated beam using three quadrupoles separated by drifts.

The quadrupoles are skewed in order to have the beam flat horizontally or vertically.1

3.2 Beam matrix formulation

The theory of generating a flat beam from an incoming angular-momentum-

dominated beam is treated in several papers [24, 25, 41, 42]. In this section, we follow

the theoretical treatment based on the 4-D beam matrix presented in Ref. [42], in

which the round-to-flat beam transformation analysis was performed assuming that

the beam and the transport channel upstream of the transformer are cylindrically

1. A normal quadrupole focuses the beam either horizontally or vertically. Rotating a normal
quadrupole around z-axis by 45◦ results in a skew quadrupole. Therefore, a skew quadrupole focuses
the beam in the one of the diagonal directions in the transverse plane.



23

symmetric and that the particle dynamics is Hamiltonian.

We will specify the coordinates of a particle in transverse trace space by two

vectors:

X =

[
x

x′

]
and Y =

[
y

y′

]
. (3.5)

The corresponding 4 × 4 beam matrix is

Σ =

[
〈XX̃〉 〈XỸ 〉
〈Y X̃〉 〈Y Ỹ 〉

]
. (3.6)

Let R be the 4 × 4 rotation matrix:

R =

[
I · cos θ I · sin θ
−I · sin θ I · cos θ

]
, (3.7)

where I stands for the 2×2 identity matrix. The beam matrix is rotationally invariant

if

Σ = R · Σ ·R−1. (3.8)

From Eq. (3.8), we obtain

〈XX̃〉 cos2θ + 〈Y Ỹ 〉 sin2θ + (〈XỸ 〉 + 〈Y X̃〉) sinθ cosθ = 〈XX̃〉. (3.9)

Since the rotation angle θ is arbitrary, Eq. (3.9) leads to

〈XX̃〉 = 〈Y Ỹ 〉, (3.10)

〈XỸ 〉 = −〈Y X̃〉. (3.11)

Taking the transpose of both sides of Eq. (3.11)

˜〈XỸ 〉 = − ˜〈Y X̃〉 = −〈XỸ 〉, (3.12)
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we find that 〈XỸ 〉 is antisymmetric and can be written as

〈XỸ 〉 = LJ, (3.13)

where L is a constant related to the angular momentum L and longitudinal momen-

tum pz by

L = 〈xy′〉 = −〈x′y〉 =
L

2pz
, (3.14)

and J is the 2 × 2 unit symplectic matrix given by Eq. (1.23).

By expressing the beam matrix in the terms of Courant-Snyder parameters (also

known as Twiss parameters) α, β (see, for example, [43]), the general form of a round

beam matrix in (x, x′) or (y, y′) subspaces can be written as

〈XX̃〉 = 〈Y Ỹ 〉 = εT0, with T0 =


 β −α

−α 1+α2

β


 , (3.15)

where ε is the rms transverse emittance, and |T0| = 1.

Gathering Eq. (3.13) and Eq. (3.15), we may write the general form of a cylindri-

cally symmetric 4 × 4 beam matrix in the following convenient form:

Σ0 =

[
εT0 LJ
−LJ εT0

]
. (3.16)

Let M be the transfer matrix of the transformer which is symplectic. From

Eq. (1.31), the beam matrix at the exit of the transformer is

Σ = MΣ0M̃. (3.17)

Kim noticed two invariants associated with the symplectic transformation given

by Eq. (3.17) [42]:

I1 = ε4D =
√
|Σ|, (3.18)

I2(Σ) = −1
2Tr(J4ΣJ4Σ). (3.19)
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where “Tr” is the trace operator.

Suppose a proper transfer matrix M exists such that the beam matrix at the exit

of the transformer is block diagonalized,

Σ =

[
ε−T− 0

0 ε+T+

]
, with T± =


 β± −α±

−α±
1+α2

±

β±


 . (3.20)

Applying Eq. (3.18) to the symplectic transformation given by Eq. (3.17), we have

√
|Σ| =

√
|Σ0| ⇒ ε+ε− = ε2 − L2 (3.21)

It is easy to calculate the second invariant once we verify that

JT0,±JT0,± = −I, (3.22)

which leads to

J4Σ0J4Σ0 =

[
−(ε2 + L2)I 0

0 −(ε2 + L2)I

]
, and

J4ΣJ4Σ =

[
−ε−2I 0

0 −ε+2I

]
.

So from Eq. (3.19), we have

I2(Σ) = I2(Σ0) ⇒ ε+
2 + ε−2 = 2(ε2 + L2). (3.23)

Finally, the two transverse emittances can be derived from Eq. (3.21) and Eq. (3.23),

ε± = ε± L. (3.24)

Eq. (3.24) gives the two transverse emittances of a completely decoupled asymmetric

beam. One emittance (ε+) can be orders of magnitude higher than the other (ε−)

given properly chosen initial conditions such as ε and L.
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Our tasks remain to properly construct: (1) an input beam with beam matrix Σ0

and (2) a beam transformer with the symplectic transfer matrix M .

3.3 Conceptual design of experiment

Figure 3.2 shows the schematics of the flat-beam generation experiment. The

solenoidal coils around the rf gun produce the necessary axial magnetic field on the

cathode. The round-to-flat beam transformer is composed of three quadrupoles. The

quadrupoles are skewed, i.e., rotated around the z-axis by 45◦ so that the beam is

made flat horizontally or vertically instead of diagonally.

solenoids

cathode rf gun

accelerating structure SQ1 SQ3SQ2

beam transformer

Figure 3.2: Schematic layout of the beamline setup for flat-beam generation.

Consider an electron at the photocathode surface with coordinates given by Eq. (3.5).

Let Bc be the longitudinal magnetic field on the photocathode. At the exit of the

solenoidal field (Bz = 0), the changes in the phase space coordinates x′ and y′, ∆x′

and ∆y′, are given by (see Appendix B):

∆x′ = −κy, ∆y′ = +κx,

where κ = eBc
2pz

and x, y are assumed to be constant.

So the electron trace space coordinates become

X =

[
x

x′ − κy

]
, Y =

[
y

y′ + κx

]
. (3.25)
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Assuming there is no correlated moment at the photocathode surface (i.e. 〈xx′〉 =

〈xy〉 = · · · = 0), the beam matrix becomes

Σ0 =




σ2 0 0 κσ2

0 κ2σ2 + σ′2 −κσ2 0

0 −κσ2 σ2 0

κσ2 0 0 κ2σ2 + σ′2



, (3.26)

where σ2 = 〈x2〉 = 〈y2〉, σ′2 = 〈x′2〉 = 〈y′2〉.
Σ0 is in the form of Eq. (3.16) with the following identifications:

L = κσ2,

ε =
√
ε2u + L2, where εu = σσ′,

α = 0, β =
σ2

√
ε2u + L2

,

(3.27)

where εu can be interpreted as the uncorrelated transverse rms emittance.

From Eq. (3.24), the expected flat-beam emittances are

ε± =
√
ε2u + L2 ± L. (3.28)

For L ≫ εu, we have

ε+ = 2L, ε− =
ε2u
2L , and

ε+
ε−

≈
(

2L
εu

)2

. (3.29)

Now we have obtained the input beam matrix Σ0. The next step is to construct a

beam transformer with symplectic transfer matrix M that can block diagonalize Σ0.

In the following discussion, we will see that such a beam transformer can be made of

three skew quadrupoles separated by drift spaces [26].

The 4× 4 transfer matrix for three normal quadrupoles separated by drift spaces
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is of the following form:

MNQ =

[
A 0

0 B

]
. (3.30)

A 45◦ rotation transformation on MNQ gives the transfer matrix of the transformer:

M = R−1MNQR, (3.31)

where R is given by Eq. (3.7) with θ = 45◦. Carrying out the transformation, we

have

M =
1

2

[
A+ A−
A− A+

]
, with A± = A±B. (3.32)

If the beam matrix at the exit of the transformer given by Eq. (3.17) is block

diagonalized, the XY coupling components vanish:

ε(A+T0Ã− + A−T0Ã+) + L(A+JÃ+ − A−JÃ−) = 0. (3.33)

Try a solution to Eq. (3.33) with

A− = A+S, (3.34)

where S is symplectic. The second term of Eq. (3.33) vanishes because |S| = 1. The

first term also vanishes if

T0S̃ + ST0 = 0. (3.35)

Since T0 is symmetric, we have

ST0 = −T0S̃ = −S̃T0. (3.36)

Therefore ST0 is antisymmetric. On the other hand, since |T0| = |S| = 1, we have

ST0 = ±J . So

S = ±JT−1
0 = ±


 −α −β

1+α2

β α


 . (3.37)
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Comparing with Eq. (3.15), we see that S can be determined by the elements of

〈XX̃〉,

S =

[
S11 S12

S21 S22

]
= ±1

ε

[
Σ12 −Σ11

Σ22 −Σ12

]
. (3.38)

The 〈XX〉, 〈Y Y 〉 components of the beam matrix are:

2 ΣXX,Y Y = ε(A+T0Ã+ + A−T0Ã−) ∓ L(A+JÃ− − A−JÃ+). (3.39)

We note that ST0S̃ = T0, and JS̃ = −SJ = ±T0, depending on the sign of S in

Eq. (3.37).

If the positive sign in Eq. (3.37) is taken, the beam matrix at the exit of the

transformer is

Σ =

[
ε−T 0

0 ε+T

]
, with T =

1

2
A+T0Ã+ , (3.40)

where ε± is given by Eq. (3.24).

Notice that T is not necessarily diagonal even if T0 is. However, from the sym-

plectic conditions of M (see Appendix A), it follows that

|A+/2| = |A−/2|
|A+/2| + |A−/2| = 1

}
⇒ |A±| = 2 ⇒ |T | = 1. (3.41)

Therefore the two transverse emittances are indeed given by ε±.

If the negative sign in Eq. (3.37) is taken, the positions of ε− and ε+ in Eq. (3.40)

will be switched. So the choice of signs corresponds to the beam being made narrow

in either the x or y plane. For the following discussion, we choose the positive sign

of S.

Next, we will show that three skew quadrupoles are sufficient to produce a beam

whose transfer matrix satisfies Eq. (3.34).

The 2 × 2 transfer matrix for a normal quadrupole in thin lens approximation is

given by:

Q(q) =

[
1 0

q 1

]
, (3.42)
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where q is the quadrupole strength and q = 1/f , f being the focal length of the

quadrupole. In practical unit, q is given by

q[1/m] =
300g[T/m]leff[m]

pc[MeV]
, (3.43)

where p is the particle momentum, g the gradient of the magnetic field and leff is the

effective length of the quadrupole.

For a drift space of length d, the 2 × 2 transfer matrix is given by:

D(d) =

[
1 d

0 1

]
. (3.44)

Consider a beamline consisting of three normal quadrupoles, with the first two

separated by a drift of distance d2, and the last two by d3. Given the transfer matrix

A in (x, x′) phase space, the coordinates of an electron,

X0 =

[
x0

x′0

]
, (3.45)

is transformed via A ·X0 [see Eq. (1.26)], where A is

X0 =

[
x0

x′0

]
andA =

[
1 0

q3 1

][
1 d3

0 1

][
1 0

q2 1

][
1 d2

0 1

][
1 0

q1 1

]
. (3.46)

Let

Y0 =

[
y0

y′0

]
, (3.47)

Y0 is transformed via B · Y0, where B is:

B = A(−q1,−q2,−q3, d2, d3). (3.48)

Substituting Eq. (3.46) and Eq. (3.48) into Eq. (3.34), we obtain the following
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equations for qi(i = 1, 2, 3):

d2dTS12q
2
1 + d2S11 − S12 + d2dTS21 − dTS22 = 0,

d2d3(1 + S12q1)q2 + (S12 + dTS22) = 0,

[dTS11q1 + d3S11q2 + d2d3q2(S21 + q1) + 1]q3 + d2S11q1q2 + s21 + q1 + q2 = 0,

(3.49)

where Sij is the ijth element of matrix S [see Eq. (3.38)] and dT = d2+d3. Eq. (3.49)

yields

q1 = ±
√

−d2S11+S12−d2dT S21+dT S22

d2dT S12
,

q2 = − S12+dT S22

d2d3(1+S12q1)
,

q3 = − q1+q2+d2S11q1q2+s21

1+(dT q1+d3q2)S11+d2d3q2(S21+q1)
.

(3.50)

Notice that if the signs q1 and Sij are changed simultaneously, then q2 and q3 change

signs too. This corresponds to the case where the beam is flat in the other transverse

plane.

The solutions for qi were first derived by Edwards in Ref. [44] with S defined as

a “correlation” matrix, Sco, which relates X and Y through

Y = ScoX (3.51)

In the context here, Sco = S for zero thermal emittance [i.e., σ′ = 0 in Eq. (3.26)].

In Eq. (3.50), there are two sets of solutions for the skew quadrupole strength

settings. Both sets can remove the XY coupling. We will explore the difference of

these two sets of solutions numerically later in Section 3.5.

3.4 Removal of angular momentum

The angular momentum of the electron beam is removed when the beam is made

flat. Using the three-skew-quadrupole setup discussed in Section 3.3, we will now

discuss how the torque applied by the transformer removes the angular momentum.

Since a rotation of the coordinates will not change angular momentum, we will con-
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sider three normal quadrupoles for simplicity of the algebra.

Consider an electron with the following phase-space coordinates:

X0 =

[
x0

−κy0

]
and Y0 =

[
y0

κx0

]
, (3.52)

From Eq. (3.37) (and taking the positive sign), we have

S =

[
0 −1/κ

κ 0

]
. (3.53)

When the electron passes through a quadrupole, a magnetic force is applied to it.

For a normal quadrupole of strength q under the thin lens approximation [45],

Fx ∝ qxδ(t), Fy ∝ −qyδ(t). (3.54)

So the torque is given by

N(q) ∝ xFy − yFx = −2qxyδ(t), (3.55)

where x and y are the transverse coordinates of the electron at the quadrupole loca-

tion, which can be computed through the transfer matrix of the beamline elements.

Assuming the initial beam is cylindrically symmetric, we have 〈x0y0〉 = 0 . So

the change in average angular momentum caused by the first quadrupole −2q1〈x0y0〉
is zero.

The change in angular momentum caused by the second quadrupole is given by

−2q2x2y2, where x2 and y2 are given by [see Eq. (3.42) and Eq. (3.44)]

X2 = D(d2)Q(q1)X0, (3.56)

Y2 = D(d2)Q(−q1)Y0. (3.57)



33

The change in average angular momentum is then

∆〈L〉2 ∝ −2q2x2y2 = −4κσ2d2
2q1q2. (3.58)

Similarly, at the third quadrupole location we have

X3 = D(d3)Q(q2)D(d2)Q(q1)X0, (3.59)

Y3 = D(d3)Q(−q2)D(d2)Q(−q1)Y0. (3.60)

The change in average angular momentum caused by the third quadrupole is given

by

∆〈L〉3 ∝ −2q3x3y3 = −4κσ2q3(d
2
t q1 + d2

3q2 − d2
2d

2
3q1q

2
2). (3.61)

Finally combining Eq. (3.58) and Eq. (3.61), the average angular momentum of

the beam at the exit of the third quadrupole is given by:

〈L〉 ∝ 2κσ2 − 4κσ2d2
2q1q2 − 4κσ2q3(d

2
t q1 + d2

3q2 − d2
2d

2
3q1q

2
2). (3.62)

If 〈L〉 vanishes, then we have:

2d2
2q1q2 + 2q3(d

2
t q1 + d2

3q2 − d2
2d

2
3q1q

2
2) = 1. (3.63)

The q’s can be calculated using Eq. (3.50) where Sij is given in Eq. (3.53). For

simplicity of algebra, let d2 = d3 = d. We find

q1 = ±
√

1+2d2κ2

2d2 ,

q2 = −2(q1 + κ),

q3 = −q2
1−κ2

2κ .

(3.64)

Consequently, the left hand side of Eq. (3.63) yields

2q1q2d
2 + 2q3d

2(4q1 + q2 − d2q1q
2
2) = ... =

κ(q1 − κ)

κ(q1 − κ)
= 1. (3.65)
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So the average angular momentum of the flat beam is indeed removed after the

three properly tuned quadrupoles.

3.5 Two solutions of the round-to-flat beam transformer

In this section, we study numerically the two solutions for the transformer as

shown in Eq. (3.50). The numerical code Astra [46] is used to propagate beam

through the transformer. We model the beamline of the FNPL (see Chapter 5) in the

simulations using the parameters in Table 3.1.

Table 3.1: Parameters used to generate input beam for the transformer.

parameter value units
rms drive laser pulse (Gaussian shape) length 3 ps
width of energy distribution on cathode 0.75 eV
magnetic field on cathode Bz ∼935 Gauss
rms beam size on cathode σc 0.80 mm
bunch charge Q 0.50 nC
gun rf phase 25 degree
gun peak gradient 35 MV/m
booster cavity peak gradient 25 MV/m

From the beam distribution generated by Astra at the entrance of the trans-

former, the expected normalized flat-beam emittances from Eq. (3.24) are

ε+n = 35.26 mm-mrad, ε−n = 0.11 mm-mrad.

Using three skew quadrupoles located at z1 = 4.020 m, z2 = 4.371 m, z3 =

5.224 m, we start with the thin-lens approximation solutions of the skew quadrupole

strengths given by Eq. (3.50). The quadrupole strengths are then optimized using a

least-squares technique to minimize the x-y coupling terms of the beam matrix at the

exit of the transformer and are found to be (in the unit of 1/m):

Solution 1: q11 = −1.622, q12 = +2.074, q13 = −2.992;

Solution 2: q21 = +1.643, q22 = −2.574, q23 = −2.964.
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Putting these values into Astra, we found that the normalized flat-beam emittances

achieved at the end of the transformer are:

ε+n
1

= 35.25 mm-mrad, ε−n
1

= 0.12 mm-mrad;

ε+n
2

= 35.25 mm-mrad, ε−n
2

= 0.14 mm-mrad.

In Figure 3.3, the evolution of the rms beam emittances and sizes are plotted,

where the smaller emittance (εn−) is in the horizontal plane.

The beam distributions in (x, y), (x, x′), (y, y′) are plotted in Figure 3.4 and 3.5.

The solid lines are the analytical results of the trace-space rms ellipses.

Snapshots of the beam in (x, y) space immediately before and after each skew

quadrupole are shown in Figure 3.6 and Figure 3.7. The origin of each arrow is the

(x, y) position of an electron, and the direction and length of the arrow represent

the direction and magnitude of the electron velocity. The top (middle, bottom) two

snapshots are just before and after the first (second, third) skew quadrupole. If

we zoom in the bottom right panels of Figure 3.6 and Figure 3.7, we can see that

electrons are going inward vertically for the first solution, and outward vertically for

the second solution, as shown in Figure 3.8.

From Figure 3.3 we can see that the second solution (where the signs of the

quadrupole strength are + − −) leads to a rapidly diverging beam in the vertical

direction. So for the studies in the following two sections, the first solution for the

quadrupole strengths is chosen.
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Figure 3.3: (color) The evolution of the two transverse emittances (top) and rms beam
sizes (bottom) along the beamline for the two solutions of the three skew quadrupoles.
Solid/dashed lines represent the first/second solution in which the quadrupole signs
are - + -/+ - -.
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(left two figures) and + - - (right two figures) at the waist locations.
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CHAPTER 4

FACTORS LIMITING FLAT-BEAM PRODUCTION

For a beam without any uncorrelated transverse emittance and energy spread, the

flat-beam emittance ratio will be infinite, as indicated by Eq. (3.29). However, a real

electron beam produced in a photocathode rf gun has nonzero thermal emittance.

This is due to the residual thermal energy of the electrons when they are released

from the photocathode. For example, for a beam emitted from a cesium telluride

photocathode with a drive laser of 263 nm wavelength, the normalized thermal emit-

tance is around 0.85 mm mrad for rms beam size around 1 mm (see Section 5.2.1).

If γL ≈ 20 mm-mrad, the normalized flat-beam emittances are 40.02 and 0.02 mm-

mrad, leading to an emittance ratio on the order of thousands. Meanwhile, experi-

mentally the best measured emittance ratio is about a hundred (see Chapter 6). This

is partly because aside from thermal emittance, there are other effects that limit the

flat-beam production, such as chromatic effects, asymmetry of the input beam to

the round-to-flat beam transformer, and uncorrelated emittance growth caused by

nonlinear space charge. In the following sections, we will discuss these effects.

4.1 Chromatic effects

In the case of a beam with zero energy spread, the beam matrix could be block-

diagonalized upon proper choice of transfer matrix. However the beam generally

has an energy spread coming from both stochastic and correlated processes. In this

Section we address the related chromatic effects in the round-to-flat beam transfor-

mation.

As in Eq. (3.43), the strength of the quadrupole is related to the beam’s mo-

mentum. Consider an electron with a small relative momentum deviation δ = p−p0

p0

around the average beam momentum p0. The quadrupole strength for an electron

with momentum p = p0(1 + δ) is given by

q[1/m] =
q0

1 + δ
≈ q0(1 − δ + δ2), (4.1)

41
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where q0[1/m] =
300g[T/m]leff[m]

p0c[MeV]
[see Eq. (3.43)]. Correspondingly, the transfer matrix

MQ(q) may be written as:

MQ(q, δ) ≈
[

1 0

q0 1

]
+ δ

[
0 0

−q0 0

]
+ δ2

[
0 0

q0 0

]
, (4.2)

Matrices A in Eq. (3.46) and B in Eq. (3.48) become:

A ≈ A0 + δ∆A1 + δ2∆A2,

B ≈ B0 + δ∆B1 + δ2∆B2,

where the subscript “0” refers to the quadrupole strength for the particle with mo-

mentum p0, and ∆Ai (i = 1, 2) and ∆Bi are the modifications to the matrices A0

and B0 on the ith order of δ.

Define the following matrices:

∆±
i = ∆Ai ± ∆Bi,

∆i =
1

2

[
∆+

i ∆−
i

∆−
i ∆+

i

]
,

The transfer matrix of the skew-quadrupole channel takes the form

M(q1, q2, q3, d2, d3) ≈M0 + δ∆1 + δ2∆2, (4.3)

where

M0 =
1

2

[
A0 +B0 A0 −B0

A0 −B0 A0 +B0

]
. (4.4)

If the distribution of the relative momentum spread is centered on the average

energy, then 〈δ〉 vanishes. From Eq. (3.6) and Eq. (4.3), keeping only the first order

modification to the beam matrix, we have:

Σ ≈M0Σ0M̃0 + 〈δ2〉(M0Σ0∆̃2 + ∆1Σ0∆̃1 + ∆2Σ0M̃0). (4.5)
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As discussed in Section 3.2, the first term of Eq. (4.5) can be block diagonalized

given the proper transfer matrix M . The second term can be written as:

〈δ2〉(M0Σ0∆̃2 + ∆1Σ0∆̃1 + ∆2Σ0M̃0) = 〈δ2〉
[

∆11 ∆12

∆21 ∆22

]
. (4.6)

The two transverse emittances can be calculated as the square-roots of the de-

terminants of the top left and bottom right 2 × 2 sub-matrices of the beam matrix

expressed in Eq. (4.5). Finally, the modified transverse emittances due to chromatic

effects are

εx,y =

√
(ε∓ L)2 + 〈δ2〉2[|∆11 or 22| + (ε∓ L)2Tr(T∆

†
11 or 22)], (4.7)

where we used the fact that for two 2 × 2 matrices P and Q,

|P +Q| = |P | + |Q| + Tr(P †Q). (4.8)

Here P † = J−1P̃ J is the symplectic conjugate of P , with J given by Eq. (1.23).

Next, we compare our analytical calculation with simulations. As an example, we

choose the following operating parameters for the FNPL flat-beam experiment:

γ = 30, σc = 1.00 mm,

κ = 0.78 m-1, σ′ = 0.033 mrad,

d2 = 0.35 m, d3 = 0.85 m.

Using the thin-lens approximation, and including the thermal emittance, the skew-

quadrupole strengths are found from Eq. (3.50):

q1 = 1.729 m-1, q2 = −1.339 m-1, q1 = 0.628 m-1.

The flat-beam emittances at zero relative momentum spread are calculated to be:

εxn = 0.021 mm-mrad, ε
y
n = 46.82 mm-mrad.
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Figure 4.1: Chromatic effects on emittance ratio, horizontal and vertical emittances.
Solid line is obtained from Eq. (4.7). Dashed lines with markers are numerical results.
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The analytical calculations of two transverse emittances and their ratio as a func-

tion of relative momentum spread are compared with simulation results from Astra,

Elegant [47] and Synergia [48, 49]. These results are shown Figure 4.1. We can

see that the agreement between the analytical result and simulations is better for

lower relative momentum spreads. To explore further the difference, we track each

particle in the simulation through the transfer matrix for both the cases when the

quadrupoles are thick and thin lenses, using the transfer matrix as shown in Eq. (4.2).

We found that in the thick-lens case, the tracking results almost overlap with the sim-

ulation results, while the thin-lens approximation agrees quite well with the analytical

predictions. So the difference between analytical and simulation results could be ex-

plained by the fact that the thin-lens approximation is used in the analytical model

to compute the skew-quadrupole strengths.

Next we study chromatic effects for different spacing between skew quadrupoles

by changing d3 from 85 cm to 35 cm, which is another possibility in the beamline at

FNPL. Chromatic effects are studied in these two different cases using the analytical

model and ELEGANT simulation. The results are shown in Figure 4.2.

We see that if the spacings between skew quadrupoles are d2 = 0.35 m, d3 =

0.85 m, the two transverse emittance values, especially the smaller one, increase more

slowly as a function of relative momentum spread, and the emittance ratio decreases

more slowly as well. So to reduce chromatic effects, this skew-quadrupole spacing is

preferred.

Normally the rms energy spread in the beam is around 0.15%, and the chromatic

effects is not significant in the transformer.

4.2 Asymmetry in the incoming beam

Some elements in the beamline, such as the rf coupler (see Figure 5.5) to the

resonant cavities, could cause asymmetry in the beam before it enters the transformer.

In this case, the emittances of the flat beam are affected and the flat-beam emittance

ratio is lowered compared to the cylindrically symmetric beam case.
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Suppose y, y′ deviate from the symmetric beam by amounts ξ and ρ, respectively:

y → y + ξ,

y′ → y′ + ρ,

where ρ and ξ could be functions of y. The beam matrix at the entrance to the

transformer is

Σ0 = Σ∗
0 + ∆, (4.9)

where Σ∗
0 is of the form of Eq. (3.26) with L replaced by L∗ = κ(σ2 +µ) and can be

block diagonalized; ∆ is given by

∆ =




0 0 0 −κµ
0 0 −κµ 2κν

0 −κµ 4µ+ 〈ξ2〉 2(µ+ ν)

−κµ 2κν 2(µ+ ν) 〈ρ2〉



,

with µ = 1
2〈yξ〉, ν = 1

2〈yρ〉.
∆ introduces x− y phase-space coupling terms in the beam matrix at the exit of

the transformer. It also modifies the two transverse emittances of the flat beam.

As a numerical example, we use the initial beam matrix as used in previous Sec-

tion, and include ∆ induced by the rf gun coupler kick but propagated to the beam

waist location (see Appendix C):

∆ =




0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 ka2σ
2
z(σ2

y + h2)



,

where σy and σz are the rms beam sizes, h is the difference in the vertical direction

between the geometric and the electromagnetic axes due to the rf coupler kick, k

is the rf wave number, a1 = αksin(kl)sin(2kzm), a2 = αksin(kl)cos(2kzm), where

l = zf − zi, zm =
zf+zi

2 , zi and zf are the start and end of the coupler region, and



47

α = eE0

2mc2k
[14], where E0 is the gun’s peak accelerating field. Take the following

typical values at FNPL:

k = 27 m−1, α = 1.27,

σz = σy = 1 mm, ; h = 1 mm [50],

zi = 0.11 m, zf = 0.19 m, ε0y = 1 mm-mrad.

(4.10)

Then we have ∆44 = 7.65 × 10−10.

Applying Eq. (4.5) to the beam matrix given by Eq. (4.9), we obtain the beam

matrix at the exit of the transformer including both the coupler kick and chromatic

effects. For a beam with zero energy spread, we find ε−n = 2.21 × 10−2 mm-mrad,

which is about 3% higher than the value without the coupler effects, and the emittance

ratio drops by about 5%. In Figure 4.3, we plot the emittance ratio and horizontal

emittance as functions of fractional momentum spread. In conclusion, we find that

the asymmetry caused by the rf-gun coupler does not have much effect on flat-beam

emittances.
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Figure 4.2: Chromatic effects on emittance ratio (top), horizontal (middle) and ver-
tical (bottom) emittances for two cases of skew quadrupoles arrangements: case of
QD 124: d2 = 0.35 m, d3 = 0.85 m; case of QD 123: d2 = d3 = 0.35 m.
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4.3 Space-charge effects

The space-charge force is the collective Coulomb-repulsion force on a particle from

the other particles in the bunch or beam. As an example, let’s consider a continuous

beam moving along the z-axis with velocity vz, and v ≈ vz. Assuming the particle

density distribution ρ is uniform, then only the radial electrical field Er and azimuthal

magnetic field Bθ are nonvanishing. From Gauss’s law, we have

Er =
ρr

2ǫ0
, (4.11)

where ǫ0 is the permittivity of free space. From Ampere’s law, we have the magnetic

field

Bθ = v
µ0ρr

2
=
β

c
Er, (4.12)

where µ0 is the permeability of free space. The Lorentz force is

Fr = e(Er − βcBθ) =
eEr

γ2
. (4.13)

This is the space-charge force, which is in the radial direction in the example here.

We see that while the space-charge force is always repulsive, it scales like γ−2. This

is a result of the repulsive electrostatic force being increasingly compensated by the

magnetic field at higher energies. For bunched beams, there is also a longitudinal

component of space charge, and the scaling with respect to γ is more complicated;

see Ref. [14] for more discussions on space-charge effects in an rf gun and the corre-

sponding influence on beam emittance.

Next we will first present the space-charge effects in flat-beam generation as seen in

simulations. An analytical approach then follows, where we estimate the emittance

growth caused by the nonlinear space-charge force and the resulting limitation on

flat-beam production.
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4.3.1 Simulations

Using parameters in Table 3.1, several Astra simulations were performed with

the space charge force on and off, with the quadrupole strengths adjusted accordingly

in each case. An emittance ratio larger than 1200 can be achieved with the space

charge off from the start to the end of the beamline, compared to ∼ 290 in the case

of space charge on; see Figure 4.4.
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Figure 4.4: Effect of space charge on the emittance ratio.

Apart from space charge force on and off from start to end, an interesting case is

having the space charge on only prior to the transformer, as shown with the green

dash-dot line in Figure 4.4. We see it is closer to the case where space charge is on all

the way. It is thus reasonable to conclude that space charge effects are more important

prior to the round-to-flat transformer than during and/or after the transformer. This

correlates to the space-charge force being proportional to 1/γ2, since during/after the

transformer, the beam energy already reached its maximum in the beamline (≃ 17

MeV in the example shown here.). Space charge is especially important in the rf gun,

where kinetic energy increases from almost zero at the photocathode to about 4 MeV
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at the gun exit.

4.3.2 Analytics

In this Section we will discuss space-charge induced emittance growth in the rf

gun and its corresponding influence on flat-beam generation. Take, as a model, the

space charge force to be

Fr ∝ ar + br3, (4.14)

or in Cartesian coordinates,

Fx ∝ ax+ bx(x2 + y2),

Fy ∝ ay + by(x2 + y2).
(4.15)

The change to the dimensionless momentum px = γmvx
mc caused by Fx is

∆px =
1

mc

∫
Fxdt ≈ 1

mc2

∫
Fx

β
dz. (4.16)

Assuming the electron’s transverse coordinates remain constant in the rf gun, we can

write ∆px and ∆py as

∆px = ax+ bx3 + bxy2, ∆py = ay + by3 + bx2y. (4.17)

The phase-space coordinates [similar to the trace-space coordinates given in Eq. (B.4)]

become

X =

[
x

px − κny + ∆px

]
, Y =

[
y

py + κnx+ ∆py

]
, (4.18)

where κn = βγκ.

Assuming that 〈xpx〉 = 〈xpy〉 = · · · = 0, the normalized beam matrix is

Σn,sc =

[
εscn T

sc LnJ

−LnJ εscn T
sc

]
. (4.19)



53

where

ε2nsc = ε2n + b2Λ, Λ = σ2σ6 + σ4σ4 − σ8 − σ2
4. (4.20)

Here σ2 = 〈x2〉 = 〈y2〉, Ln = κnσ
2, εn = σ

√
px2 + (κnσ)2 [see Eq. (3.27)], and

σn = 〈xn〉 which depends on the beam distribution.

Immediately we see from Eq. (4.19) that the uncorrelated emittance increases

due to the nonlinear space-charge force through parameter b; however the parameter

Ln determined by the beam angular momentum remains unaffected. This can be

understood since the space-charge force, linear or not, is in the radial direction, hence

preserves the cylindrical symmetry, applies zero torque and thus conserves the angular

momentum.

The normalized flat-beam emittances change correspondingly from εn,± to εscn ,±:

ε±n =

√
εn2 + Ln

2 ± Ln ⇒ εscn
± =

√
εscn

2 + Ln
2 ± Ln. (4.21)

Next, we work out the case for a long beam whose transverse profile is Gaussian.

Write the charge density as

ρ(r) = ρ0e
− r2

2σ2
r ≈ ρ0(1 − r2

2σ2
r

+ · · · ), (4.22)

where ρ0 = Q
2πσ2

r lz
is the normalization factor, with Q and lz being the bunch charge

and length. Only the first two terms of the expansion are considered in the following

discussion. In reality, the transverse profile is taken to be a truncated Gaussian, and

we can write the charge density

ρ(r) = ρ0(1 − b∗
r2

2σ2
r
), (4.23)

where the factor b∗ can be determined from the beam distribution. In Figure 4.5, the

dots pertain to the observed ρ(r) for a typical beam used in flat-beam experiments,

and the solid line is a fit in the form of Eq. (4.23); b∗ is found to be 0.3 in this case.
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Figure 4.5: A typical beam density profile along radial direction as observed experi-
mentally (dots) at the photocathode. The solid line is a fit in the form of Eq. (4.23)
for the circled dots.

From Gauss’s law, we have the radial electric field given by

Er =
ρ0r

2ǫ0
(1 − b∗

r2

4σ2
r
) (4.24)

From Ampère’s law, we have the magnetic field Bθ = µ0vrρ
2 = β

cEr. The Lorentz

force is then given by:

Fr =
eEr

γ2
. (4.25)

Upon substituting Eq. (4.24), Eq. (4.25) into Eq. (4.17), we have:

∆px =
I

I0

I
σ2

r
x(1 − b∗

x2 + y2

4σ2
r

), (4.26)

where I =
∫ 1

βγ2 dz and I0 is the Alfvén current for electrons. To calculate the

integral I, let’s assume dγ
dz =

γf−1
zf

(see Fig. 4.6) where γf is the final Lorentz factor;

we have

I =
zf

γf − 1

∫
1

βγ2
dγ =

zf
γf − 1

(π
2
− sin−1 1

γf

)
. (4.27)
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In the case of a (n+1
2)-cell rf gun, we have zf =

(n+1/2)λ
2 , where λ is the rf wavelength.
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0
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8

z (m)

γ

ASTRA

γ = A*z+1

Figure 4.6: Energy gain inside a 1 + 1/2-cell rf gun. The dots are given by numerical
simulation and the solid line is a linear fit.

Eq. (4.26) is of the form Eq. (4.17) with the following identifications:

a =
I

I0

I
2σ2

, b = −b∗ I
I0

I
16σ4

, (4.28)

where we used σ2
r = 2σ2 for a cylindrically symmetric beam.

From the distribution given by Eq. (4.22), we obtain

Λ = 8σ8. (4.29)

Finally, substituting Eq. (4.28) and Eq. (4.29) into Eq. (4.21), we get

εscn =

√(
b∗
I

I0

I
4
√

2

)2
+ εn2. (4.30)

Take the following parameters: b∗ = 0.3, I = 35 A, γf = 9, zf ≈ 0.17 m for a 1.5-

cell 1.3 GHz rf gun, normalized thermal emittance εn = 1 mm-mrad. From Eq. (4.30),

we obtain εscn = 3.53 mm-mrad. If Ln = 20 mm-mrad, due to the nonlinear space-
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charge force, the smaller of the two transverse flat-beam emittances increases from

0.02 to 0.30 mm-mrad, and the corresponding emittance ratio drops from 2000 to

130.

In reality, particle transverse positions change under the space-charge and exter-

nal electromagnetic forces, so that the beam dynamics is much more complicated.

Nevertheless the discussion here shows that the emittance growth caused by nonlin-

ear space charge in the rf gun is the major limiting factor on achieving a flat beam

with very small emittance and high emittance ratio.

4.3.3 Conclusions

Compared to the numerical example shown in Section 4.3.1 where the emittance

ratio is around 300 with space charge, the analytic result is good to better than a

factor of 3 compared with the simulations, despite the crude approximations.

The space charge in the gun is the dominant limiting factor for flat-beam pro-

duction. Higher rf accelerating gradient at the photocathode and longer laser pulse

could help to reduce the space-charge effects [24]. The most important direction for

future R&D is the suppression/compensation of space charge in the rf gun when an

axial magnetic field is present on the cathode.



CHAPTER 5

FERMILAB/NICADD PHOTOINJECTOR LABORATORY

5.1 Overview

The Fermilab/NICADD Photoinjector Laboratory (FNPL) produces a high bright-

ness electron beam with energy up to 16 MeV. The facility consists of an ultraviolet

(UV) photocathode-drive laser and an electron beam transport line of around 11 me-

ters in length. The key elements of the beamline include a 1.5-cell1 normal conducting

rf gun operating at 1.3 GHz, a TESLA style 9-cell superconducting niobium cavity, a

magnetic bunch compressor, and a dipole spectrometer. A drawing of the beamline

is shown in Figure 5.1.

Transverse beam diagnostics such as optical transition radiation (OTR) and Yt-

trium Aluminum Garnet (YAG) viewers, horizontal/vertical slits, beam position mon-

itors (BPMs) are available at various locations in the beamline.

The accelerator has the same design [51] as the injector of the TESLA Test Facility

(TTF) at DESY. Apart from the production of a high-brightness electron beam [52],

it has hosted several R&D experiments, including plasma wake-field acceleration,

channeling radiation, electro-optic sampling [53], and flat-beam generation.

1. To be more accurate, it is a 1.625-cell rf gun.

57
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Figure 5.1: A drawing of the FNPL beamline.
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5.2 Photoemission electron source

5.2.1 Photocathode

The electron bunches of FNPL are photo-emitted from a high-quantum-efficiency

cesium telluride (Cs2Te) photocathode located at the back plate of the rf gun.

The cesium telluride compound is a p-type semiconductor with a band gap of

EG = 3.3 eV and an electron affinity EA = 0.2 eV. Powell [54] found that the first

maximum in the conduction band density of states is at Ef = 4.05 eV above the

valence band maximum, and the first maximum density of states below the valence

band maximum occurs at -0.7 eV; see Figure 5.2. This means a photon energy of

4.05 eV for the first maximum photoemission peak, and 4.75 eV for the second peak.
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Figure 5.2: Schematic energy-level diagram of cesium telluride. The dark lines indi-
cate the maxima of density of states.

The fourth harmonic of the Nd:YLF laser photon has an energy of 4.72 eV. For the

first maximum photoemission peak (indirect transition), this leaves a kinetic energy

Ekin = Ef − EG − EA = 0.55 eV for a free electron. The initial normalized thermal

emittance of the electron beam is related to this residual kinetic energy and the rms



60

beam size σ on the photocathode via [55]

εthn = σ

√
2Ekin

3mc2
(5.1)

For example, for σ = 1 mm, we have εthn = 0.85 mm-mrad.

The photocathode fabrication and transportation system at FNPL was developed

at Milano [56]. Under ultrahigh vacuum (UHV), a layer of cesium telluride is coated

on a molybdenum substrate in a photocathode preparation chamber. The chamber

has the capacity of holding up to five photocathodes which could be used in turn. The

photocathode can be transferred from the preparation chamber to the rf gun while

remaining in UHV via a couple of manipulator arms; see Ref. [57] for more details.

The quantum efficiency of the photocathode varies from 0.5% to 10% depending

on conditions such as cathode age, UV light energy per pulse, electromagnetic field

on the photocathode, etc. [58, 59].

5.2.2 Drive laser

The FNPL photocathode-drive laser is a Nd:YLF laser quadrupled to the fourth

harmonic of its IR wavelength of 1053 nm. The laser system was developed by the

University of Rochester [60]. A block diagram is shown in Figure 5.3. The laser

system starts with a Nd:YLF mode-locked oscillator which produces a 81.25 MHz

pulse train of wavelength 1054 nm. An iris is used to select the TEM00 transverse

mode which is Gaussian spatially. The pulses are then expanded in time through a

frequency chirp in a 2 km long optical fiber. From the fiber output, a fast pulse picker

selects pulses to form a 1.003 MHz pulse train. The pulses are injected into a Nd:glass

multi-pass amplifier for a fixed number of passes; the pulse intensity is amplified by

a factor of ∼ 3000. The output of the multi-pass amplifier is fed into a two-pass

amplifier containing two Nd:glass rods for a further amplification by a factor of ∼ 70.

Following the two-pass amplifier, the laser beam is spatially filtered and compressed

using a pair of diffraction gratings. Finally, the infrared light pulses pass two stages

of second-harmonic generation and are converted into UV pulses with wavelength
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Figure 5.3: A block diagram of the FNPL laser system.

263.5 nm. The macro UV pulse train repetition rate is 1 Hz; see Figure 5.4. The

energy per UV pulse could be as high as 10 µJ.

1 ms

up to 800 ms

1 s

Figure 5.4: Time structure of the UV laser pulse.

The UV laser is synchronized to the rf drive of the accelerating cavities by locking

onto the rf with a commercial phase-lock feedback loop. The resulting rms time jitter

is less than 2 ps, which is 1 rf degree.
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5.3 The rf cavities

5.3.1 The rf gun

The FNPL rf gun is a 1.5-cell copper cavity operating in TM010 π-mode at

1.3 GHz. The Cs2Te photocathode is located at the back plate of the first half-cell

of the gun. The full cell is side-coupled to the waveguide; see Figure 5.5.

photocathode
   location

beam direction

waveguide

Figure 5.5: A drawing of the FNPL rf gun.
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Given the geometry and material of the rf gun, numerical codes such as Superfish

can be used to generate its electromagnetic field. The longitudinal electric field Ez

for the TM010 π-mode is shown in Figure 5.6.
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Figure 5.6: Longitudinal electric field on z-axis for the accelerating mode of the FNPL
rf gun from Superfish [80] simulation.

The coefficient relating the longitudinal electric field on the photocathode (Ec)

and the power dissipated in the gun (P ) can be obtained from Superfish simulation:

ζ = Ec/
√
P = 1.000 (MV/m)/

√
1.781 × 10−3 (MW) = 23.7 (MV/m/

√
MW).

(5.2)

Using this coefficient, we can calculate the field on cathode using the following equa-

tion:

Ec(MV/m) = 23.7
√
P (MW). (5.3)

For example, with 2.2 MW peak input rf power, the peak accelerating gradient is

around 35 MV/m. The electron energy out of the gun can be up to 4.5 MeV.

Using the most recent rf calibration, the power dissipated in the gun can be
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calculated from the following equation [61]

P (W ) =

[
c0|Vf | + c1ln

(
c2|Vf | + 1

)]2

100
· 10

(
A+C+T

10

)
(5.4)

where |Vf | is the output of the forward power diode, which can be read from the

control room oscilloscope, and A = 47.42, C = 34.65, T = −0.17, c0 = 0.0196, c1 =

0.0446, c2 = 3.642 are calibration constants.

The gun rf phase is set through a phase-scan procedure where the bunch charge is

measured as the relative phase between the rf and drive laser is varied. A simulation

of the phase scan is shown in Fig. 5.7. The gun phase is set to less than 50◦ so that

the beam at gun exit will have sufficient charge and energy.
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Figure 5.7: Numerical simulation of bunch charge and energy at gun exit as a function
of rf phase; maximum bunch charge is set to 0.5 nC in this simulation.
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5.3.2 Solenoids and beam-based alignment

Three independently powered solenoids surround the gun for beam focusing and

phase-space manipulation; see Figure 5.8. In the flat-beam experiment, the solenoids

also provide an axial magnetic field on the order of 102 to 103 Gauss on the photo-

cathode.

1 1/2 cell
RF gun

bucking
solenoid

primary
solenoid

RF coupler

secondary
solenoid

cathode
BPM0

Figure 5.8: Gun, solenoids, and beam position monitor at gun exit (BPM0) used for
beam-based alignments.

In operating the photoinjector, we noticed that when the solenoid currents are

changed, not only the focusing of the beam along the beamline changes, but also

do the beam transverse positions; see Figure 5.9. In this figure, beam positions are

measured at the first BPM downstream of the rf gun (BPM0) while scanning the

solenoid currents. For each one of the three solenoid current scans, the other two

solenoids are turned off.

Beam missteering caused by solenoids is an undesirable effect that leads to emit-

tance growth and complicates the procedures to center the beam in the other elements

further down the beamline, such as the booster cavity, etc.
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Figure 5.9: Beam positions measured by BPM0 as a function of solenoid currents
before beam-based alignment.

The experimental observation mentioned above indicates there are some misalign-

ments between the gun and the solenoids, and/or an offset of the laser light position

on the cathode. Using a set of depth meters, we measured the mechanical center of

the solenoid with respect to the gun surface; see Figure 5.10. It was found that, with

respect to the mechanical center of the gun, the center of the primary and bucking

solenoids, which are tied together, is located at [0.8, 0.1] mm on the upper-west di-

rection, and the secondary solenoid center is around [2.3, 1.8] mm on the lower-east.

Following this measurement, a beam-based alignment similar to those performed

at TTF [62, 63] was pursued.

To make sure that the electron beam goes through the electromagnetic axis of

the rf gun and thus to minimize the steering caused by the gun field, we started the

alignment by trying to find the proper laser light position on the cathode.
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Figure 5.10: Measurement of the solenoid mechanical centers with respect to the gun
surface: (a) primary and bucking solenoid; (b) secondary solenoid.

With all three solenoid currents set to zero, we varied the gun gradient and phase

for several different laser light locations: the center of the cathode, and four spots

around the center. The beam positions measured are shown in Figure 5.11. We see

that when laser light hits the center of the cathode, the beam position changes least

among the five positions when the gun gradient is varied from 14 MV/m to 38 MV/m.

There is still some steering caused by the gun itself. This might be due to the gun rf

coupler, which causes an asymmetry of the field and in turn gives the beam a vertical

kick. Laser light is kept at the center of the cathode (see Figure 5.12) during the

alignment procedures followed hereafter.

Astra is used to simulate the initial measurement of beam position at BPM0, as

shown in Figure 5.9. Given the center location of the solenoid, beam position at BPM0

is recorded while the magnetic field strength is scanned. Each solenoid has a different

longitudinal magnetic filed profile along the beamline, and the maximum of the profile

is scaled with current, taking into account the saturation at high currents [52].

It is noticed that our BPM system has a left-hand cartesian system if one takes the

beam propagation to be the +z direction. So in the following text, in order to match

the simulation with measurement, the signs of measured x values were switched.

Furthermore, from Figure 5.9, one can see that when the solenoid currents are
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Figure 5.11: Beam positions measure by BPM0 while varying gun gradient for 5
different laser light positions on cathode. For laser light at the cathode center position,
beam positions are also measured for different gun phases.

zero, BPM0 has a nonzero reading in y, so 0.5mm were added to measured y values

to zero the BPM reading when the solenoid currents are zero.

When the simulation matches the initial measurement as shown in Figure 5.9,

the offsets used in simulation are compared to the mechanical measurement of the

solenoid center offsets shown in Figure 5.10. The results provide a guide to move the

solenoids physically. Once solenoids are physically re-aligned, another set of beam

position measurements under solenoid current scans was taken. After a couple of

iterations, the beam position changes within 1.5 mm, comparing to 3 mm before the

alignment. In figure 5.13, the beam positions under the current scan of primary and

bucking solenoids before and after beam-based alignment are plotted.

For the secondary solenoid, Astra simulation gives an off-center of [1.5 mm , -1.0

mm], which agrees in directions with the mechanical measurement. In experiment,

the solenoid center is first moved 2 mm to the west and beam positions are measured

while scanning the secondary solenoid currents; then the solenoid is moved 2 mm up
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Figure 5.12: A photo of laser light on cathode. The dark spot at the center of the
circle is the HeNe laser light, which is aligned along the UV laser. The small spot on
the side is a reflection of the HeNe light from some components in the beamline.

before the final measurements. The final measurement of beam positions are within

the accuracy of BPM0, for secondary solenoid current range from 0 A to 290 A; see

Figure 5.14.

When a new gun was installed in the FNPL beamline later, the same beam-based-

alignment procedure was done and similar results are obtained; see Figure 5.15 for

the initial and final scenarios.
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Figure 5.14: Beam position measured by BPM0 when the secondary solenoid current
is scanned from 0 A to 290 A.
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5.3.3 Superconducting booster cavity

A TESLA-type superconducting 9-cell niobium cavity (see Figure 5.16) follows

the rf gun [64]. The cavity operates at 1.3 GHz in TM010 π-mode, boosting the

beam energy up to 16 MeV; hence, it is also referred to as the booster cavity. For

a perfectly tuned cavity, the longitudinal accelerating electric field on the z-axis is

shown in Figure 5.17.

Figure 5.16: The TESLA style 9-cell niobium cavity.
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Figure 5.17: Longitudinal electric field on z-axis for the accelerating mode of the
9-cell cavity from Mafia simulation.

Under nominal operating conditions, the booster cavity is at 1.8 K temperature

and the average accelerating gradient is 12 MV/m. The energy gain from the booster

cavity is about 12 MeV. The total beam energy of FNPL is thus around 16 MeV, as

the beam energy from the rf gun is about 4 MeV. The beam energy is measured with

a dipole spectrometer; see Section 5.4.2.
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Apart from raising the beam energy, the booster cavity also has some influence on

the transverse motions of the particles, such as focusing and/or deflecting. The effects

in the transverse plane, to first order, can be expressed via the linear transfer matrix

of the cavity. The measurement of the booster cavity transfer matrix is presented in

Appendix D.

5.4 Beam diagnostics

Beam diagnostics comprise an essential part of a photoinjector facility. Various

apparatuses are necessary for the measurements of different quantities such as trans-

verse beam size, transverse position, bunch length, bunch charge, and beam energy

etc. Next we will discuss the equipment needed for different beam parameter mea-

surements.

5.4.1 Transverse beam diagnostics

Beam viewers and cameras

In order to measure transverse rms beam sizes, we need to image the beam density

profile in the (x, y) plane. For this purpose, an optical transition radiation (OTR) or a

fluorescence YAG-powder-based screen is used to view radiation at visible wavelengths

generated as the electron beam strikes it. Such screens are also called beam viewers.

The screen’s normal axis makes a 45◦ angle with the beam propagation axis, and the

radiation is centered around the specular axis which is perpendicular to the beam

propagation axis. The screen is located inside a six-way cross (see Figure 5.18),

allowing the radiation to be extracted from vacuum via an optical window mounted

on one of the cross’s ports. In our configuration, the radiation shines out along the

horizontal axis. A 45◦ mirror reflects the radiation down toward the ground to an

optical system consisting of a SONY digital charge-coupled device (CCD) camera

(model XCD-X710) equipped with a PENTAX 50 mm lens [65]. The choice of the

SONY camera was dictated by its dynamical range (up to 10 bits) and the pixel array

size of 728× 1024. The camera is mounted vertically below the beamline axis for
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easier shielding in order to minimize the radiation damage to the CCD. Analytically

we estimated a focal length of 50 mm should provide the proper magnification to

demagnify the viewer circular area with axes 22.5 × 22.5/
√

2 mm2 onto the CCD

array of dimension 4.6080×3.4560 mm2 (the array consists of 1024×768 pixels, each

pixel being a square of 4.5 µm).

Figure 5.18: SONY digital camera setup for taking photos of beam density profile on
viewers. Beam direction is coming out of the paper.

The imaging system was optimized by adjusting two parameters: (1) the spacing

between the lens and the CCD array of the camera, and (2) the length between the

lens and the OTR or YAG screen. A spacer of 9 mm was needed between the lens

and camera mount. The optimized distances are indicated in Figure 5.18, and a

corresponding image of the screen is shown in Figure 5.19. In the example shown
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Figure 5.19: Example of calibration pattern. Horizontal and vertical axis for this
picture correspond respectively to y and x directions in the accelerator.

here, the viewer calibrations are found to be 21µm/pixel and 23µm/pixel for the

horizontal and vertical directions. The difference might be attributed to the screen

tilt angle not being exactly 45◦ during our measurements.

Next we measured the resolution of the imaging system. We assumed the gain

and shutter setting on the digital cameras do not significantly influence the resolution

of the system (as long as the system is operated in the linear regime). Such an

assumption was verified in an earlier test of the SONY CCD camera [66].

Given the optical setup, the system resolution will essentially depend on the man-

ual iris aperture used in the lens system. Although the iris has the main purpose to

provide a controllable attenuation of the OTR intensity reaching the CCD array, it

also affects the resolution via depth-of-field and diffraction effects.

The diffraction effects for a cylindrically symmetric system limited by an aperture

of diameter D is quantified by the Rayleigh criterion: two point-sources (radiating at

wavelength λ) separated by an angle larger than δθ ≃ 1.22λ/D can be resolved by

the optical system. If L is the distance between the object plane and the aperture,

and δx the distance between the two point sources, we have the diffraction resolution
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limit δx ≃ 1.22λ/ψ where ψ is the angle subtended by the aperture: tanψ = D/L.

The factor 1.22 in the previous equations comes from the fact the resolution is defined

in terms of the Airy disk radius, i.e., the first zero of the function J1(ζ)/ζ (1.22 ≃
3.832/π). In our case we are interested in the rms resolution, and we define it by

replacing the factor 1.22 by 0.49 (≃ 1.553/π) deduced from the calculation of the rms

size of the Airy disk. We estimate the diffraction-limited rms resolution to be about

σdif ≃ 0.49λ/atan[f/(2FL)] where F = f/D is the F-number of the system (f is the

focal length and D the aperture diameter). Taking λ = 440 nm, L = 300 mm, and

f = 50 mm we found σ ∈ [0.34, 1.8] pixels for F ∈ [2.6, 16]. Hence a larger aperture

gives better resolution if only diffraction is considered.

Contrary to diffraction effects, the depth of field calls for a small iris diameter.

The depth of field effects results in a resolution limit of δx ≃ 4F 2λ.

Figure 5.20: A photo of a USAF target taken by the SONY digital camera. For this
image, the F-number of the lens is 8.

In principle the resolution measurement consists of measuring the modulation

transfer function of the optical system for various modulation patterns. In practice
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the resolution was measured using the so-called sharp edge technique. In signal

processing theory, the resolution of a system is a measure of the system response to

an impulse (δ-like signal). However, generating a δ-like point light source is not easy

in practice. A common technique is to use a sharp edge instead. If we assume the

system to be linear so that the input image signal I(x, y) is mapped to an output

image signal O(x, y) via a relation of the form I(x, y) → O(x, y) =
∑

λ aλI(x, y),

then upon differentiation with respect to, e.g., x, we also have a relation of the form

∂xI(x, y) → ∂xO(x, y) =
∑

λ aλ∂xI(x, y). Thus measuring the system response to an

input δ(x) is equivalent to measuring the response of the system to a sharp transition,

a Heaviside-like function H(x), since ∂xH(x) = δ(x).

We used the patterns provided by a special target (the USAF 1951 target [67]),

as pictured in Figure 5.20, to do such a measurement. Consider one vertical bar

with width 2d along the horizontal axis; its normalized intensity distribution can be

formulated as

Î(x, y) = H(x+ d) −H(x− d), (5.5)

where H is the Heaviside function (H(ζ) = 1 for ζ > 0 and H(ζ) = 0 elsewhere).

The derivative of Î(x, y) with respect to x is then

∂xÎ(x, y) = δ(x+ d) − δ(x− d). (5.6)

In a perfect optical system without resolution limit, the derivative of the output

signal will be given by ∂xÔ(x, y) ∝ ∂xÎ(x, y). However, for a finite resolution system,

the δ-function is widened. Replacing the δ-function by a Gaussian2 in Eq. (5.6), we

get for the output signal

∂xÔ(x, y) ∝
[
exp

(
−(x+ d)2

2σ2
x

)
− exp

(
−(x− d)2

2σ2
x

)]
. (5.7)

2. This is motivated by the simple fact that a δ-function can be viewed as a Gaussian function
with variance taken to zero.



78

Direct integration of Eq. (5.7) (
∫ x
−∞ dξ∂xÔ(ξ, y)) yields

Ô(x, y) = A

[
erf

(
x+ d√

2σx

)
− erf

(
x− d√

2σx

)]
. (5.8)
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Figure 5.21: Example of resolution measurement by fitting the profile of a rectangular
bar of the USAF target using Eq. (5.8).

From the USAF target, we can measure profiles associated with bars. This profile

can then be fitted with Eq. (5.8), A, d, and σx being the fit parameters, to yield the

resolution (σx) of the system. An example of such a fit on a bar profile is presented

in Figure 5.21.

The system depicted in Figure 5.18 was used to measure the resolution. The

camera was first focused on the screen (to yield an image similar to the one presented

in Figure 5.19). The mirror was then removed and an USAF resolution target was

put in front of the camera at a distance similar to the distance to the screen (the

distance was adjusted to produce a well focused image of the target). An example of

target image is shown in Figure 5.20. The target image was back illuminated using
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Figure 5.22: Measured resolution for vertical (squares) and horizontal (circles) direc-
tions versus iris F-number.

white light (we however expect chromatic effects in the optical system to be very

small over the visible spectrum since the lenses are said to be optimized to reduce

chromatic effects [68]).

Using the sharp-edge technique described, we measured the resolution of the sys-

tem for various iris diameters (or F-numbers). The results are shown in Figure 5.22.

For F-Numbers F ∈ [5.6, 11], the resolution is about 1.3 times the pixel size in the

object plane, that is 23×1.3 ≃ 30 µm. For larger F-numbers (F ≥ 11), the resolution

limit increases due to diffraction effects, whereas for smaller F-numbers (F ≤ 6), it

degrades due to depth-of-field effects.

It is interesting to estimate the amount of OTR radiation that is captured by

the optical system as the F -number of the system is varied. If we estimate the half-

angular acceptance of the system to be approximately θ ≃ atan[f/(2FL)] and assume

the system to be centered on the radiation source emission axis, then the fraction of
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radiated intensity within a cone of half-angle θ is (see also [69]):

R(θ) =

∫ θ
0

sin3 ϑ
(1−β2 cos2 ϑ)2

dϑ

∫ π/2
0

sin3 ϑ
(1−β2 cos2 ϑ)2

dϑ
(5.9)

The function R(θ) is plotted in Figure 5.23, where we compare the expected normal-

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

θ (deg)

no
rm

al
iz

ed
 O

T
R

 in
te

gr
at

ed
 in

te
ns

ity

present system

upgraded system

Figure 5.23: Normalized OTR intensity versus half-angle acceptance of the optical
system. The normalization is done with respect to the total intensity emitted within
a half-angle acceptance of 90◦.

ized OTR intensity for the upgraded system with respect to the present system. Since

the lens is located at 300 mm from the screen in the upgraded system (compared to

100 mm in the present case), the intensity will drop by a factor of approximately 2.

Extra focusing lenses might be needed in order to focus the beam on the CCD to

detect the OTR signal with a good signal-to-noise ratio.
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Slits

Aside from the screens, there are several locations in the beamline where horizontal

or vertical, single-slit or multislit tungsten plates can be inserted for emittance and

angular momentum measurement. More details will be discussed in Section 6.4.1.

Beam position monitors

While one can measure the beam location using the OTR or YAG screens, there are

other means to measure the beam centroid locations as well. We have eight button-

type electromagnetic beam position monitors (BPMs) distributed along the beam-

line3. Each BPM has four button-type electrodes with a diameter around 11 mm,

distributed evenly inside the round beam pipe on the top, bottom, left and right.

When the electron beam passes though the BPM at an offset with respect to the

center of the beam pipe, it induces different signals on each electrode. The beam’s

transverse offset can be inferred from the difference of the signals from the four elec-

trodes [70]. The systematic error of the FNPL BPM system is around 100 µm.

3. The electronics of the FNPL BPM system was provided by DESY, Hamburg. We thank R.
Neumann and M. Wendt from DESY, and P. Prieto from Fermilab for making the system functional.
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5.4.2 Longitudinal beam diagnostics

Streak camera

At FNPL, the durations of the UV laser pulse and the electron beam are both on

a pico-second scale and can be measured using a streak camera. While the UV light

can be aligned to the streak camera directly, the electron bunches need to generate

light first by hitting an OTR screen. The OTR light is then transported into the

streak camera. The principle [71, 72] of a streak camera is shown in Figure 5.24.
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Figure 5.24: Operating principle of streak camera. A: photocathode; B: accelerating
electrode; C: sweep electrode; D: micro-channel plate; E: phosphor screen.

The light pulses to be measured are projected onto the slit and focused by the

lens to the photocathode of the streak tube. Consider two light pulses with slightly

different temporal and spatial position, each with a different light intensity. Two

electron pulses, with intensity proportional to the light intensity of the corresponding

light pulse, are generated from the photocathode of the streak tube when the light

pulses hit it. These electrons are accelerated toward the phosphor screen direction

by the accelerating electrode. On their path to the phosphor screen, the electrons

are deflected between a pair of sweep electrodes where a high-speed sweep voltage is

applied. The deflection magnitude is proportional to the arrival time at the streak

tube, with the earlier arrival pulse at the top space in the vertical direction. The

deflected electrons are then conducted to a micro-channel plate (MCP), and they are
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amplified by thousands of times, and then converted back into light when they bom-

bard a phosphor screen. Finally light emitted from the phosphor screen is registered

by a CCD camera. So on a streak camera photo, the time axis flows from top to

bottom (top being earlier in time), and the horizontal direction corresponds to the

positions of the incident light in horizontal direction in space.

The streak camera of FNPL is a Hamamatsu C5680-21S with M5676 fast sweep

module. A Pulnix progressive scan CCD camera captures the light from the phosphor

screen, and the rms bunch length can be calculated from the image profile along the

vertical axis, i.e., the time axis; see Figure 5.25. A calibration of 3.6 pixel/ps is used

for the FNPL streak camera at the fastest sweep speed [53].
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Figure 5.25: A photo taken by the streak camera for electron bunch length measure-
ment in the time domain. The solid line is the projection of the image on the time
axis.
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Spectrometer

A dipole magnet which bends the beam by 45◦ in the horizontal plane serves as

the FNPL spectrometer at the end of the beamline. Assuming the trajectory of the

beam as it enters the spectrometer is normal to the magnet pole face, then the current

needed to bend the beam by 45◦ is related to the longitudinal beam momentum pz

via

pz(MeV/c) = 1.619 I(A), (5.10)

where I is the spectrometer current. The constant in Eq. (5.10) is obtained from the

most recent spectrometer and booster cavity rf calibration, detailed in [73, 74].

We center the beam on two screens separated by a drift space upstream of the

spectrometer to make sure that it enters the spectrometer normal to the pole face,

and adjust the spectrometer current such that the beam is centered on the screen at

the exit of the spectrometer, which is aligned to have an angle of 45◦ with respect to

the beamline prior to the spectrometer.

While the beam enters the FNPL spectrometer normal to the pole face, it exits

at an angle of 22.5◦ with respect to the normal of the pole surface. The dispersion

function at a drift L downstream from the exit of the spectrometer is [75]

η = (ρ0 + L tan δ)(1 − cos θ) + L sin θ, (5.11)

where ρ0 ≈ 370 mm is the bending radius of the spectrometer, θ = 45◦ the dipole

bending angle, and δ = 22.5◦ is the angle between the beam direction and the normal

of the pole face at the dipole exit. For example, at the viewer downstream of the

spectrometer where L is about 253 mm, we have the dispersion η ≈ 318 mm from

Eq. (5.11).

5.4.3 Bunch charge measurement

The electron bunch charge can be measured either destructively by using a Faraday

cup, or nondestructively by using an integrating current transformer (ICT).

The ICT used at FNPL is a standard commercial product [76], consisting of a



85

toroid which is placed outside the vacuum pipe. When an electron bunch passes

through the toroid, it induces a signal in the toroid. The integral of the induced

signal over time is proportional to the bunch charge of the electron. The image

charge induced by the electron bunch is diverted outside the toroid by means of a

copper tape; see Figure 5.26.

transformer wall current bypass

ICT output

electron bunch

beam pipe

ceramic gap

Figure 5.26: Sectional view of an ICT installed in the beamline.

The calibration of the ICT was detailed in Ref. [77]. Given the output signal

V (t), the bunch charge is given by

Q = C
∫
V (t)dt, where C = 0.8

C

V · s . (5.12)



CHAPTER 6

EXPERIMENTS AND NUMERICAL SIMULATIONS

6.1 Introduction

For the experiment of angular-momentum-dominated and flat electron beams, key

elements in the beamline include the solenoids, rf cavities and skew quadrupoles, as

shown in Figure 6.1. The average canonical angular momentum of the electrons born

at the photocathode is proportional to the magnetic field on the cathode provided

by the solenoids. At the gun exit, the beam kinetic energy could be up to 4 MeV;

the booster cavity raises the kinetic energy up to 16 − 17 MeV; see Figure 6.2. The

round-to-flat beam transformer composed of three skew quadrupoles is located down-

stream of the booster cavity (three of the four skew quadrupoles shown in Figure 6.1

are used.). A proof-of-principle flat beam generation experiment was reported in Ref-

erences [27] and [28]. Our goal here is to understand each step of the round-to-flat

beam transformation and improve the flat-beam emittance ratio.

X3 X5 X6 X7 X8

351 351 502

 cavitybooster

L1 L2 L3

UV laser
rf−gun

X4

1285

Q1 Q2 Q3 Q4

1854

3768

Figure 6.1: Overview of the FNPL beamline. Here only the elements pertaining
to the flat-beam experiment are shown. The letters represents solenoidal magnetic
lenses (L), skew quadrupoles (Q), and diagnostic stations (X, which means “cross”).
Dimensions are in mm.

The diagnostics for the measurements of angular momentum and emittances in-

clude OTR or YAG viewers, multislit or single-slit tungsten plates, and CCD cameras.

For example, to measure the canonical angular momentum of the electron beam, OTR

viewers at X3, X6 and a multislit plate at X3 are used; to measure the flat-beam emit-

86
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Figure 6.2: An example of beam kinetic energy along z-axis with the schematic
drawing of the rf gun and 9-cell booster cavity accelerating field Ez.

tances, the OTR viewer at X7, the YAG viewer at X8, and single horizontal/vertical

plates at X7 are used.

We start with the angular momentum measurements of an angular-momentum-

dominated beam, then follow with the flat-beam generation and emittance measure-

ments.

6.2 Angular momentum measurements

6.2.1 Experimental method

Due to the cylindrical symmetry of the system (UV drive-laser light, external elec-

tromagnetic fields), the canonical angular momentum of each electron is conserved.

In an axial magnetic field Bz(z), the canonical angular momentum of an electron, L,
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in circular cylindrical coordinates (r, φ, z) is [19]

L = γmr2φ̇+
1

2
eBz(z)r

2, (6.1)

where γ is the Lorentz factor, φ̇ the time derivative of φ, m and e are respectively

the electron rest mass and charge.

The average canonical angular momentum of the electrons, 〈L〉, is obtained by

averaging Eq. (6.1) over the beam distribution. At the photocathode location, we

have 〈φ̇〉 = 0 and

〈L〉 =
1

2
eB0〈r2〉 = eB0σ

2
c , (6.2)

where B0 = Bz(z = 0) is the axial magnetic field on the photocathode, and σc is

the transverse rms beam size on the photocathode in cartesian coordinates. For a

cylindrically symmetric beam, σ2
c = 〈r2〉/2.

The canonical angular momentum at the photocathode surface is obtained from

Eq. (6.2). Given the experimental settings of the solenoidal lens currents, the mag-

netic field, B0, is inferred via simulations using the Poisson [80] program, which is

benchmarked against calibration of the solenoidal lenses [52]. The value of σc used

in Eq. (6.2) is directly measured from an image of the UV laser beam on a “virtual

photocathode”. The virtual photocathode is a calibrated UV-sensitive screen located

outside of the vacuum chamber, being a one-to-one optical image of the photocathode.

Outside the solenoidal field region, where Bz vanishes, an electron acquires axial

mechanical angular momentum due to the torque exerted on it in the transition region.

Since Bz(z) = 0, the second term of Eq. (6.1) vanishes and the canonical angular

momentum is given by the first term of Eq. (6.1), which is the axial mechanical

angular momentum.

To measure the mechanical angular momentum, let’s consider an electron, in a

magnetic field-free region, at longitudinal location z1 with transverse radial vector

~r1 = r1~ex. After propagating through a drift space, the electron reaches ~r2 at location

z2. Let θ = 6 (~r1, ~r2) be the angle between the two radial vectors ~r1 and ~r2 (hereafter

referred to as the “shearing angle”). It can be experimentally measured by inserting
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at location z1 a multislit mask and measuring the corresponding shearing angle of the

beamlets at the location z2; an illustration of the measurement technique is shown in

Figure 6.3. A couple of experimental photographs are presented in Figure 6.4.

drift
q

r1
r1

r2
P

P

Figure 6.3: Beam with canonical angular momentum induced sheers in a drift. The
dark narrow rectangular can be a slit inserted into the beamline in order to measure
the shearing angle.

The mechanical angular momentum of the electron, ~L, is given by:

~L = r1~ex × ~P = r1Py~ex × ~ey. (6.3)

Let y′ = dy
dz =

py

pz
, where py and pz are the vertical and longitudinal components of

the momentum; y′ is a constant in a drift space for an angular-momentum-dominated

beam. The change in y coordinate, ∆y, can be calculated via

∆y =

∫ D

0
y′dz = y′D.

On the other hand, from Figure 6.3, we have ∆y = r2sinθ, hence y′ = r2sinθ/D

and Eq. (6.3) can be re-written in the following form:

~L = r1pzy
′~ez = pz

r1r2sinθ

D
~ez. (6.4)

Let the rms beam radii be σr
1 and σr

2 at z1 and z2, respectively. For a laminar
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Figure 6.4: Images used for mechanical angular momentum measurement. Beam
transverse density on X3 (left), and beamlets on X6 when the vertical multislit mask
is inserted at X3 (right). The vertical lines superimposed on the X3 image is an
illustration of vertical slits when the multislit mask is inserted.

beam, the canonical angular momentum averaged over the beam distribution can

then be calculated via:

〈L〉 = pz
σr

1σ
r
2 sin θ

D
. (6.5)

Finally, for a cylindrically symmetric beam, the rms beam size on the horizontal

and vertical axes, σx and σy, are related to the rms beam radius by: σx = σy =

σr/
√

2. Thus Eq. (6.5) can be written as:

〈L〉 = 2pz
σ1σ2 sin θ

D
, (6.6)

where σ1 = σx1 = σy1, σ2 = σx2 = σy2.

So measurements of rms beam sizes at location z1 and z2 along with the corre-

sponding shearing angle, as the beam propagates from z1 to z2, provide the required

information for calculating the beam mechanical angular momentum.

Eq. (6.2) and Eq. (6.6) are the major results of this subsection [78]. In the following

several subsections we will use these two equations to measure the average angular

momentum of the electron beam and compare it with the simulation results as well

as theoretical expectations.
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6.2.2 Dependence on the magnetic field on the photocathode

The magnetic field on the cathode can be varied by properly adjusting the solenoid

currents; see Table 6.1. The bucking solenoid current is set to zero. The column

“POISSON” are simulation results by putting the solenoid currents directly into the

simulation, while the “linear combination” column are results from the following

linear equation: Bz[Gauss] = 774.54 × Ip[A]
170 + 9.38 × Is[A]

70 , where Ip and Is are the

primary and secondary solenoid current, respectively. The constants in the linear

equation are obtained from POISSON simulations. The laser transverse spot size

on the cathode was held constant and measured to be σx ≃ σy ≃ 0.97 ± 0.04 mm.

This measurement together with the estimated value of the longitudinal magnetic

field on the photocathode can be plugged in Eq. (6.2) to yield the canonical angular

momentum.

Table 6.1: Axial magnetic field on the photocathode at different primary and sec-
ondary solenoid current settings.

solenoid current [A] magnetic field on cathode [Gauss]
primary secondary POISSON linear combination
40 295 229 222
60 295 325 313
80 195 421 404
100 295 517 495
120 295 613 586
140 255 702 672
160 255 794 763
180 220 877 850
200 180 959 935
220 80 1031 1013
240 0 1105 1094

The mechanical angular momentum downstream of the TESLA cavity can be

measured at X3 and X6 (see Figure 6.1). At X3 (z1 = 3.678 m), either an OTR

screen (for beam spot size measurements), or a multislit mask (for shearing angle

measurement) can be inserted. After a drift of distance 1.375 m, another OTR viewer

is available at X6 (z1 = 5.053 m). The measurement consists of the following sequence:
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(1) measure the beam rms size at location z1 and z2, and (2) insert the vertical

multislit mask at location z1 and measure the shearing angle from the slit images

at location z2. An example of the measurement sequence is depicted in Figure 6.5.

The measurements of the rms beam sizes at z1 and z2 along with the corresponding
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Figure 6.5: Example of an experimental measurement sequence needed to calcu-
late the canonical angular momentum at the photocathode (top-left, virtual cathode
photo) and mechanical angular momentum downstream of the TESLA cavity.

shearing angle θ are summarized in Figure 6.6.

The computer program Astra is used to simulate the beam dynamics using

the experimental conditions of the drive laser, rf-field amplitudes and phases, etc.

First, we compare in Figure 6.7 the canonical angular momentum of the beam at

the photocathode (computed as
∑Nmac

i=1
1
2eBr

2
i where the sum is performed over the
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macroparticles used in the simulation, andNmac is the number of macroparticles) with

the mechanical angular momentum downstream of the TESLA cavity (computed as
∑Nmac

i=1
1

pz,i
(xipy,i − yipx,i)). The agreement is excellent.

Second, the simulations of the measurement technique for the various solenoid

settings considered in the experiment are summarized in Figure 6.8 (this Figure should

be compared with Figure 6.6). The beam spot sizes at z1 and z2 were directly

evaluated after tracking the beam with Astra. A multislit mask samples the phase

space produced by Astra at z1, and the so-generated beamlets at z1 were tracked up

to z2 using linear transport matrix. The linear transport matrix is checked against

Astra simulation by comparing the beam sizes at z2 produced from either method.

Finally, in Figure 6.9 we compare the measured mechanical angular momentum

with the canonical angular momentum calculated from the magnetic field on the cath-

ode from Eq. (6.2). A weighted least-squares linear fit is performed and the slope is

found to be 0.98±0.03; see the blue solid line in Figure 6.9. The measured mechanical

angular momentum agrees well with the measured canonical angular momentum on

the photocathode, which confirms the fact that canonical angular momentum on the

photocathode is converted into mechanical angular momentum in a magnetic-field-

free region.

For each measurement point presented in Figure 6.9, we compare the strengths of

the space charge, emittance, and angular momentum terms in the envelope equation

[see Eq. (2.1)]. The evaluations are performed at location z1 and z2, as shown in

Figure 6.10 (a) and (b), respectively. We see that the angular momentum term indeed

dominates the other two terms, with the exception of the point at lowest magnetic

field on the cathode, where the angular momentum is the smallest.
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Figure 6.6: Measured rms beam sizes at locations z1 and z2 (top two plots), rotation
angle at z2 from slits inserted at z1 (bottom plot).
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Figure 6.7: Comparison of the canonical angular momentum computed at the photo-
cathode with mechanical angular momentum calculated downstream of the TESLA
cavity. The tracking from the photocathode to downstream of the TESLA cavity has
been performed using Astra with space charge included.
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Figure 6.8: Simulation of the experiment: rms beam sizes at locations z1 and z2 (top
two plots), rotation angle at z2 from slits inserted at z1 (bottom plot).
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6.2.3 Dependence on bunch charge

To study space charge effects on angular momentum, we vary the bunch charge

while keeping the magnetic field and beam spot size on the cathode constant. This is

achieved by adjusting the drive-laser intensity via a “volume knob” which is composed

of a half-wave plate and a cubic polarizer.
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Figure 6.11: Angular momentum versus bunch charge. The experimental data (cir-
cles) are compared with theoretical values of the canonical angular momentum cal-
culated from Eq. (6.2). The dashed line represents the average value of all the data
points, and the shaded areas cover the uncertainties in the measurements either from
Eq. (6.2) (darker strip) or from Eq. (6.6) (lighter strip).

For the measurements shown in Figure 6.11 the bunch charge is varied from 0.2 nC

to 1.6 nC. Within the experimental error (10% relative spread), the measured me-

chanical angular momentum stays constant, and we conclude that the beam is indeed

angular-momentum-dominated within the region explored.

6.2.4 Dependence on drive-laser spot size

The value of angular momentum has a quadratic dependence on the beam size on

the photocathode, as displayed by Eq. (6.2). To explore this dependence, the angular

momentum is measured for different drive-laser spot sizes on the photocathode. A
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remotely controllable iris is used to control the drive-laser spot size on the cathode.

The magnetic field on the photocathode is kept constant. The measured angular

momenta are then plotted against the theoretical values as expected from Eq. (6.2);

see Figure 6.12. Again, there is good agreement.
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Figure 6.12: Angular momentum versus photocathode drive-laser spot size. The
experimental data (circles) are compared with theoretical values of the canonical
angular momentum from Eq. (6.2).

6.2.5 Propagation of the angular momentum along the beamline

In principle, angular momentum is conserved along the beamline. We investigate

the conservation of angular momentum by measuring the mechanical angular mo-

mentum at different locations downstream. The results are shown in Figure 6.13.

Notice that at z = 0, the canonical angular momentum is calculated from Eq. (6.2)

while downstream of the cathode where B vanishes, we used Eq. (6.6), as explained

in Section 6.2.1.
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Figure 6.13: Evolution of canonical angular momentum along the beamline. At
the photocathode location (dot), the canonical angular momentum is calculated from
Eq. (6.2), and the solid line is this value extended along z. At other locations (circles),
mechanical angular momentum is obtained from Eq. (6.6), and the dashed line is the
average. The shaded areas have the same meanings as in Figure 6.11.
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6.3 Study of the round-to-flat beam transformer

6.3.1 Demonstration of the removal of angular momentum

To remove angular momentum, it is necessary to apply a torque on the beam (see

Section 3.4). A quadrupole can exert a net torque only on an incoming asymmetric

beam. Thus more than one quadrupole is needed to remove the angular momentum of

a cylindrically symmetric beam. The first quadrupole will introduce asymmetry in the

x-y space as the beam drifts downstream, while the other quadrupoles downstream

are properly tuned to apply a total net torque such that the angular momentum is

removed at the exit of the quadrupole section.

For the series of measurements and simulations presented in this section, a set of

three skew quadrupoles (Q1, Q2, Q4 in Figure 6.1) are used to remove the angular

momentum and generate a flat beam.

Given the photoinjector parameters, numerical simulations of the beamline (from

the photocathode up to the entrance of the transformer) are performed using Astra.

The four-dimensional phase-space coordinates are propagated downstream of the

transformer using a linear transfer matrix. The initial values of the skew quadrupole

strengths are those derived, under the thin-lens approximation, in Ref. [44]. They are

then optimized using a least-squares technique to minimize the x-y coupling terms

of the beam matrix at the exit of the transformer. The final optimized quadrupole

strengths are used for subsequent Astra simulation of the beam dynamics through

the transformer.

Further empirical optimization around the predicted values is generally needed

to insure the angular momentum is totally removed, as inferred by observation of

the x-y coupling at several locations downstream of the transformer. Evolution of

transverse density throughout the transformer is in good agreement with expectations

from simulations, as shown in Fig. 6.14. Each of the top six photos is a superposition

of 5 bunches with charge of 0.55 ± 0.10 nC. In the sequence of measurements and

simulations presented there, the incoming round beam (X3) is transformed into a

flat beam characterized by a large asymmetry (X7 and X8). The mechanical angular

momentum is removed: there is no noticeable shearing as the beam propagates from
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X7 to X8, which are separated by a 1.854 m drift.

6.3.2 Spacing between quadrupoles

There are four skew quadrupoles located downstream of the 9-cell cavity (see Fig-

ure 6.1); three could be chosen as a round-to-flat beam transformer. In order to decide

which three to use, Astra simulations are done for all possible combinations. The

skew quadrupole currents are listed in Table 6.2. We see that in some configurations

higher currents are required than others. The corresponding flat-beam emittance

ratio and rms beam sizes along the beamline are plotted in Figure 6.15.

Table 6.2: Skew quadrupole currents needed for flat beam generation when different
skew quadrupoles are chosen.

quadrupole NOT used
quadrupole currents [A]

Q1 Q2 Q3 Q4
Q1 0 -2.1791 3.4585 -8.2714
Q2 -1.2534 0 2.6543 -5.7956
Q3 -1.8136 2.3313 0 -3.4472
Q4 -2.3971 4.6226 -14.8073 0

When Q1, Q2 and Q4 are chosen, the flat beam sizes diverge more slowly, and the

minimum values are higher than the other combinations of quadrupoles. This is an

advantage because a spot size that is too small is hard to measure due to the finite

resolution of the measurement system and is more sensitive to the dispersion in the

beamline, and a spot that is too big might fall out of the viewer area (round with

diameter around 2.5 cm).
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Figure 6.14: Measured (top six photos) and simulated (bottom six plots) beam trans-
verse density evolution in the transformer. The consecutive plots correspond to loca-
tions X3, X4, X5, X6, X7 and X8 shown in Figure 6.1. The smaller strip on measured
photo at X6 is dark current which consists of electrons produced by processes other
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6.3.3 Quadrupole alignment error studies

Using skew quadrupoles Q1, Q2 and Q4, we numerically study the effects on the

flat-beam emittance ratio caused by the quadrupole alignment error. This includes

the rotational errors around the x, y and z axes, and the displacements dx, dy and

dz.

The rotation angle around the longitudinal axis should be 45◦ for a skew quadrupole.

In Figure 6.16, we scan the tilt angle of each quadrupole by ±2◦ in simulation. The

emittance ratio is more sensitive to the first and second quadrupole tilt angles, and

much less sensitive to the third one. The results from Astra and Elegant agree

with each other very well.

In Figure 6.17, we scan the angle around the horizontal axis (pitch) and vertical

axis (yaw) by ±2◦ using Astra . The maximum emittance ratio drop is less than

4%.

Finally we scan quadrupole center locations in each axis by a couple of millimeters.

As seen from Figure 6.18, the effect on the emittance ratio is comparable to the

misalignment in pitch and yaw angles. Usually the quadrupole centers are aligned

within 1 mm mechanically.

From simulations shown above, we see that the emittance ratio is neither very

sensitive to pitch and yaw rotation, nor to the quadrupole center displacements. The

misalignment in some cases, e.g., center location in z-position, can be compensated

by readjusting the quadrupole strengths. Furthermore, experimentally we do beam-

based alignment by using a couple of steering magnets to center the beam on the

electromagnetic axes of the quadrupoles. So in conclusion, we are not concerned with

mechanical alignment of the quadrupole centers.

We see that the emittance ratio is sensitive to errors in the rotation angle of the

first two skew quadrupoles. Experimentally, the precision of the alignment of the

quadrupole angles is better than ±0.25◦.
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Figure 6.16: Effects of the quadrupole rotation angles around longitudinal axis on
the emittance ratio from Astra and Elegant simulations.
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6.4 Transverse emittance measurements

6.4.1 Measurement method

Introduction

We now discuss the apparatus used for the flat-beam emittance measurements

using the slit method.

A screen can be inserted at location z0 to measure the rms beam sizes σx and σy.

If instead of a screen, a horizontal (vertical) slit is inserted at z0, then only particles

passing through the slit opening, i.e., the beamlet, will hit a screen downstream

located at z. The vertical (horizontal) rms beam size of the horizontal (vertical)

beamlet, σV
x (σH

y ), is measured at location z. Assuming the slit opening is narrow

such that it is uniformly illuminated by the beam at z0, the rms beam divergence σ
′

x

and σ
′

y at the slit location z0 can be calculated via

σ
′

x =

√
(σV

x )2 − w2

12

z − z0
, (6.7)

σ
′

y =

√
(σH

y )2 − w2

12

z − z0
, (6.8)

where w is the full width of the slit opening. The rms beam emittances can be

calculated via

εx = σxσ
′

x, εy = σyσ
′

y. (6.9)

To measure σV
x and σH

y , we need to choose the proper slit configurations such

as slit thickness along the z-axis, slit-opening width, separation between slits, and

the distance between z0 and z . It is also important to make sure that the smallest

dimension that needs to be measured (σV
x in our case), is larger than the pixel size

of the images taken by the digital cameras [79].

In order to optimize the emittance measurement configuration, numerical simula-

tions are performed using the parameters given in Table 3.1. An angular-momentum-

dominated beam is generated and propagated to the entrance of the transformer,
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taking into account space-charge effects. The normalized uncorrelated beam emit-

tance and the rms beam size along the beamline are shown in Figure 6.19.
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Figure 6.19: Normalized uncorrelated rms emittance and rms beam size of an angular-
momentum-dominated beam before the transformer.

From the beam distribution at the transformer entrance, the initial 4 × 4 beam

matrix Σ0 is calculated and the two expected normalized flat-beam emittances are

found to be, from Eq. (3.24):

εnx = 0.11 mm-mrad; εny = 35.31 mm-mrad. (6.10)

As explained in Section 6.3.2, three skew quadrupoles located at z1 = 4.020 m, z2 =

4.371 m, z3 = 5.224 m are chosen to form the transformer. The 4× 4 transfer matrix

of the transformer, M , is constructed analytically as a function of the quadrupole

strengths. Given Σ0 and M , the beam matrix at the exit of the transformer, Σ, is

obtained from Eq. (3.17).

Two sets of solutions of the skew quadrupole strengths (in units of 1/m) are found
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to transfer the round beam into a flat beam (see Section 6.3.1):

Q1
k(1) = −1.6099, Q1

k(2) = +2.0653, Q1
k(3) = −3.0157;

Q2
k(1) = +1.6299, Q2

k(2) = −2.5611, Q2
k(3) = −2.9878.

(6.11)

Taking 3-D space charge into account, the rms beam sizes and emittance ratio

along the beamline for the two sets of solutions are plotted in Figure 6.20 and Fig-

ure 6.21.
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Figure 6.20: rms beam sizes during and after the round-to-flat beam transformer.

Choice of single-slit plate

Hereafter, we will use only the first solution set in our discussions.

Historically, both horizontal and vertical multislit tungsten plates were available

at location z = 5.62 m. The slit width is 50µm and the space between two neighboring

slits is 1 mm.

Inserting such a horizontal multislit plate in the beamline and observing the beam-

lets on a screen 40 cm downstream, we see that the beamlets passing through different

slits are mixed; see Figure 6.22. This makes the measurements of the rms sizes of



113

4 4.5 5 5.5 6 6.5 7 7.5
0

100

200

300

400

z (m)

em
itt

an
ce

 r
at

io

1st solu
2nd solu

Figure 6.21: Beam emittance ratio along z-axis for the two sets of solutions of skew
quadrupole strengths.

each beamlet difficult. Therefore we replace the multislit plates by movable single-slit

plates.

The horizontal slit can be moved vertically to sample different vertical locations of

the beam. An example of a horizontal slit inserted at the center and top of the beam

is shown in Figure 6.23. Similarly, a single vertical slit movable in the horizontal

direction is used to measure the horizontal beam divergence; see Figure 6.24.

Distance between slit and downstream viewer

In order to decide the best location of the screen for capturing the beamlet images,

we track the beamlet in a drift downstream of the slit with 3D space charge on.

The rms size of the beamlets (σV
x and σH

y ) along the beamline are plotted in

Figure 6.25. The growth of σH
y is much larger than σV

x due to a much larger in

emittance in (y, y′) trace space. The YAG viewer has a diameter of 2.54 cm, therefore

approximately a beam with rms size less than 0.5 mm may be fully captured on the

viewer. We decided to locate the YAG screen at about 80 cm downstream of the slit.

At this location, we have σV
x = 70 µm, σH

y = 1.2 mm. Given the camera calibration

(≈ 29µm per pixel), σV
x is larger than the pixel size.
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Figure 6.22: Beam on the viewer at z = 5.62 m (blue), horizontal slits inserted at the
same location (green), and the beamlets as seen 40 cm drift downstream (red).

Figure 6.23: Beam on the viewer at z = 5.62 m (blue), a horizontal slit inserted at
the same location (green) at the beam center or top, and the beamlets as seen 40 cm
downstream (red).
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Figure 6.24: Beam on the viewer at z = 5.62 m (blue), a vertical slit inserted at
the same location (green) at the center of the beam, and the beamlet as seen 40 cm
downstream (red).
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Figure 6.25: σx of a vertical beamlet and σy of a horizontal beamlet along the beam-
line.



116

Thickness of the slit plate

Now we will turn to the discussion of the thickness of the tungsten plate. The

nominal multislit plates are 6 mm thick. For the single-slit plate under consideration,

we reconsidered the required slit thickness because only 2-mm-thick tungsten plates

were available. The fraction of the beam that did not go through the slit should be

either stopped or scattered at large angle. The rms angle of the scattered distribution,

assumed to be Gaussian, is given by Molière theory [81]:

〈θ2〉1/2
=

13.6(MeV)

βcp
Z

√
x/X0 [1 + 0.038 log(x/X0)] , (6.12)

where p and Z are the particle incoming momentum and charge number, x is the

particle path length in the material, and X0 is the radiation length of the material

(3.5 mm for tungsten [81]). Given the nominal operating energy of FNPL (∼ 16 MeV),

a tungsten segment of 2 mm thickness yields a rms scattering angle of 0.63 rad, which

is much larger than the angular acceptance determined by the YAG viewer used to

image the beamlet (which is 2 cm/80 cm≈ 25 mrad).

To refine our study, the computer program Shower [82] is used.1 The beam is

tracked through a 2 mm thick tungsten plate with a horizontal or a vertical slit of

width 50 µm. The transverse beam distributions on a screen located 80 cm down-

stream are shown in Figure 6.26. These images are simulations of what one would

observe experimentally on the YAG screen, including the resolution imposed by a

768 × 1024 pixel CCD array in the digital camera. The projections of the beamlet

on x or y axis are also plotted in Figure 6.26. The noise observed at large positions

with respect to the beam core corresponds to electrons that have been scattered with

a small angle (for instance partially going through the slit and hitting the slit edge).

In Table 6.3 we summarize the results of computed beam and beamlet spot sizes

along with the estimated transverse emittances. Our calculation indicates that the

retrieved emittance from Eq. (6.9) matches the initial emittance computed for the

incoming phase-space distribution within 15% approximately. Therefore we found

1. The input beam to Shower is generated by Astra simulation.
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that a 2-mm-thick tungsten plate can be used as the single-slit plate.

Table 6.3: Summary of beam and beamlet transverse dimensions (σ and σslit) along
with retrieved normalized emittance εr, compared with normalized emittance com-
puted in the initial phase space (εi), given by Eq. (6.10).

σ (µm) σslit (µm) σslit (µm) εr (mm-rad) εi (mm-rad)
horizontal 40.5 − 78.2 0.14 0.11
vertical 633.9 1484.7 − 40.97 35.31

Summary

We conclude that a tungsten plate with a single horizontal or vertical slit would

be helpful to avoid the mixing of multiple beamlet. A YAG screen located 80 cm

downstream of the slit provides a good compromise between capturing the whole

horizontal beamlet image (whose rms size in y increases rapidly right after the slit)

and getting enough resolution of the vertical beamlet image.

The slit plate thickness is reduced from 6 mm to 2 mm. This has the advantage

of relaxing the angular alignment tolerance by a factor of 3.

6.4.2 Space-charge force manifested in (x, y) space

We now take a small detour from the emittance measurements. What is remark-

able in Figure 6.22 is that the beamlet passing through the top horizontal slit has a

“fishbone” shape after a drift (red dots). We can turn off the space charge from the

photocathode to the end of the beamline and plot the corresponding beam distribu-

tion at the same longitudinal location; see Figure 6.27. The “fishbone” structure is

gone. To further investigate this point, a simulation is run with space charge on before

the transformer and off during the transformer; see Figure 6.28. The result closely

resembles Figure 6.22. So the “fishbone” is caused primarily by the space charge

force before the round-to-flat beam transformer. This agrees with our discussion in

Section 4.3.
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Figure 6.26: Top: Simulated images for a beamlet going through a horizontal a) and
vertical b) slit. Bottom: The projections of the images along y or x axis, correspond-
ingly.
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Figure 6.27: Space charge off from start to end: Beam on the viewer at z = 5.62 m
(blue), horizontal slit inserted at the z-location (green) at the center and top of the
beam, and the beamlets as seen 40 cm downstream of the slits (red).
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Figure 6.28: Space charge on: beam on the viewer at z = 5.62 m (blue), horizontal
slits inserted at the same location (green) at the top of the beam and the beamlets
as seen 40 cm downstream (red); and space charge off (black dots) only through the
transformer (from z = 3.77 m to 7.50 m along the beamline).
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6.4.3 Experimental results and comparison with simulations

Machine parameters

A flat beam is generated using the nominal machine parameters shown in Ta-

ble 6.4. While the gun and booster-cavity settings are kept the same, the drive-laser

spot size on the photocathode and the solenoid currents are adjusted for different sets

of measurements.

Table 6.4: Nominal settings for the photocathode drive laser, rf gun and accelerating
section during the flat-beam experiment.

parameter value unit
laser injection phase 25 degree
rms laser light size on cathode 0.75 ∼ 1 mm
laser pulse duration (Gaussian) 3 ps
bunch charge 0.5 nC
Ez on cathode 32 MV/m
B0 on cathode ∼ 900 Gauss
booster cavity peak gradient 23 MV/m
main solenoid currents ∼ 190 A
secondary solenoid current ∼ 75 A
bucking solenoid current 0 A

Numerical simulations with Astra are performed using the parameters given in

Table 6.4.

The initial skew quadrupole strengths are obtained from a least-squares Matlab

searching code, as explained in Section 6.4.1. The skew quadrupole strengths are

then fine-tuned empirically by observing the beam on several viewers downstream of

the transformer. Upon removal of the angular momentum, the beam should be flat

and upright on all these viewers.

For two cases of rms laser spot sizes (0.76 mm and 0.97 mm), the final quadrupole

currents used in the experiment and the initial values as used in Astra simulation

are gathered in Tables 6.5 and 6.6.
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Table 6.5: The skew quadrupole currents used in experiment and simulation for
drive laser spot rms size around 0.76 mm. Ii stands for the current of the ith skew
quadrupole.

quadrupole current experiment Astra

I1 (A) -1.92 -2.03
I2 (A) 2.40 2.57
I3 (A) -2.99 -4.01

Table 6.6: The skew quadrupole currents used in experiment and simulation for
drive laser spot rms size around 0.97 mm. Ii stands for the current of the ith skew
quadrupole.

quadrupole current experiment Astra

I1 (A) -1.97 -1.98
I2 (A) 2.56 2.58
I3 (A) -4.55 -5.08

Experimental and simulation results

In the measurements of transverse emittances, most of the images on an OTR

or YAG screen are taken with a single-bunch beam. A set of experimental photos

needed to get the two transverse flat-beam emittances is shown in Figure 6.29, along

with the corresponding numerically simulated images. Several shots of each of the

three images shown in Figure 6.29 are taken and analyzed to obtain the rms beam

sizes. The results are then averaged and a statistical error is attributed to the mean.

In Section 6.5, the details of data analysis are discussed.

The rms quantities of the beam, both experimentally measured and numerically

simulated, are given in Tables 6.7 and 6.8 for the two different laser spot sizes on the

photocathode, respectively. The transverse emittances along the beamline and the

emittance ratio for the two cases are plotted in Figure 6.30.

The smaller of the two flat-beam normalized transverse emittance is measured to

be 0.3 − 0.4 mm-mrad, and the corresponding emittance ratio is around 70 − 90.
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Table 6.7: Drive laser spot rms size around 0.76 mm: flat-beam parameters measured
and simulated.

parameter
experimental values

Astra simulation unit
90% 95%

σvc 0.71±0.05 0.76±0.06 0.76 mm

σX7
x 0.077±0.005 0.087±0.006 0.047 mm

σX7
y 0.59±0.03 0.63±0.04 0.56 mm

σX8vslit
x 0.12±0.01 0.13±0.01 0.081 mm

σX8hslit
x 1.15±0.02 1.24±0.02 1.50 mm
εnx 0.36±0.04 0.45±0.06 0.18 mm-mrad
εny 26±2 30±2 30 mm-mrad
εny/εnx 73±10 68±10 165√
εnyεnx 3.1±0.2 3.7±0.3 2.3 mm-mrad

Table 6.8: Drive laser spot rms size around 0.97 mm: flat-beam parameters measured
and simulated.

parameter
experimental values

Astra simulation unit
90% 95%

σvc 0.97 0.97 mm

σX7
x 0.084±0.001 0.095±0.001 0.058 mm

σX7
y 0.58±0.01 0.63±0.01 0.77 mm

σX8vslit
x 0.12±0.01 0.13±0.01 0.11 mm

σX8hslit
x 1.57±0.01 1.68±0.01 1.50 mm
εnx 0.39±0.02 0.49±0.02 0.27 mm-mrad
εny 35.2±0.5 41.0±0.5 53 mm-mrad
εny/εnx 90±5 83±4 196√
εnyεnx 3.7±0.3 4.5±0.3 3.8 mm-mrad
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Figure 6.29: The top three images are taken by the digital cameras: beam at X7
(OTR viewer), horizontal and vertical slit images at X8 (YAG viewer). The bottom
three are the corresponding beam profiles from Astra simulations. These images
are associated with the flat beam presented in Table 6.7.
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Measurements of ε± =
√
ε2
u + L2 ± L [Eq. (3.28)]

From Eq. (3.28), the expected normalized flat-beam emittances, ε±n , are given by

ε±n =
√

(εun)2 + (βγL)2 ± (βγL), (6.13)

where εun = βγεu is the normalized uncorrelated emittance of the angular-momentum-

dominated beam.

To complete the flat-beam experiment, it is of interest to extract experimentally

the expected flat-beam emittances from the angular-momentum-dominated beam,

and compare them with the flat-beam emittances measured downstream of the trans-

former. The quantities that need to be measured are L and the uncorrelated rms

emittance εu of the angular-momentum-dominated beam.

L is related to the canonical angular momentum of the beam via Eq. (3.14). As

detailed in Section6.2.1, the canonical angular momentum can be measured either

from Eq. (6.2) or Eq. (6.6). Corresponding to these two ways of measuring angular

momentum, L1 or L2 is obtained from Eq. (3.14).

Meanwhile, the uncorrelated normalized rms emittance εun can be measured using

the slit method from the beam image at X3 and beamlet image at X5.

The results of such measurements on an angular-momentum-dominated beam are

presented in Table 6.9. The corresponding flat beam is presented in Table 6.8, from

which some of the relevant parameters are extracted and listed in Table 6.9 for com-

parison.

We see that for the smaller flat-beam emittance, the two experimental values

agree very well. Both are significantly larger than simulated values, which may be

attributed to camera resolution, beamline dispersion and the transformer alignment

errors; see Section 6.4.3.

In the case of the larger flat-beam emittance, the measured value of the round

beam agrees well with simulation, and both are about 25% higher than the value

measured from the actual flat beam. This might caused by some imperfection in the

setup of the round-to-flat beam transformer.
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Table 6.9: Parameters (all in mm-mrad) measured from the angular-momentum-
dominated round beam and the corresponding flat beam. To calculate ε±n , L is taken
as the average of L1 and L2. The “flat beam” column is extracted from Table 6.8.

parameters round beam (95%) flat beam (95%) simulation
βγL1 24.5±0.7 − 26.1
βγL2 26.6±0.5 − 26.4
εun 5.1±0.7 4.5±0.3 3.8

ε+n =
√

(εun)2 + (βγL)2 + (βγL) 53.8±0.9 41.0±0.5 53

ε−n =
√

(εun)2 + (βγL)2 − (βγL) 0.49±0.13 0.49±0.02 0.27

Sources of expansion for very small beams

We see in Tables 6.7 and 6.8 that for the larger beam dimensions (σy’s), the

measured values are in good agreement with simulation results. However, for the

smaller dimensions which are of the order of 10’s of µm, the simulation values are

much smaller than the measured ones. The smaller the rms size, the larger is the

discrepancy. This might be attributed to two different sources: the dispersion in the

beamline, and the camera resolution. Let the dispersion along the beamline be η, the

rms energy spread of the beam be δ, and camera resolution be σres; the measured

rms beam size is:

σ =
√
σ2

0 + η2δ2 + σ2
res , (6.14)

where σ0 represents the emittance contribution to the rms beam size.

As an example, let’s look into the values of σX7
x in Tables 6.7 and 6.8. Simulation

shows that σX7
x = 47 µm and 58 µm, respectively. The rms energy spread of the

beam δ is around 0.15% for bunch charge around 0.5 nC; the dispersion η at X7

is estimated using code Elegant with the magnet strength from experiment to

be around 4 cm, and the best measured camera resolution is around 1.2 pixels ≈
35 µm (see Section 5.4.1; here the calibration is about 29 µm/pixel). From Eq. (6.14)

we have σX7
x ≈ 83 µm and 90 µm, respectively. These results are within 5% of the

measured values shown in Tables 6.7 and 6.8.

In the numerical example above, we used reasonable estimated values for dis-
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persion and best measured camera resolution. In fact the dispersion at each viewer

location depends on the settings of magnetic elements, such as the steering magnets

and quadrupoles. The camera resolution is related to the camera iris settings, which

is detailed in Section 5.4.1.

Table 6.10: Corrected flat-beam parameters for drive laser-spot rms size around
0.76 mm: the contribution from the camera resolution is subtracted quadratically
from the measured values.

parameter
corrected experimental values

unit
90% 95%

σX7
x 0.069±0.004 0.080±0.006 mm

σX7
y 0.59±0.03 0.63±0.04 mm

σX8vslit
x 0.11±0.01 0.12±0.01 mm

σX8hslit
x 1.15±0.02 1.24±0.02 mm
εnx 0.29±0.03 0.37±0.05 mm-mrad
εny 26±2 30±2 mm-mrad
εny/εnx 90±12 81±12

Table 6.11: Corrected flat-beam parameters for drive laser-spot rms size around
0.97 mm: the contribution from the camera resolution is subtracted quadratically
from the measured values.

parameter
corrected experimental values

unit
90% 95%

σX7
x 0.076±0.001 0.088±0.001 mm

σX7
y 0.58±0.01 0.63±0.01 mm

σX8vslit
x 0.11±0.01 0.12±0.01 mm

σX8hslit
x 1.57±0.01 1.68±0.01 mm
εnx 0.32±0.02 0.41±0.02 mm-mrad
εny 35.2±0.5 41.0±0.5 mm-mrad
εny/εnx 110±7 100±5

The true flat-beam emittances, i.e., the emittances one would have measured with

zero dispersion and infinitely small camera resolution, are less than those presented in

Tables 6.7 and 6.8. The upper limit of the true flat-beam emittances could be obtained

by subtracting quadratically the best measured camera resolution contribution from
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the measured rms beam size; see Tables 6.10 and 6.11. Therefore the best flat-beam

emittance ratio measured at 95% of beam intensity is 100±5 for bunch charge 0.5 nC

and beam energy around 16 MeV .

Reproductivity of flat-beam experiment

Finally it is worth to point out that the examples of the flat beam reported in

this section are readily repeatable in experiment. Once the rf gun, booster cavity and

drive-laser spot size are set to the nominal values, a flat beam can be reproduced by

reloading the corresponding values of currents into solenoids, skew quadrupoles, and

steering magnets.

6.5 Data reduction and error analysis

6.5.1 Introduction

Transverse beam rms size is obtained by analyzing the images of the light produced

by an electron bunch when it hits on a viewer (see Section 5.4.1). Several sources of

error need to be addressed, such as area-of-interest, criteria to determine rms beam

size and the corresponding error and background level.

We start by taking an image of the viewer with beam on it, then closing the UV

laser-beam shutter and taking another image of the viewer with only background

signals which includes dark currents.2 Subtracting the background from the beam

image, we obtain a clean image of the beam, as shown in Figure 6.31.

6.5.2 Area-of-interest

To calculate beam rms sizes, we take the projections of the beam image on the

x or y-axis. Usually for the projection, an area-of-interest is chosen instead of the

2. Dark currents consist of parasitic electrons produced by mechanisms (e.g., field emission or
secondary emission) other than photoemission; with proper initial conditions, dark currents could
be accelerated by the rf cavities.
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whole 1024 × 768 square-pixel image, as shown in Figure 6.31. We will now discuss

the effect of the size of the area-of-interest on rms beam size calculation.
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ix
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)

256 512 768 1024
0

256
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768
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Figure 6.31: An example of beam image with background signals subtracted. A white
rectangular is drawn to illustrate a possible “area-of-interest” for rms size calculation.

In the following discussions, we take the calculation of σx as an example (the

calculation of σy is similar.). Keeping the beam roughly centered in the area-of-

interest, we take the projection of the area-of-interest on the x axis; see Figure 6.32.

The beam center x0 is calculated as the mean of the projection. Starting from x0

and increasing the number of pixels on both sides of x0 symmetrically to a range of

[xmin, xmax], the rms value is calculated via

σx =

[∫ xmax

xmin
x2I(x)dx

∫ xmax

xmin
I(x)dx

−
(∫ xmax

xmin
xI(x)dx

∫ xmax

xmin
I(x)dx

)2
]1/2

, (6.15)

where I(x) is the intensity of the projection. The results are shown in Figure 6.33.

As the number of pixels between [xmin, xmax] increases, the rms size also increases;

however, there is a clear shoulder indicating the correct rms beam size.
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Figure 6.32: An area-of-interest is chosen (top) to take the projection on the x-axis
(bottom).

6.5.3 rms sizes at certain percentage of the beam

Instead of using the absolute number of pixels, we can plot σx versus the per-

centage of area in [xmin, xmax] versus the total area under the projection curve, i.e.,

percentage-of-the-beam, see Figure 6.34. Therefore it makes sense to talk about rms

beam size at a certain percentage-of-the-beam. As an example, in Figure 6.34, σx at

95% is 22.74 ± 0.14 pixels.
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Figure 6.33: A shoulder appears as the data range is increased symmetrically around
the beam center. Different lines represents different sizes of initial area-of-interest.

6.5.4 Background level

Now we turn to the discussion of the choice of background level. Let the average

background of the projection be Ibk±σbk, which can be calculated from the projection

curve far from the beam signal area. For a certain range of [xmin, xmax], backgrounds

from Ibk − σbk to Ibk + σbk are subtracted from the projection I(x) in several steps,

and the rms sizes calculated for each background level are shown in Figure 6.35.

6.5.5 The case of Gaussian distribution

In the discussion above, we used a real beam image whose projection on the x-axis

is far from Gaussian. However the discussion results are not sensitive to the detailed

shapes of beam distributions. To show this, we consider the case of a Gaussian
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Figure 6.34: Calculated rms beam size as a function of the percentage-of-the-beam.

distribution

I(x) = e−(x−x0)
2/2σ2

x , (6.16)

where x0 = 50, σx = 5; see Figure 6.36 (a). The rms sizes calculated for different

sizes of area-of-interest are shown in Figure 6.36 (b) and (c). Similar to the previous

example, we see that a clear shoulder appears in Figure 6.36 (b), and the rms size at

a certain percentage-of-the-beam is well defined in Figure 6.36 (c).
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Figure 6.35: rms beam size calculated at different background levels but within the
same window of [xmin, xmax]. Background level is raised by 2σbk from top line to
bottom line, with red line with dot marker using the correct background level (Ibk).
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Figure 6.36: rms size of a perfect Gaussian distribution. (a) Gaussian distribution
generated from Eq. (6.16); (b) calculated rms size (solid line) and percentage-of-the-
beam (dashed line) as a function of absolute number of pixels used for the calculation;
(c) calculated rms size versus percentage-of-the-beam.



CHAPTER 7

CONCLUSIONS

In this dissertation we have studied theoretically and experimentally the principles

and limitations of flat beams − beams with a large ratio of emittances in the two

transverse directions. The experiment was carried out at FNPL. The facility consists

of a laser-driven photocathode rf gun in which electron beams are generated and

accelerated to 4.5 MeV, a booster cavity to further accelerate the beam to 16 MeV,

and a beam manipulation section thereafter.

The first step in the flat-beam generation is the production of round, angular-

momentum-dominated beams by immersing the photocathode and rf gun in an axial

magnetic field. The dependencies of angular momentum on initial conditions such

as photocathode drive-laser spot size, the strength of the magnetic field, etc., were

measured and found to be in good agreement with predictions based on theory and

simulation.

The second step is to remove the angular momentum of the beam after the booster

cavity. This is achieved by means of three skew quadrupoles (referred to as the round-

to-flat beam transformer). The quadrupoles are skewed so that the beam emittance

is small (large) in the horizontal (vertical) direction. In the pioneering experiment

by D. Edwards et al. [27, 28], an emittance ratio of 40 − 50 was reported. The ratio

is improved to 100 ± 5 in the present experiment for a bunch charge of 0.5 nC. The

emittance ratio could become even higher by removing the horizontal dispersion.

Several factors contributed to this improvement. First, a least-squares method

was used to predict the optimal quadrupole strengths based on the more accurate

knowledge of the incoming angular-momentum-dominated beam. While a further

tuning of the quadrupole strengths was generally required, the final values agree with

the predicted values within 10%. Second, special care is taken to center the beam

via steering dipoles at each quadrupole location. Third, the emittance diagnostics

was improved. Single-bunch1 measurement was possible with the upgraded camera

1. A single-bunch consists of electrons generated by a single UV laser light pulse at 1 Hz repetition
frequency. In contrast, a multi-bunch is generated by a train of laser pulses separated by 1 µs, see

136
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system, thus eliminating the error caused by taking beam images of a bunch train

consisting of bunches of different charges. Finally, the resolution of the measurement

system was improved by a factor of two.

We have investigated various factors limiting the flat-beam production, such as

thermal emittance, space-charge effects, chromatic effects, and asymmetry in the

angular-momentum-dominated beam. The influences of the skew quadrupole align-

ments on flat-beam emittance ratio are also studied. Among the six degrees of free-

dom for each quadrupole, rotations around the longitudinal axis of the first two

quadrupoles are found to be the most influential on the flat-beam emittances. Among

all the limiting effects we studied, the space-charge effect in the gun area turns out

to be the most important one: It gives rise to the uncorrelated transverse emittance,

resulting in a reduction in the achievable flat-emittance ratio from orders of thousands

to hundreds.

Among various applications discussed in Chapter 2, the one for the linear col-

lider is probably the most challenging in emittance requirements. For example, the

TESLA-500 GeV (center-of-mass energy) design requires transverse emittances of

0.03 mm-mrad (vertical) and 10 mm-mrad (horizontal) at the interaction point for

a bunch charge of 3.2 nC [83]. While this is difficult to achieve with the current

machine parameters at FNPL, it is shown with simulations in Ref. [24] that such

emittances could be obtained with a specially designed photoinjector.2 Comparing

to FNPL machine parameters (see Table 6.4), higher rf gun accelerating gradient and

the magnetic field on photocathode are used; more importantly, a flat-top laser pulse

of duration 100 ps is chosen to reduce the space-charge effects in the rf gun area.

Another important application of the flat-beam technique is for producing ul-

trashort x-ray pulses as proposed for the LUX project [32, 86]. The requirement

for this application appears to be within the capability of the current state-of-art.

The horizontal emittance obtained at FNPL is already the one specified by the LUX

the time structure of the UV laser pulse in Figure 5.4. The intensity fluctuation in the laser pulse
train results in bunch charge variation in a multi-bunch electron beam.

2. Linear collider also requires the electron beam to be polarized. For example, TESLA-500
assumes 80% electron polarization. Special photocathode material such as gallium arsenide could
be used to generate polarized electrons, as demonstrated at SLAC and Nagoya [84, 85].
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design. However, the bunch charge for the LUX project is 1 nC − twice that in

our experiment. We can predict what emittances are achievable at FNPL for 1 nC

bunches. After optimizing the machine parameters, we found numerically that nor-

malized emittances of 0.4 mm-mrad and 24 mm-mrad could obtained for rms laser

spot size around 0.68 mm at FNPL. These values meet the design goal of LUX. It

should be noted that in our case the transformation is performed at 16 MeV instead

of 120 MeV as designed in LUX; we are therefore more sensitive to chromatic and

space-charge effects. So the simulation result is favorable.

We see that for the two applications of flat beam discussed above, the requirements

on the emittances, bunch charge and beam energy are all different. In both cases,

simulation shows that flat beams of the required parameters are feasible. The exper-

imental results obtained at FNPL, together with the good agreement obtained with

simulations, are very encouraging for further improvement of flat-beam generation.



APPENDIX A

TRANSVERSE EMITTANCES OF AN UNCOUPLED

BEAM

Denote the coordinates of a particle in transverse trace space by two vectors:

X =

[
x

x′

]
and Y =

[
y

y′

]
. (A.1)

If the beam is not coupled initially, the 4 × 4 beam matrix can be written as

Σi =

[
〈XX̃〉 0

0 〈Y Ỹ 〉

]
. (A.2)

From Eq. (1.30), the initial emittances are

εx
2
0 = |〈XX̃〉|, εy

2
0 = |〈Y Ỹ 〉|. (A.3)

Let M be the symplectic transfer matrix between position i and f :

M =

[
A B

C D

]
. (A.4)

From Eq. (1.31), the transformation of the beam matrix is given by

Σf = MΣiM̃, (A.5)

which is

Σf =

[
A〈XX̃〉Ã+B〈Y Ỹ 〉B̃ A〈XX̃〉C̃ +B〈Y Ỹ 〉D̃
A〈XX̃〉C̃ +B〈Y Ỹ 〉D̃ C〈XX̃〉C̃ +D〈Y Ỹ 〉D̃

]
. (A.6)

The final emittances are

ε2x = |A〈XX̃〉Ã+B〈Y Ỹ 〉B̃|,

ε2y = |C〈XX̃〉C̃ +D〈Y Ỹ 〉D̃|.
(A.7)
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Introduce the symplectic conjugate of a 2 × 2 matrix defined by:

A† = J−1ÃJ, (A.8)

where J is the 2 × 2 unit symplectic matrix,

J =

[
0 1

−1 0

]
. (A.9)

Direct calculation shows that

A†A = |A|I2, (A.10)

where Ii(i =integer) is the i× i identity matrix.

Similarly, the symplectic conjugate of M is

M† = J−1
4 M̃J4 (A.11)

where J4 is given by:

J4 =

[
J 0

0 J

]
. (A.12)

It follows from Eq. (A.11) that

M†M = J−1
4 M̃J4M = J−1

4 J4 = I4, (A.13)

where we used the symplectic condition M̃J4M = J4, and I4 is the 4 × 4 identity

matrix.

Substituting Eq. (A.6) into Eq. (A.13), we obtain

[
A†A+ C†C A†B + C†D

B†A+D†C B†B +D†D

]
= I4, (A.14)
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i.e.,

A†A+ C†C = I2, B†B +D†D = I2, (A.15)

A†B + C†D = 0 , B†A+D†C = 0. (A.16)

Eqs. (A.10) and (A.15) yield

|A| + |C| = 1, |B| + |D| = 1. (A.17)

Similarly by calculating MM† one can show that

|A| + |B| = 1, |C| + |D| = 1. (A.18)

From Eqs. (A.17) and (A.18), we have

|A| = |D|, |B| = |C|, (A.19)

which is a result of M being symplectic.

Using the fact that for two 2 × 2 matrices P and Q,

|P +Q| = |P | + |Q| + Tr(P †Q), (A.20)

Eq. (A.21) can be written as

ε2x = |A|2εx2
0 + |B|2εy2

0 + Tr
[(
A〈XX̃〉Ã)†(B〈Y Ỹ 〉B̃

)]
,

ε2y = |C|2εx2
0 + |D|2εy2

0 + Tr
[(
C〈XX̃〉C̃)†(C〈Y Ỹ 〉C̃

)]
,

(A.21)

Using 〈XX̃〉 = 〈X̃X〉 and J−1 = −J , we have

Tr
[(
A〈XX̃〉Ã)†(B〈Y Ỹ 〉B̃

)]

=Tr
[(
J−1A〈XX̃〉ÃJ)(B〈Y Ỹ 〉B̃

)]

=Tr
[
− A〈XX̃〉JJ−1ÃJB〈Y Ỹ 〉JJ−1B̃J

)]

=Tr
[
− 〈XX̃〉JA†B〈Y Ỹ 〉JB†A

)]
.

(A.22)
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Similarly,

Tr
[(
C〈XX̃〉C̃)†(C〈Y Ỹ 〉C̃

)]

=Tr
[
− 〈XX̃〉JC†D〈Y Ỹ 〉JD†C

)]
.

(A.23)

From Eq. (A.16) we have

Tr
[
− 〈XX̃〉JA†B〈Y Ỹ 〉JB†A

)]
= Tr

[
− 〈XX̃〉JC†D〈Y Ỹ 〉JD†C

)]
; (A.24)

thus

Tr
[(
A〈XX̃〉Ã)†(B〈Y Ỹ 〉B̃

)]
= Tr

[(
C〈XX̃〉C̃)†(C〈Y Ỹ 〉C̃

)]
. (A.25)

From Eqs. (A.21), (A.17), (A.19) and (A.25), we have

ε2x − ε2y = εx
2
0(|A| − |C|) − εy

2
0(|B| − |D|) =

(
εx

2
0 − εy

2
0

)
(|A| − |C|). (A.26)

From Eq. (A.26) we see for an initially uncoupled beam, if the emittances are

equal, i.e., εx0 = εy0, then at all points downstream, the emittances εx and εy are

also equal [9].



APPENDIX B

THE END FIELD OF A SOLENOIDAL LENS

Let Bz be the longitudinal magnetic field which is large on the photocathode and

zero at the exit of the solenoidal field. Consider Maxwell’s Equation

∇ · ~B = 0.

In circular cylindrical coordinates, we have

1

r

∂(rBr)

∂r
+
∂Bz

∂z
= 0

⇒ Br = −r
2

∂Bz

∂z
⇒

{
Bx = −x

2
∂Bz
∂z ,

By = −y
2

∂Bz
∂z .

If electron trajectories remain close to the longitudinal axis in the solenoidal field

region, then to the first order, Bz(r, z) = Bz(r = 0, z) = Bz(z) and ∂Bz
∂z = dBz

dz .

The Lorentz force ~F on an electron with velocity ~v from the magnetic field ~B is

given by

~F = e~v × ~B ⇒
{
Fx = −evzBy = +1

2evzy
dBz
dz ,

Fy = +evzBx = −1
2evzx

dBz
dz .

(B.1)

From the equation of motion, assuming that vz is a constant, we have

Fx = γmẍ = γmv2
zx

′′,

Fy = γmÿ = γmv2
zy

′′.
(B.2)

Eq. (B.1) and Eq. (B.2) yield

dx′

dz = + ey
2pz

dBz
dz ,

dy′

dz = − ex
2pz

dBz
dz .

(B.3)

where pz = γmvz is the longitudinal momentum.

Integrating Eq. (B.3) over z from the photocathode location (Bz = Bc) to the exit
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of the solenoidal field (Bz = 0), we obtain the changes in the phase space coordinates

x′ and y′, ∆x′ and ∆y′ as

∆x′ = −κy, ∆y′ = +κx,

where κ = eBc
2pz

and x, y are assumed to be constant. So the electron trace space

coordinates become

X =

[
x

x′ − κy

]
, Y =

[
y

y′ + κx

]
. (B.4)



APPENDIX C

COUPLER-KICK-INDUCED EMITTANCE GROWTH

As the rf waveguide is side-coupled to the rf gun’s full-cell (see Figure 5.5), the

cylindrical symmetry of the gun is broken. Consequently, the electrons receive a

vertical kick as they pass through the rf coupler region.

Consider the following picture: An electron is traveling on the electromagnetic

(EM) axis, which is the same as the geometric axis of the rf gun, until it reaches

the coupler region. In this region, the maximum Ez is shifted vertically due to

cylindrical symmetry being broken by the rf coupler, and the EM axis is shifted

by h vertically away from the geometric axis; see Figure C.1. We assume that the

transverse deflection of the beam is small so the beam is still traveling on the geometric

axis, but it receives a vertical kick which we call “coupler kick” hereafter.

electron bunch

beam axis

EM axis

h
y

Figure C.1: Electromagnetic axis and the beam axis in the coupler region.

In the coupler kick region, write the longitudinal electric field on the EM axis as

Ez = E0 cos(kz) sin(ωt+ φ0) (C.1)

where E0 is the peak accelerating field, k is the rf wave number, ω = ck, c being the

speed of light.
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From Eq. (24) and (25) of Ref. [14], the vertical force Fy and the change in vertical

momentum ∆py can be expressed as

Fy = −eE0y

2c

d

dt
[sin(kz) cos(ωt+ φ0)],

∆py =

∫
1

mc
Fydt = − eE0y

2mc2

∫

coupler region
d[sin(kz) cos(ωt+ φ0)].

(C.2)

Let φ = ωt + φ0 − kz, α = eE0

2mc2k
, zi and zf be the start and end of the coupler

region. We have

∆py = −αky[sin(kzf ) cos(φf + kzf ) − sin(kzi) cos(φi + kzi)]. (C.3)

Ignoring the small phase slippage of the electrons in the coupler region, we can

write φ = 〈φ〉 + ∆φ, with 〈φ〉 = 90◦, 〈∆φ〉 = 0. Assuming ∆φ ≪ kz, Eq. (C.3) can

be written as

∆py = αky sin(kl)[sin(2kzm) + ∆φ cos(2kzm)] = a1y + a2y∆φ, (C.4)

where l = zf − zi, zm =
zf+zi

2 , a1 = αk sin(kl) sin(2kzm), a2 = αk sin(kl) cos(2kzm).

The normalized vertical emittance is given by

εy0 =

√
〈(y − y)2〉〈(py − py)2〉 − 〈(y − y)(py − py〉2, (C.5)

where y = 〈y〉 etc., here we have y = h and py = 0, as shown in Figure C.1.

Substituting py → py + ∆py, py → 〈py + ∆py〉 = a1h in Eq. (C.5), we have

ε2y = 〈(y − y)2〉〈(py + ∆py − a1h)
2〉 − 〈(y − y)(py + ∆py − a1h)〉2. (C.6)

Suppose there is no coupling between transverse and longitudinal phase spaces,

then we can take 〈y∆φ〉 = 0:

〈(py + ∆py − a1h)
2〉 = 〈p2y〉 + a2

1(〈y2〉 − h2) + a2
2〈y2〉〈(∆φ)2〉 + 2a1〈ypy〉,

〈(y − y)(py + ∆py − a1h)〉 = 〈ypy〉 + a1(〈y2〉 − h2).
(C.7)
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The correction to the 2 × 2 beam matrix in (y, y′) trace space is

∆ =

[
0 a1σ

2
y

a1σ
2
y a2

1σ
2
y + [a2k(σ

2
y + h2)σz]

2

]
,

where σ2
y = 〈(y − h)2〉 is the rms beam size in y and k2σ2

z = 〈(∆φ)2〉.
After some algebra, we find

εy =
√
εy0

2 + [a2kσzσy]2(σ2
y + h2), (C.8)

where σy, σz are the rms beam sizes and 〈∆φ2〉 = k2σ2
z . In most cases, the second

term in Eq. (C.8) is much less than the first term. So approximately, the emittance

growth is given by

∆εy = εy − εy0 ≈ 1

2εy0
[αk2 sin(kl) cos(2kzm)σzσy]2(σ2

y + h2). (C.9)

As a numerical example, we take the following typical values at FNPL:

f = 1.3 GHz → k = 27 m−1,

E0 = 35 MV/m → α = 1.27,

σz = σy = 1 mm, h = 1 mm [50, 62],

zi = 0.11 m, zf = 0.19 m → zm = 0.15 m, l = 0.08 m,

εy0 = 1 mm-mrad.

First let’s verify that the assumption ∆φ≪ kz made in deriving Eq. (C.9) is true:

∆φ ∼ kσz = 0.027 ≪ kz ∼ [2.97, 5.13],

So ∆φ is less than one percent of kz. From Eq. (C.9), we have ∆εy = 3.5 × 10−2

mm-mrad, which is 3.5% of the initial value.

A comment on Eq. (C.9): we see that σy appears in 2nd and 4th orders on the

right-hand side of the equation. So the emittance growth is very sensitive to the



148

transverse beam size. Now keeping all the parameters the same, but increasing σy

from 1 mm to 2 mm, from Eq. (C.8), the normalized vertical emittance is 1.35 mm-

mrad, which is 35% higher than the initial value.



APPENDIX D

TRANSFER MATRIX OF THE BOOSTER CAVITY

Apart from raising the beam energy by about 12 MeV, the booster cavity also

has influences on the transverse motions of the particles, such as focusing and/or

deflecting. The effects in transverse plane, to the first order, can be expressed by the

linear transfer matrix of the cavity. Therefore it is of interest to measure the transfer

matrix of the booster cavity.

The transfer matrix of an rf-section was derived by Chambers in the late 60’s [87].

The model considers the motion of an ultra-relativistic beam in a standing wave

structure operating in π-mode. Chambers’ model has been generalized to the case of

an arbitrary (including higher space harmonics) accelerating structure in Ref. [88].

The main results of Ref. [87] is that the trace space transfer matrix of a cylindrical

symmetric standing wave rf structure operating at π-mode is given by

R =


 cosα−

√
2 cosϕ sinα

√
8γi

γ′
cosϕ sinα

− γ′

γf

(
cos ϕ√

2
+ 1√

8 cos ϕ

)
sinα γi

γf

(
cosα+

√
2 cosϕ sinα

)


 , (D.1)

where γi, γf are the initial and final Lorentz factors, α = 1√
8 cos ϕ

log
γf

γi
and γ′ is the

normalized accelerating gradient. In virtue of adiabatic damping the determinant of

R is |R| = γi/γf .

Chamber’s model is only approximate in our regime where the incoming beam is

not ultra-relativistic (γi ≃ 8). Refs [87] and [88] assume the end-region field of the

cavity only provides a focusing kick and no acceleration − this is the so-called “hard

edge” model. In reality, there is no open boundary condition allowing such a hard

edge model: the axial electric field has fringes that extend into the beam pipe on each

sides of the structure. Therefore we expect some corrections to the analytical models.

The technique used to measure the transfer matrix is based on a difference orbit

method. We use a pair of steerers upstream of the cavity to perturb input trace space

parameters to the cavity. The orbit downstream of the cavity is recorded by BPM’s.

The orbit perturbation xi = (xi, x
′
i)

T and associated response xf = (xf , x
′
f )T , are
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related accord to

xf = Rxi, (D.2)

where R stands for the transfer matrix between the points i and f where the initial and

final trace space coordinates are measured. Mathematically, one needs a minimum

set of four perturbations to compute the four elements of the matrix R. Practically,

we impress a set of N perturbations δxi,j to a reference orbit xi,0 (δxi,j = xi,j−xi,0),

where j = 1, 2, . . . N . The corresponding measured response δxf,j = xf,j − xf,0 can

be casted into the system of equation:

r =




δxf,1

σx,1
δxf,2

σx,2
...

δxf,N

σx,N




=




δxi,1

σx,1

δx′i,1
σx,1

δxi,2

σx,2

δx′i,2
σx,2

...
...

δxi,N

σx,N

δx′i,N
σx,N




[
R11

R12

]
= P

[
R11

R12

]
, , (D.3)

and

r′ =




δx′f,1

σx′,1

δx′f,2

σx′,2
...

δx′f,N

σx′,N




=




δxi,1

σx′,1

δx′i,1
σx′,1

δxi,2

σx′,2

δx′i,2
σx′,2

...
...

δxi,N

σx′,N

δx′i,N
σx′,N




[
R21

R22

]
= Q

[
R21

R22

]
. (D.4)

where σx,i and σx′,i come from the BPM measurement uncertainty of δxf,i and δx′f,i,

respectively.

The two systems of equations above can be inverted using a least square method [89,

90]:

[
R11

R12

]
=

[
(P̃P)−1P̃

]
r and

[
R21

R22

]
=

[
(Q̃Q)−1Q̃

]
r′. (D.5)

The errors on the computed transfer matrix elements are given by square root of the
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diagonal elements of the matrices (P̃P)−1 and (Q̃Q)−1:

σ2
R1,i

= [(P̃P)−1]ii, (D.6)

σ2
R2,i

= [(Q̃Q)−1]ii. (D.7)

To account for the error coming from the uncertainty on the steerer calibration,

a Monte-Carlo simulation was performed [91]. Based on several calibrations of the

steerers, we estimate a 15% uncertainty on the steerer calibration. Fifty sets of steer-

ers settings are randomly generated to form a Gaussian distribution with the mean

at steerer nominal value and a variance σs equal to 15% of the mean. The transfer

matrix elements are then computed for each of the 50 settings and the corresponding

variance of each element is obtained.

At last, the total error on the computed transfer matrix elements is calculated by

adding quadratically the two contribution from BPM measurements and the steerer

calibrations.

The orbit perturbations are impressed by means of two pairs of horizontal and

vertical steerers located upstream from the TESLA-cavity (S1 and S2 in Figure D.1).

The resulting orbit change downstream of the cavity are measured using BPM’s.

(BPM1, BPM2 in Figure D.1). The beam was first centered on the cavity axis by

properly tuning the strengths of the steerer S1 and S2. After centering, a change

of ±30◦ in rf-phase and 15% in accelerating gradient induced a maximum position

change downstream from the cavity of 500 µm (see Figure D.2).

The beam orbit with the steerers setting used to produce Figure D.2 are used as

our reference orbit.

Assume that the steerer is short such that the beam positions are the same at the

entrance and exit of the steerer. Given the kick imparted by S1 and S2 (respectively

δx′S1 and δx′S2), the corresponding position and angle changes at the cavity entrance

(referred by index i) with respect to the reference orbit launch are:

δxi = δx′S1LS1→i + δx′S2LS2→i

δx′i = δx′S1 + δx′S2, (D.8)
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S1

S2

BPM1

BPM2

Figure D.1: Experimental set-up relevant to the measurement of the TESLA-cavity
transfer matrix. S1 and S2 represent the locations of the two steerers, and BPM1
and BPM2 the locations of the two beam position monitor.

where La→b denotes the distance between points a and b. Similarly given the positions

changes at BPM1 and BPM2 (respectively δxBPM1 and δxBPM2), the corresponding

position and angle changes at the cavity exit (referred by index f) are given by:

δxf = δxBPM2 − δx′fLf→BPM2

δx′f =
δxBPM2 − δxBPM1

LBPM1→BPM2
. (D.9)

Eq. (D.8), (D.9) provide all the information needed for solving Eq. (D.5).

The steerer’s magnetic field has been measured and some examples are shown in

Figure D.3 and Figure D.4. The measured B-field profile versus z can be fitted with

the following analytical approximation:

B(z) = B0 +
B̂

cosh(z/a)
, (D.10)

where B̂, a and B0 are the fitting parameters. In Figure D.3 (c), such a fit of the

measurement is also presented, and the resulting relevant values are a = 4.82 cm and

B̂ = 4.28 G for a 1 A excitation current. The magnetic field offset is found to be

B0 = 0.53 G, a value consistent with the earth magnetic field. The advantage in

using Eq.(D.10) for modeling the field is that the kick imparted by the steerer can be
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Figure D.2: Orbit variations along the beamline downstream the cavity for differ-
ent settings of the cavity phase and gradient. The measurements at z ≃ 11 m are
performed downstream of the dipole spectrometer and thus represent the beam mo-
mentum.

then estimated analytically from:

dx′

dI
=
e
∫ +∞
−∞ B(z)dz

p‖
=

e

p‖

[
2aB̂ arctan (tanh(z/(2a)))

]+∞
−∞

=
e

p‖
πaB̂, (D.11)

in practical units,

dx′

dI
[rad/A] =

1.9436 × 104

p‖c[eV]
. (D.12)

Taking into account the length between the steerer (here we consider HTB9C) and

the first BPM, one finally gets

p‖c[eV] =
6.1806 × 104

(dx)/(dI)
, (D.13)
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where (dx)/(dI) is in units of m.A−1.
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Figure D.3: (a): Measured By(z, x = 0, y = 0) field profile for the first steerer at
different excitation currents. (b): The field maximum value in (a) versus steerer
current. (c): The measured field profile (diamonds) is fitted with Eq. (D.10) (solid
line) for an excitation current of 1 A.

Saturation effects on the B versus I curve can be observed when the steerer is

operated at the maximum allowed excitation current (5 A) and the onset of the

saturation is around 2.5 A, as shown in Figure D.3 (b); these saturation effects are

not important for the measurement discussed here since the maximum excitation

current is less than 2 A.

The hysteresis curve of the steerers is also measured (see Figure D.4). After

various tests, we followed the following procedure to degauss the steerers:

1. cycle the steerer using an oscillating current excitation with exponential decay:
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Figure D.4: Measured By(z ≃ 13 cm, x = 0, y = 0) field hysteresis curve

I = I0 cos(ωt) exp(−t/τ);

2. set the steerer to its maximum positive value;

3. decrease the current to the desired set point.

Steps (2) and (3) of the above procedure indicate that we operate the steerer in

the upper part of the hysteresis loop. Thus the linear dependence of the B-field on

the current is ensured when operating with excitation current within ±2 A.

The measurements of transfer matrix elements are presented in Figure D.5. We

generally observed a disagreement between experiment and numerical calculations for

the first row of the matrix (R11 and R12). The second row is in better agreement.

The determinant, within the error bars, exhibits the behavior expected from adiabatic

damping.
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