
0.1 Collisions In�uenced by Interatomic Forces (pgs. 10-11)

In the previous section, it was assumed that the collision between the incident and target atom was instantaneous. In general,
this is not true and often the atoms interact via an interaction force F (r) which depends on the distance r between the
atoms. The force here is the derivative of a potential function V (r):

F (r) = −∂V (r)

∂r
(1)

The collision between the incident and target particle is essentially a central force problem when considering the center of
mass frame of reference. Conservation of angular momentum states that

Mr2θ̇ = p
√

2MER = constant (2)

where ER is the total energy given by

ER =
M

2

(
ṙ2 + r2θ̇2

)
+ V (r) (3)

If we let u =
1

r
, then we can rewrite this equation as

(
∂u

∂φ

)2

+ u2 =
1

p2

(
1− V (r)

ER

)
(4)

Following Lehman and Shapiro [3], we can write this solution in the form of an integral equation. First, noting that

d

du

(
∂u

∂φ

)2

= 2
∂2u

∂φ2
, we can di�erentiate equation (4) with respect to u:

∂2u

∂φ2
+ u2 =

1

2p2ER

∂V

∂u

u′′ + u2 = −g

where the �rst equation is of the form of the second equation. To solve this equation for u, we note that the solution must
have the form u = uh + up where uh and up are the homogeneous and particular solutions of the equation. To get uh, we
solve the homogeneous equation

u′′h + u2h = 0 (5)

The general solution is uh = C cosφ+D sinφ. The particular solution is

up = −
θw

0

sin (φ− φ′) g (u (φ′)) dφ′

since u′′p + u2p = −g. Now, sinφ → p

r
= bu or u =

sinφ

p
as φ → 0. It can be seen that as r → ∞ (u→ 0), up goes to zero

faster than sinφ. As a result, C = 0 and D =
1

p
and so

u =
sinφ

p
−

θw

0

sin (φ− φ′) f (u (φ′)) dφ′

Solving equation (2) for θ in terms of p and u yields

θ = π − 2p

u0w

0

du(
1− V (u)

ER
− p2u2

) 1
2

(6)

Here, u0 is the value of u for when the denominator of the integrand vanishes and corresponds to the reciprical of the distance
of closest approach.
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Unfortunately, equation (6) can only be solved in closed form for a select few forms of V (r):

V (r) =



Z1Z2e
2

r
Coulomb Potential

C/r2 Inverse Square{
0 r > R

∞ r < R
Hard Sphere

For the Coulomb potential, the two atoms follow the trajectories as in Figure 1. The energy transfer T is

Tcoulomb = E0 sin
2 θ

2
(7)

The impact parameter p is

p = b cot
θ

2
(8)

where b is the impact parameter for head-on collisions. The di�erential cross section dσ is

dσ =
πb2

4
csc3

θ

2
cos

θ

2
dθ (9)

∝ πb2

4
E0

dT

T 2

Here we see that the di�erential cross section is dominated by small-angle scattering, probably leading to the Coulomb
logarithm when evaluating the total cross-section. For the inverse square potential,

dσ ∝ E−
1
2

R T−
3
2 dT

0.2 Comparison of the Real Collision with a Hard Sphere Collision (pgs. 11-12)

The scattering angle θ should be largely determined by the interaction potential at the distance of closest approach. Using
equation (2), the potential at this distance is

V (r0) = ER

(
1− p2

r20

)
(10)

where r0 is the distance of closest approach. This distance depends mainly on how �hard� the potential is and how high the
incident particle energy ER is. For small impact parameters, we can consider two hard spheres of radius R = r0/2. In this
case, the second term in (10) is approximately zero and so

V (r0) = V (2R) ≈ ER (11)

For equal masses,

V (2R) =
E0

2
=
Tmax
2

(12)

We see that, in the center of mass frame, the kinetic energy of the incident particle is completely transferred to potential
energy at the distance of closest approach r0. Note that this is true only in the case of a pure two-body collision (no
external forces from other atoms). We thus need to come up with a way to describe a more realistic potential that includes
contributions from other atoms.

0.2.1 The Interatomic Potential (pgs. 12-13)

In atomic units, the potential due to a point charge Z1e at a distance r is

V (r) =
Z1e

r
(13)

For an atom with protons and electrons, the potential of the nucleus is shielded by the electrons that surround it:

V (r) = f
( r
a

) Z1e

r
(14)

2



where f
(
r
a

)
is the screening function with screening length a. The form of the potential thus depends on the chosen form of

f . Several forms of f have been proposed:

f
( r
a

)
=


e−

r
a Bohr

r
a1
e−

C1r
a1 Born-Mayer

ψ
(
r
a2

)
− C2a2

r Thomas-Fermi

(15)

where ψ
(
r
a2

)
is the solution of the di�erential equation

ψ′′
(
r

a2

)
=

[
ψ

(
r

a2

)] 3
2

·
(
r

a2

)− 1
2

· ψ
(
r

a2

)
(16)

Gombas modi�ed the Thomas-Fermi function to have the same form for f
(
r
a

)
, but with ψ

(
r
a3

)
being the solution to

ψ′′
(
r

a3

)
=

r

a3


(
ψ
(
r
a3

)) 1
2

(r/a3)
+

(
C3a3
2e

) 1
2


3

(17)

So long as we can de�ne the potential due to one atom, we can use superposition to de�ne the potential due to multiple
atoms. Brinkman showed that the potential for a system of two atoms is [1]

V (r) =
Z1Z2e

2

r

a21 exp
(
− r
aB

)
− a22 exp

(
− r
aA

)2
ra2A − a2B

 , aA 6= aB (18)

where aA and aB are the screening lengths for the two atoms. If aA = aB = a in the case of two identical atoms, then

V (r) =
Z2e2

r
exp

(
− r
a

)(
1− r

2a

)
(19)

As r → 0, V (r) resembles the Coulomb potential (not sure how though...seems blatantly inconsistent. Perhaps since V →∞
as r → 0 for both potentials?). We see that V closely resembles the Bohr potential

V (r) =
Z1Z2e

2

r
exp

(
− r
a

)
(20)

The form of the screening length a was suggested by Bohr to be

a = a0

(
Z

2
3
1 + Z

2
3
2

)− 1
2

(21)

where a0 is the Bohr radius. For small impact parameters and large incident energy, the electron cloud has a negligible
screening e�ect, corresponding to Rutherford scattering (clearly screening matters for small incident energies). For large
impact parameters (r � a), V falls o� rapidly, which corresponds to a large screening e�ect. Thus, there is a preference
(higher probability) for small angle scattering with the Bohr potential.

0.2.2 The Form of the Scattering Law for a Realistic Potential (pgs. 13-14)

Using the form of the Bohr potential in equation (20), the scattering angle θ is given by equation (6)

θ = π − 2p

u0w

0

du[
1− Z1Z2e2

ER
u exp

(
− 1
au

)
− p2u2

] 1
2

(22)

3



This integral equation can only be solved numerically and has been done by Everhart, Stone, and Carbone [2]. Starting from
the di�erential cross-section for an arbitrary V

σ (θ) = − p

sin θ

dp

dθ
(23)

we can rewrite equation (22) as

θ = π − 2p

a

[
Zw

0

y
− 1

2
0 dz −

Zw

0

(
y
− 1

2
0 − y 1

2

)
dz

]
(24)

y = 1−
(p
a

)2
Z2 −

(
b

a

)
Z · exp

(
− 1

Z

)
y0 = 1−

(p
a

)2
Z2 −

(
b

a

)
Z · exp

(
− 1

Z0

)
where Z0 is the root of the equation for y and b is the impact parameter for a head-on collision, as before, given by

b =
Z1Z2e

2

ER
(25)

In the limit of ba → 0, screening is negligible and the potential V is the Coulomb potential where the di�erential cross section
becomes the Rutherford formula

σ (θ) =
b2

16
csc4

(
θ

2

)
(26)

which is true for high energies. But as the incident energy decreases, b
a increases and thus screening must be taken into

account. A plot of σ(θ)b2 vs. θ was made for various values for b
a and is shown below in Figure 1.

Figure 1: Plot of the di�erential scattering cross section
dσ (θ)

b2
as a function of the scattering angle θ in the center of mass

system.

Since the scattering angle θ is related to the energy transfer T through equations (11)-(13) and thus to the scattering
probability function g (E1, E2) from equation (19), we can plot g as a function relative energy retention E2/E1 for the case
of Coulomb, inverse r2, Bohr, and hard sphere potentials. In order to compare the Bohr potential with the hard sphere
potential, since the �rst two can be solved in closed form, we use the relation V (2R) = ER as in equation (11) to rewrite the
Bohr potential as

V (2R) =
EB
2

exp

(
−2R

aB

)
/

(
2R

aB

)
=

A

A+ 1

1

2ER
(27)

where EB is the Bohr energy

EB =
2Z1Z2e

2

aB
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The hard sphere radius was chosen so that 2R = 5.25aB , in the range where excessive screening can occur. Figure below
shows the plot of g vs. θ.

Figure 2: Plot of the scattering probability function g as a function of relative energy retention
E2

E1

We see that, for the hard sphere potential, the scattering probability is constant, as we would expect from the results of
the previous sections. However, for the other potentials, it is much more likely that the energy retention would be high (and
thus small energy transfer T ), corresponding to large impact parameters and grazing collisions. Even though the hard sphere
potential may be a poor approximation comparatively, it has a well-de�ned total cross section, σ = 4πR2 whereas the other
potentials have in�nite cross sections due to to small-angle scattering. Often the potential is cut o� at a certain distance to
ensure a �nite cross-section, leading to the Coulomb logarithm.
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