High Current Electron Source for Cooling

Jefferson Lab Internal MEIC Accelerator Design Review

Riad Suleiman

January 17, 2014

Outline

- MEIC Electron Beam Cooling Requirements
- Thermionic Gun
- Photogun
- Magnetized Beam
- Emittance Compensation for Magnetized Beam with Space Charge

> Summary

Bunched Electron Beam for Cooling

Bunch Length	100 ps (3 cm)
Repetition Rate	25 MHz
Bunch Charge	2 nC
Peak Current	50 A
Average Current	20 mA
Emitting Area	6 mm φ
Transverse Normalized Emittance	10s microns
Solenoid Field at Cathode	2 kG

Performance & Dependencies

Thermal Emittance: Intrinsic property of a cathode. Depends on work function, surface roughness, laser wavelength, temperature.

• Normalized Emittance: $\varepsilon_n = \beta \gamma \varepsilon_{geom}$

- Thermal Emittance (normalized to emitting radius or the rms for a gaussian beam): $\varepsilon_{th} = \varepsilon_n / R$
- Achievable Current: QE, laser wavelength, laser power, laser damage, heating, temperature.
- Bunch Charge: laser peak power, repetition rate, active cathode area
- Cathode Lifetime: ion back bombardment, dark current, contamination by residual gas, evaporation, beam loss, halo beam

Thermionic Gun

Example 1: TRIUMF e-Linac for photo-fission of actinide target materials to produce exotic isotopes:

- BaO: 6 mm diameter, 775°C
- Grid at 650 MHz
- Gun HV: 300 kV
- Average beam current: 10 mA
- Bunch charge: 16 pC
- Normalized emittance: 30 microns. Emittance is dominated by the electric field distortion caused by the grid.

Production target sets no requirement on beam emittance

Example 2: MAX-LAB Thermionic – Photocathode RF Gun. Thorin *et al.*, NIM A **606**, 291 (2009):

- Thermionic: for storage ring injection
 - BaO: 3 mm diameter, 1100°C
 - 3 GHz and 1.6 MeV
 - Normalized emittance: 35 microns
 - Large energy spread (2%)

To switch, reduce T=1100°C to T=700°C

Photocathode: for FEL

- Bunch charge: 0.2 nC
- Laser: 9 ps, 10 Hz, 263 nm
- Average beam current: 2 nA
- Normalized emittance: 5.5 microns
- QE: 1.1 x 10⁻⁴

Example 3: Thermionic Gun and 1.5 MeV Injector of BINP's NovoFEL. B.A. Knyazev *et al.*, Meas. Sci. Tech. **21**, 054017 (2010):

Gun HV	300 kV
Maximum peak current	1.8 A
Maximum average current	30–45 mA
Maximum bunch repetition rate	22.5 MHz
Bunch length	1.3 ns
Bunch charge	1.5-2 nC
Normalized emittance	10 microns

- RF system consisting of 3 identical 180.3 MHz cavities powered by different generators
 - Bunching/chirping cavity RFC1 with a voltage of up to 100 kV
 - Two accelerating cavities RFC2 and RFC3 with a voltage of up to 800 kV
 - Phase of RFC3 adjusted to also de-chirp removing correlated energy spread
 - 1.5 ns bunch from the gun compressed to 100 ps at the exit from the injector
 - Final bunch energy is 1.5 MeV

Photogun

Example 1: JLab 200 kV Inverted dc Gun with K₂CsSb photocathode:

- Average beam current: 10 mA
- Laser: 532 nm, dc

Jefferson Lab

- Lifetime: very long (weeks)
- Thermal emittance: 0.7 microns/mm(rms)

Mammei et al., Phys. Rev. ST AB 16, 033401 (2013)

Example 2: JLab 350/500 kV Inverted Gun:

	200 kV Gun	350/500 kV Gun
Chamber	14" φ	18" ф
Cathode	2.5" T-shaped	6" φ Ball
Cathode Gap	6.3 cm	6.3 cm
Inverted Ceramic	4" long	7" long
HV Cable	R28	R30
HV Supply	Spellman 225 kV, 30 mA	Glassman 600 kV, 5 mA
Maximum Gradient	4 MV/M	7 (10) MV/m

Achieved 350 kV with no FE (December 2013), next: Keep pushing to reach 500 kV Run beam with K₂CsSb photocathode

A DANGER

LOCK AND TA ZONE FOR HIGH VOLTAGE SUPPLY

Example 3: Cornell dc Gun with K₂CsSb photocathode:

- Gun HV: currently operating at 350 kV (designed 500-600 kV)
- Average beam current: 100 mA
- Bunch charge: 77 pC

- Bunch length: 10 ps, 1.3 GHz
- Normalized emittance: <0.5 microns

Magnetized Beam and Emittance Compensation

- . Magnetized Cathode:
 - To produce magnetized electron beam (to ensure zero angular momentum inside cooling-solenoid section)
- II. Magnetized Injector:

Jefferson Lab

To compensate space-charge emittance growth

Solenoid (B_z~2kG) (space-charge emittance growth compensation)

Solenoid ($B_z \sim 2kG$)

(magnetized beam)

Summary

I. Thermionic gun would be our first choice (less maintenance but may need complicated injector):

> TRIUMF/BINP Gun with Inverted Ceramic

II. To allow for laser pulse shaping, a photogun could be an option:

JLab 350/500 kV Inverted Gun and JLab K₂CsSb

