GTS gun study Shifted vs tilted anode for compensating beam kick

Simulations by: Sajini Wijethunga

6/17/2020

Summary by Carlos Hernandez-Garcia

11/16/2021

This is the beam kick with original 9 cm anode-cathode gap, including NEGs and shed

The NEGS contribute to the beam kick

Sajini started by studying anode shift WITH NO NEGs to compensate beam kick

Shifting the anode -1.6 mm compensates the beam kick

New anode

Anode shift...

Flat cathode front and flat anode – no NEGs – cathode anode gap 5 cm

New anode -1.6 mm shift

-350 kV at the cathode, 0 V at the anode

...has same effect on compensating beam kick as shifting only the anode aperture

Flat cathode front and flat anode – no NEGs – cathode anode gap 5 cm

New anode - only anode hole shifted -1.6 mm

-350 kV at the cathode, 0 V at the anode

Anode angle

1.355°: x=0.1675 cm 1.3°: x=0.1607 cm

Beam position

Beam position for 1.355 ⁰

1.355° angle electrostatic design

1.355⁰ angle electrostatic design

For -1.6 mm shifted anode hole

Vertical electric field

Beam position comparison between anode shift and tilt

z [m]

-3.0

Emittance variations between anode shift and tilt

tilt

Simulation parameters

- Gun HV -350 kV (3D E Field map CST)
- Charge 1 pC
- Gun solenoid off
- Pulse width 25 ps (rms)
- Laser spot size 1 mm (rms)
- Accuracy 6.5
- Space charge calculation off
- Focusing solenoids are off
- Correctors are off

Beam position in x and y for 1.32°, 1.35°, 1.37°

Emittance variations

