Simulated Asymmetry

- Read in Xavier's data (I, S, T, U)
- Generate Theta and Phi. Calculate Cross section using interpolation of Xavier's data (errors $<1 / 10^{\wedge} 3$). Do a rejection roll, if good generate primary, if bad pick new theta and phi and try again.
- $S(172.6$ deg. $)=-0.52$ according to Xavier's data.

Simulated Asymmetry

hLEFT

hDOWN

hRIGHT

Simulated Asymmetry

Up-Down Asym (\%):0.208594+/-2.04251
Left-Right Asym (\%): -55.152+/-1.71419

- Assume 100\% vertical Polarization.
- No spin flip yet but easy to do.

Next Steps

- Need to extend data to a range of energies +/50 keV .
- Need f \& g functions for spin tracking through multiple scattering.
- Begin building MottScatteringProcess.

