US-Japan collaboration on particle source for future collider

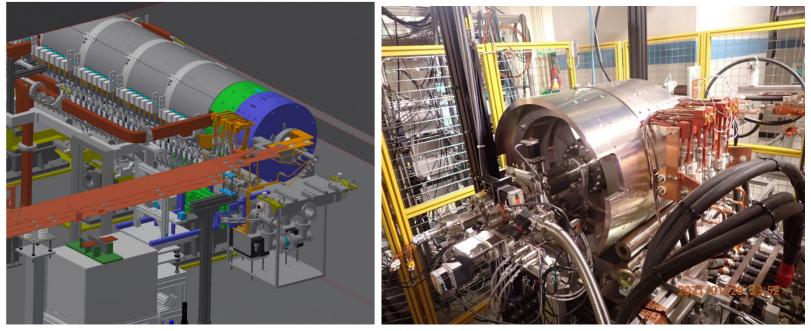
KEK Yoshinori ENOMOTO

My idea

- Start "loose" collaboration on particle source
 - Many kinds of scientific and engineering topics
 - Complicated simulation
 - Thermo-mechanical issues
 - Material
 - High voltage, vacuum...
 - Number of people involved in this field is not large
 - Exchanging and sharing experience and information is important to accelerate development speed

Status in KEK, ILC and Japan

- Pre-lab from FY2022 was not approved.
- Time critical work packages are proposed
 - Budget request is ongoing
 - Start from FY2023 (hopefully)
 - o So-called pre-pre-lab
- New group on positron source and beam dump for ILC launched in sept. 2022
 - I moved from SuperKEKB project group.
 - Looking for collaborators both in Japan and in the world
 - Good timing to start new collaboration for us
- KEK have Long collaboration with CERN (LEP/FCC)
 - With this US-Japan collaboration, tie Europe, US and Japan in this field

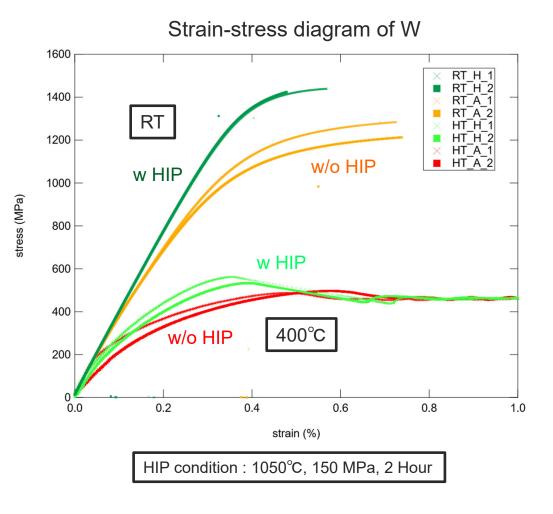


Member from KEK and our expertise

- Yoshinori Enomoto
 - Positron source
 - For SuperKEKB, slow positron facility and ILCs
- Tetsuo Abe
 - Accelerator structure
 - SuperKEKB ring cavity
 - X-band test facility (Nextef)
- Masahiro Yamamoto
 - Electron source
 - DC electron source for cERL

Main mission of positron source group

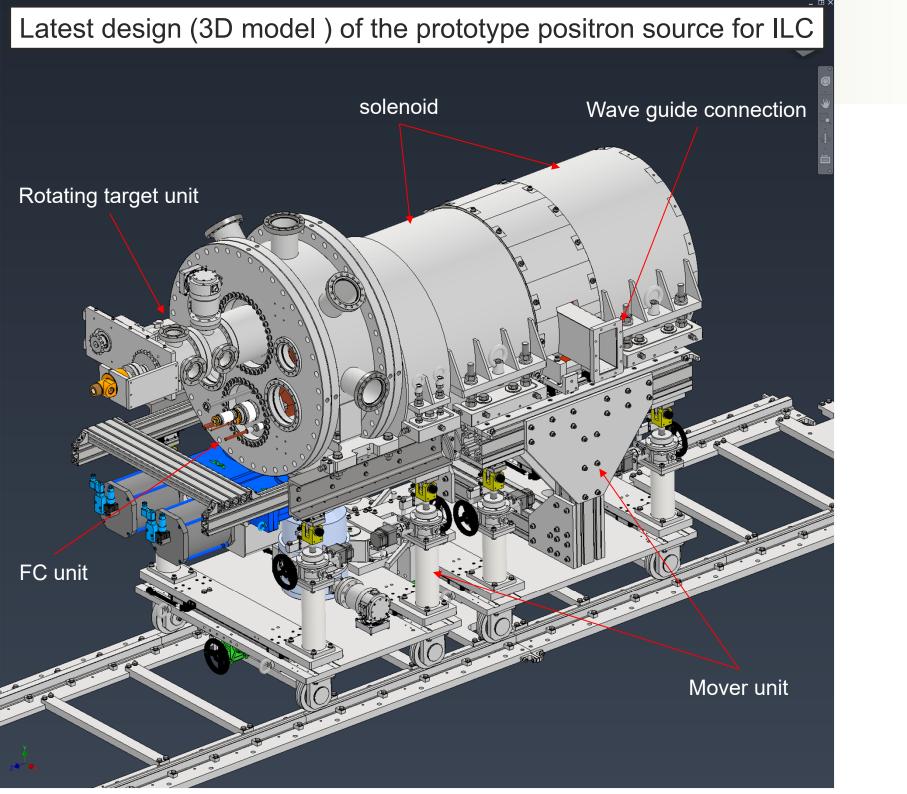
- Goals of ILC positron group in KEK till 2027 is demonstrate our design
 - Prepare
 - engineering design report (EDR)
 - 3D CAD model
 - Drawings for manufacturing
 - Arrange test environment
 - Construct prototype and test it

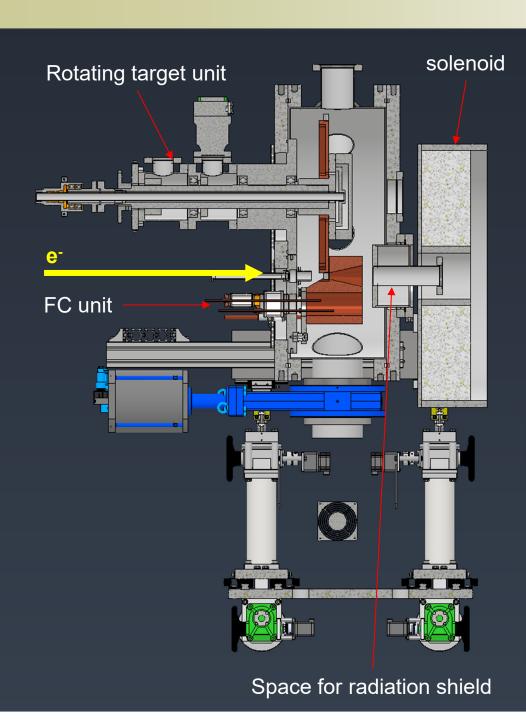

3D model and test bench of positron source for SuperKEKB We are going to prepare similar ones for ILC

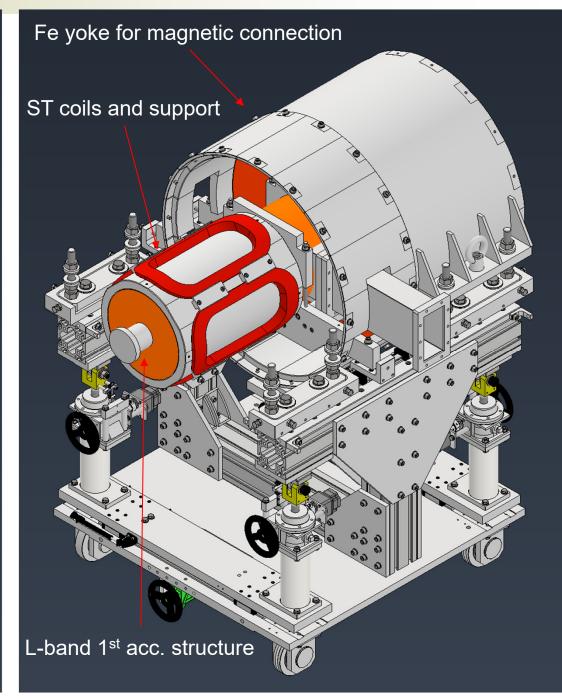
Key device and technology

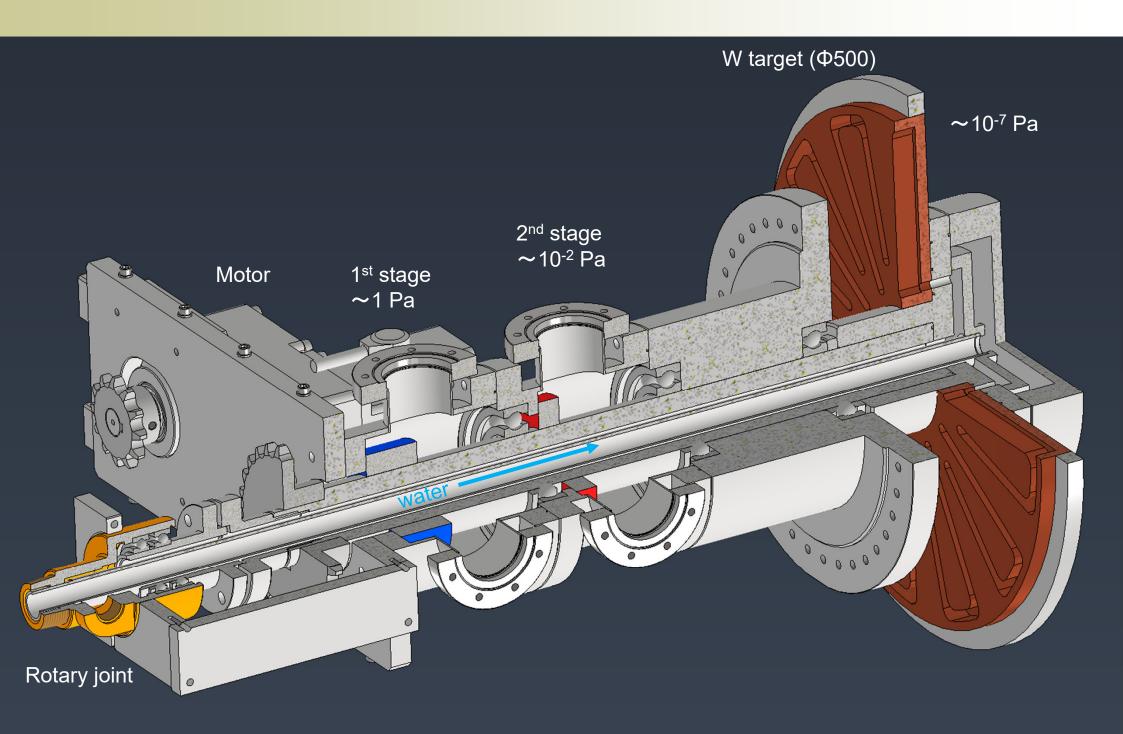
- UHV compatible water-cooled rotating target
 - o withstand 74 kW beam power
- Reliable W-Cu connection with high thermal conductivity and mechanical strength
 - Both experimental and simulation trials are important
 - Collaboration with an expert company and NIFS (National Institute for Fusion Science) started
- High current and repetition FC
 - ~20 times higher ohmic loss compared with that of FC for SuperKEKB
- Special accelerator structure just after the target
 - Usable under high radiation, heat load, complicated beam loading

Evaluation of W and W-Cu connection


Thermal and mechanical evaluation of W and W-Cu connection is important. Similar tasks are important for plasm facing wall of Fusion facility. Preparing collaboration with NIFS(National Institute for Fusion Science).




40 kV, 300 kW electron beam heating machine @ NIFS



Plan to measure thermal resistance of W-Cu interface by this facility ⁷

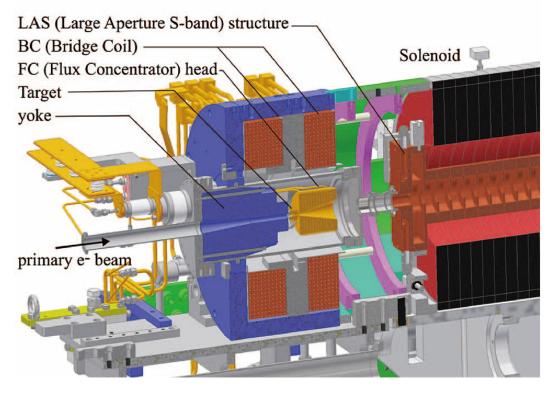
five years development plan for positron source

FY		20	22	2023		2024		2025		2026			2027										
year				20	23			20	24			20	25			20	26			20	27		
Quarter		Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1
Test bench																							
High power test bench																							
W-Cu connection																							
Target unit	1 st unit																						
	2 nd unit																						
	3 rd unit																						
FC base	1 st unit																						
	2 nd unit																						
magnet	Solenoid + ST																						
	Power supply																						
Chamber, vacuum, support																							
Acc. Structure	Dummy																						
	1 st unit																						
	2 nd unit																						
FC power supply																							
RF power supply																							

Electron source

- Share know-how about conditioning of electron gun
 - Stable operation experience is useful for development of new machine
- Extremely high vacuum technique
 - Share experience and know-how
- High voltage insulator development
 - Evaluate insulator from different company under the same condition both in US and Japan.
 - Compact design improve maintenance workability and installation possibilities

DC Electron gun for cERL in KEK Large chamber filled with SF_6 for suppressing discharge

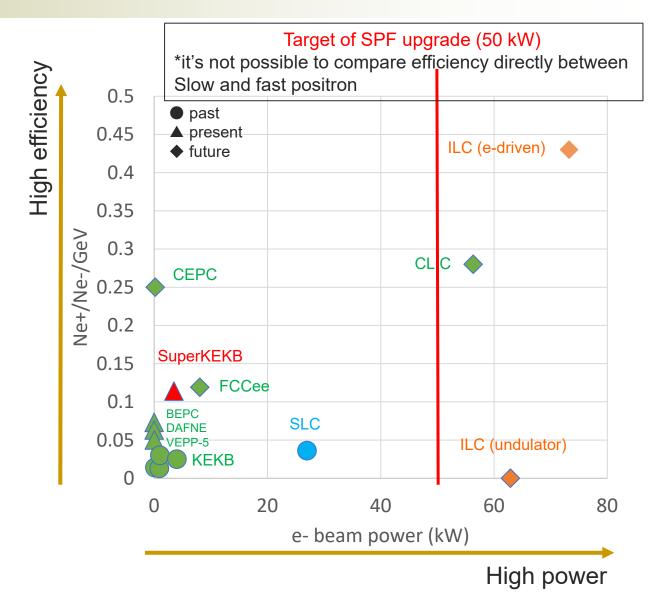


Present pressure

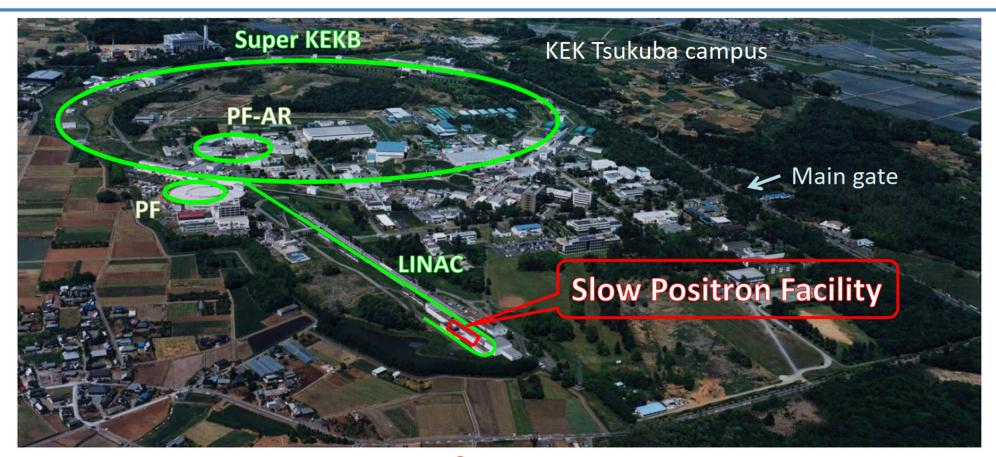
Accelerator structure

- High gradient accelerator for
 - Primary electron acceleration to make positron (up to a few GeV)
 - Primary electron acceleration for slow positron facility
 - Shorter length means lower construction cost
- Special accelerator structure just after the positron target
 - High heat load
 - High radiation environment
 - Large aperture
 - Complicated beam loading effect and compensation
 - Multi-bunch
 - effective charge varies as bunching of e+ and e-
 - Accelerate secondary particle is rare
 - e.g. Future muon collider

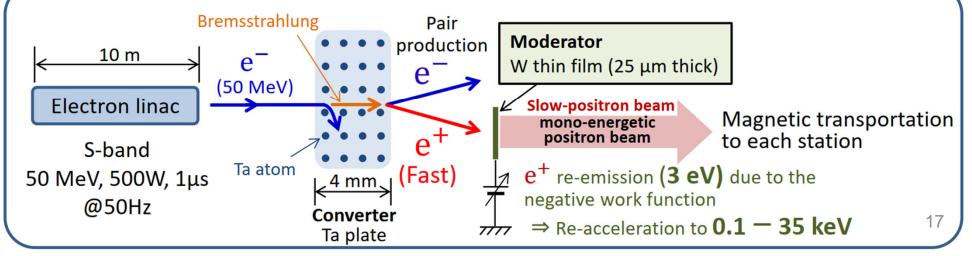
Cross sectional view of positron source for SuperKEKB 1st acc. Structure is close to the target Suffer from radiation and heat from particle shower

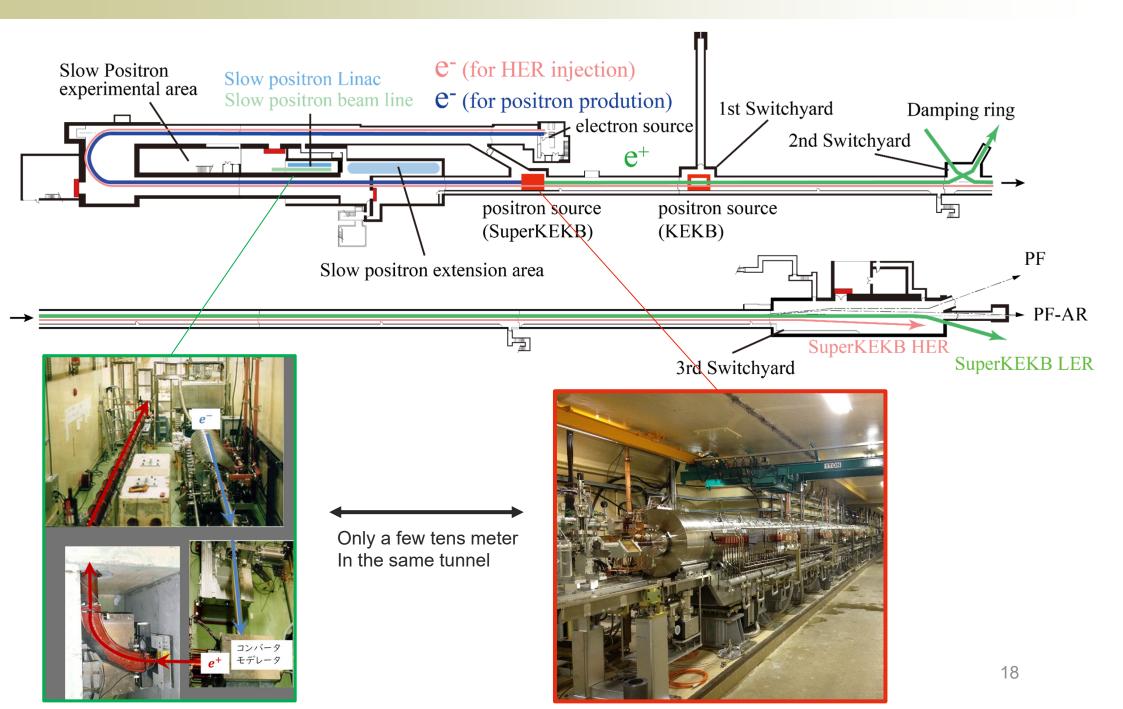

SPF upgrade plan and concept

- Upgrade beam intensity of Slow positron facility
 - Using knowledge and experiences obtained from
 - Positron source for SuperKEKB
 - X-band High gradient accelerating structure (Nextef)
 - To benchmark positron source for future collider
- Benefit for all the people working on
 - material science (main user of SPF)
 - X100 more e+
 - HEP who are longing for e+e- collider
 - o high gradient accelerator
 - Beam operation experience
 - Particle source
 - Demonstrate design with beam

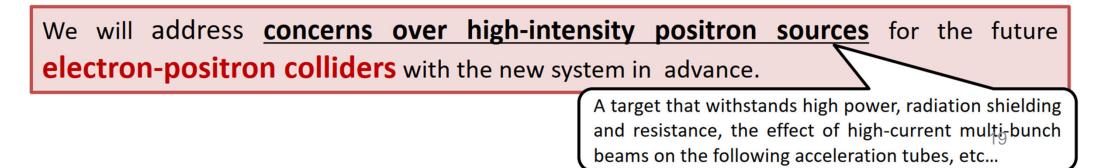

Parameter choice is important to realize these goals OHigh energy low current operation \times Low energy high current or high repetition operation

Position of SPF upgrade plan projected on the HEP positron source


- Beam pawer : between SLC and ILC
- Demonstrate watercooled rotating target
- No capture consideration = easier operation
- Beam operation experience is valuable experience


Slow Positron Facility (SPF) at IMSS

Generation of a slow-positron beam @SPF


KEK injector linac and SPF

Beam intensity upgrade of the Slow Positron Facility

We will realize the world's most intense slow-positron beam by applying the technologies of high-gradient acceleration/and high-intensity positron source developed at KEK. 100-fold increase \Rightarrow 1×10¹⁰ slow-e⁺/s Existing target New target ~14 m ~36 m Experimental hall high-gradient linac S-band linac After commissioning, it will <u>1 GeV, 50 kW, 50 Hz</u> 50 MeV, 550 W, 50 Hz be extended to the space where the existing linac is. Current New

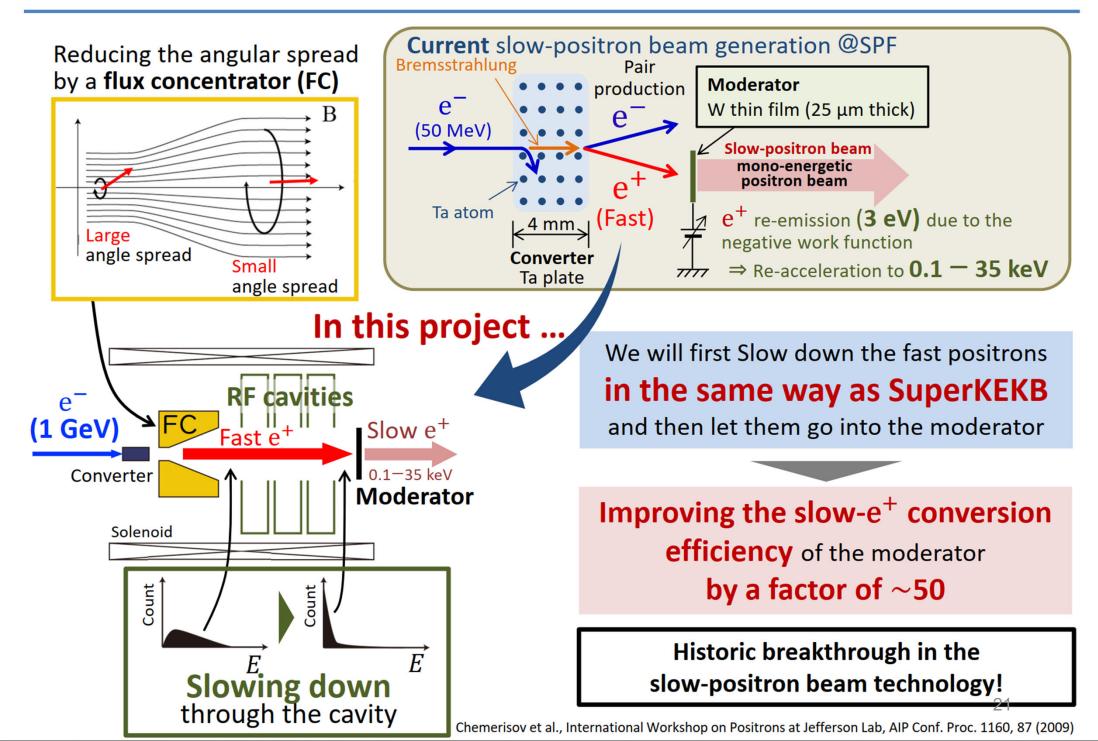
This will dramatically improve experiments of "Positron Diffraction" (an ideal surface structural analysis method) and bring breakthroughs in the fields of surface science. \Rightarrow <u>next-generation electronic devices</u> and <u>advanced catalytic materials</u>.

Specifications of the new high-gradient linac to be developed

Low-energy High-current High-energy	Current SPF (achieved)	SuperKEKB (design value)	SLC (achieved)	ILC (conventional) (design value)	LLNL (design value?)	Present (design value)
energy	0.05 GeV	3.5 GeV	33 GeV	3 GeV	0.1 GeV	1 GeV
Beam power	0.50 kW	3.5 kW	27 kW	74 kW	45 kW	50 kW
Repetition	50 Hz	50 Hz	120 Hz	100 Hz	300 Hz	50 Hz
Pulse width	1 µs	Single x2	Single	Single x 66	3 µs	4 μs
Ave. current	10 µA	1 µA	0.8 μΑ	24 μΑ	450 μA	50 μΑ
Slow-e ⁺ intensity	1 x 10 ⁸ /s		100 x 10 ⁸ /s			

• Parameters similar to those planned for ILC conventional positron source

⇒ Addressing concerns around the high-intensity positron source in advance


A target that withstands high power, radiation shielding and resistance, the effect of high-current multi-bunch beams on the following acceleration tubes, ... No experimental data available since SLC (1980s - 1990s).

- Effective use of an existing tunnel in a limited space for saving funds
 - ⇒ A High-gradient linac (cultivated by Nextef) with higher efficiency

Acceleration tubes with a high shunt impedance, high-efficiecy klystrons and power supplies (long histories of development at the KEK linac group)

⇒ contribution to Carbon neutrality

Application of the SuperKEKB positron source technology

Schedule and budget (\sim 1.8 billion JPY or 16 million USD in total)

	Fiscal year	2022	2023	2024	2025	2026	2027	2028	3 2029	2030	
	User run by the existing linac								II schedule epending c		
2	Planning				0.5 k	oillion JP		availability of linac manpow			
3	Building renovation				(4.3	million l	JSD)	г	(Breakdowi	2)	
4	Designing					-]		Accelerator	components,	
5	Fabrication						0.6 bi		0.3 billion J	am line, etc.: PY	
6	Construction						JPY		Power supp 0.3 billion J		
7	Commissioning) (5.2 n J USD)	nillion			
8	User run by the new linac						0007			,	
9	Removing the old linac								٦	0.4 billion JPY	
10	Linac extending									3.5 million USI	
	LEPM installation	LEPM (Lo	w-energy po	sitron micros	cope)					.3 billion JPY 2.6 million USD	

Relationship with the Master Plan of the Science Council of Japan

 KEK Super B Factory Project (KEK) (Priority Large Research Program) New frontiers in surface and interface science using intense slow-positron beams (Japanese Positron Science Society, JPOSS) Large-scale academic research projects (Category I) Support from JPOSS and KEK IMSS SPF user association, etc.

15

	Present	Plan A	Plan B	Plan C	Plan D	Plan E				
Primary energy	0.05 GeV	1 GeV	1 GeV	1 GeV	1 GeV	1 GeV				
Pulse width	1 us	1 us	5 us	1 us	1 us	2 us				
Rep rate	50 Hz	50 Hz	50 Hz	200 Hz	50 Hz	100 Hz				
pulse charge	200 nC	200 nC	1000 nC	200 nC	1000 nC	1000 nC				
Bunch / pulse	2856	10000	50000	10000	10000	20000				
Bunch charge	0.07 nC	0.02 nC	0.02 nC	0.02 nC	0.1 nC	0.05 nC				
Pulse current	0.2 A/pulse	0.2 A/pulse	0.2 A/pulse	0.2 A/pulse	1 A/pulse	0.5 A/pulse				
Primary e- num / pulse	1.25x10 ¹²	1.25x10 ¹²	6.25x10 ¹²	1.25x10 ¹²	6.25x10 ¹²	6.25x10 ¹²				
Average current	10 uA	10 uA	50 uA	40 uA	50 uA	100 uA				
Primary beam power	0.5 kW	10 kW	50 kW	40 kW	50 kW	100 kW				
Positron yield	8x10 ⁻⁷	1.6x10 ⁻⁵								
Positron / pulse	1x10 ⁶	2x10 ⁷	1x10 ⁸	2x10 ⁷	1x10 ⁸	1x10 ⁸				
Positron / sec	5x10 ⁷	1x10 ⁹	5x10 ⁹	4x10 ⁹	5x10 ⁹	1x10 ¹⁰				
Peak RF power [MW/linac]										
E _{acc} =100MV/m @room temp.		om temp. 1440		1440	2400	1800				
<i>E</i> _{acc} = 50MV/m @	<i>E</i> _{acc} = 50MV/m @room temp.		840	840	1800	1200				
<i>E</i> _{acc} = 100MV/m @ 77K		480	480	480	1440	840				
<i>E</i> _{acc} = 50MV/m @ 77K		360	360	360	1320	720				

status

- This plan was proposed for KEK's next mid-term (2022-2028) project in FY2021
- Unfortunately, the plan was not adopted this time
- We will brush up it for the next chance
- Support from users are stable and strong
 - Very recently price of radioactive source (positron emitter such as 22Na) gets higher and higher
 - Demand for accelerator based slow positron facility are increasing in Japan